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Lightning attachment procedure optimization (LAPO) is a new global optimization algorithm inspired by the attachment
procedure of lightning in nature. However, similar to other metaheuristic algorithms, LAPO also has its own disadvantages. To
obtain better global searching ability, an enhanced version of LAPO called ELAPO has been proposed in this paper. A quasi-
opposition-based learning strategy is incorporated to improve both exploration and exploitation abilities by considering an
estimate and its opposite simultaneously. Moreover, a dimensional search enhancement strategy is proposed to intensify the
exploitation ability of the algorithm. 32 benchmark functions including unimodal, multimodal, and CEC 2014 functions are
utilized to test the effectiveness of the proposed algorithm. Numerical results indicate that ELAPO can provide better or
competitive performance compared with the basic LAPO and other five state-of-the-art optimization algorithms.

1. Introduction

Optimization problems can be found in many engineering
application domains and scientific fields which have a
complex and nonlinear nature. It is usually difficult to solve
these optimization problems using classical mathematical
methods since such methods are often inefficient and have a
requirement of strong math assumptions. Due to the lim-
itations of classical approaches, many natural-inspired
stochastic optimization algorithms have been proposed to
conduct global optimization problems in the last two de-
cades. Such optimization algorithms were commonly simple
and easy to implement, and these features make the pos-
sibility to solve highly complex optimization problems.
-ese metaheuristics can be roughly classified into three
categories: evolutionary algorithms, swarm intelligence, and
physical-based algorithms.

Evolutionary algorithms are generic population-based
metaheuristics, which imitate the evolutionary behavior of
biology in nature such as reproduction, mutation, re-
combination, and selection. -e first generation starts with

randomly initialized solutions and further evolves over suc-
cessive generations. -e best individual among the whole
population in the final evolution is considered to be the op-
timization solution. Some of the popular evolutionary algo-
rithms are genetic algorithm (GA) [1], genetic programming
(GP) [2], evolution strategy (ES) [3], differential evolution (DE)
algorithm [4], and biogeography-based optimizer (BBO) [5].

Swarm intelligence algorithms mimic the collective
behavior of swarms, herds, schools, or flocks of creatures in
nature, which interact with each other and utilize full in-
formation about their environment with the progress of
algorithm. For example, honey bees are capable of
guaranteeing the survival of a colony without any external
guidance. In other words, no one tells honey bees how and
where to find food sources; instead, they cooperatively seek
the food sources even that is located far away from their
nests. In this category, particle swarm optimization (PSO)
[6], ant colony optimization (ACO) [7], and artificial bee
colony algorithm (ABC) [8] can be regarded as represen-
tative algorithms. Some other popular swarm intelligence
algorithms are firefly mating algorithm (FMA) [9], shuffled
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frog leaping algorithm (SFLA) [10], bee collecting pollen
algorithm (BCPA) [11], cuckoo search (CS) algorithm [12],
dolphin partner optimization (DPO) [13], bat-inspired al-
gorithm (BA) [14], firefly algorithm (FA) [15], and hunting
search (HUS) algorithm [16]. Some of the recent swarm
intelligence algorithms are fruit fly optimization algorithm
(FOA) [17], dragonfly algorithm (DA) [18], artificial algae
algorithm (AAA) [19], ant lion optimizer (ALO) [20], shark
smell optimization algorithm (DSOA) [21], whale optimi-
zation algorithm (WOA) [22], crow search algorithm (CSA)
[23], grasshopper optimization algorithm (GOA) [24],
mouth brooding fish algorithm (MBFA) [25], spotted hyena
optimizer (SHO) [26], butterfly-inspired algorithm (BFA)
[27], squirrel search algorithm (SSA) [28], Andean condor
algorithm (ACA) [29], and pity beetle algorithm (PBA) [30].

-e third category is physical-based algorithms which are
based on the basic physical laws such as gravitational force,
electromagnetic force, and inertia force. Some of the pre-
vailing algorithms of this category are simulated annealing
(SA) [31], gravitational search algorithm (GSA) [32], big-bang
big-crunch (BBBC) algorithm [33], charged system search
(CSS) [34], black hole (BH) algorithm [35], central force
optimization (CFO) [36], small-world optimization algorithm
(SWOA) [37], artificial chemical reaction optimization al-
gorithm (ACROA) [38], ray optimization (RO) algorithm
[39], galaxy-based search algorithm (GbSA) [40], and curved
space optimization (CSO) [41], gravitational search algorithm
(GSA) [32], and multiverse optimizer (MVO) [42].

Regardless of the difference among the three categories
of algorithms, a common point lies in that besides tuning of
common control parameters such as population size and
number of generations, the metaheuristic algorithms ne-
cessitate tuning of algorithm-specific parameters during the
course of optimization. For instance, GA requires tuning of
cross-over probability, mutation probability, and selection
operator [43]; SA requires tuning of initial temperature and
cooling rate [31]; PSO requires tuning of inertia weight and
learning factors [6]. -e improper tuning of these param-
eters either increases the computational cost or leads to the
local optimal solution.

Recently, a new physical-based metaheuristic algorithm
named lightning attachment procedure optimization (LAPO)
[44] was proposed, which does not require tuning of any
algorithm-specific parameters. Instead, an average value of all
solutions was employed to adjust the lightning jump behavior
ofmoving towards or away from a jumping point (or position)
in a self-adaptive manner. -is is an important reason that
LAPO is not easily stuck in the local optimal solution and has a
good exploration and exploitation abilities. LAPO has already
proved its superiority in solving a number of constrained
numerical optimization problems [44].

In this paper, an enhanced lightning attachment pro-
cedure optimization, namely, ELAPO is developed to in-
crease the convergence speed during the search process of
LAPO while maintaining the key feature of the LAPO as free
from algorithm-specific parameters tuning. In ELAPO, a
concept of opposition-based learning (OBL) is incorporated
for enhancing the searching ability of metaheuristic algo-
rithms.-emotivation is that the current estimates and their

corresponding opposites are considered simultaneously to
find the better solutions, thereby enabling the algorithm to
explore a large region of the search space in every generation.
-is concept was found to be effective in improving the
performance of well-known optimization algorithms such as
genetic algorithms (GA) [45], differential evolution (DE)
[46, 47], particle swarm optimization (PSO) [48, 49], bio-
geography-based optimization (BBO) [50, 51], harmony
search (HS) algorithm [52, 53], gravitational search opti-
mization (GSO) [54, 55], group search algorithm (GSA)
[56, 57], and artificial bee colony (ABC) [58]. Meanwhile, a
dimensional search strategy is proposed to intensively ex-
ploit a local search for each variable of the best solution in
each iteration, thus resulting in a higher quality of solution at
the end of iteration and strengthening the exploitation of the
algorithm. To evaluate the effectiveness of the proposed
algorithms, ELAPO is applied to 32 benchmark functions
and compared with the basic LAPO and six representative
swarm intelligence algorithms (SSA [28], Jaya [59], IBB-BC
[60], ODE1 [61], and ALO [20]). -e effectiveness of the two
strategies is also discussed.

-e rest of this paper is organized as follows: Section 2
briefly recapitulates the basic LAPO. Next, the proposed
ELAPO is presented in a detailed way in Section 3. Nu-
merical comparisons are illustrated in Section 4. Finally,
Section 5 gives the concluding remarks.

2. Basic Algorithm

LAPO is a new nature-inspired global optimization, which
mimics the lightning attachment procedure including the
downward leader movement and the upward leader prop-
agation. -e lightning is a sudden electrostatic discharge
occurring between electrically charged regions of a cloud,
which moves toward or away from the ground in a stepwise
movement. After each step, the downward leader stops and
then moves to a randomly selected potential point that may
have higher value of electrical field. -e upward leader starts
from sharp points and goes towards the downward leader.
-e branch fading feature of lightning is taken effect when
the charge of a branch is lower than a critical value. In the
case where the two leaders join together, a final strike occurs
and the charge of the cloud is neutralized.

2.1. Parameters and Initialization of Test Points. Main pa-
rameters of the LAPO consist of the maximum number of
iterations Itermax, the number of test points Npop, the
number of decision variables n, and the upper and lower
bounds for decision variable Xmax and Xmin. -ese pa-
rameters are given at the beginning of the algorithm. Similar
to other nature-inspired optimization algorithms, an initial
population is required. Each population is regarded as a test
point in the feasible search space, which could be an emitting
point of the downward or upward leader. -e test points are
randomly initialized as follows:

Xi,j � Xmin + rand( )∗ Xmax −Xmin( ,

i � 1, 2, . . . , Npop, j � 1, 2, . . . , n,
(1)
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where rand( ) is a uniformly distributed random number
in the range [0, 1]. -e electric field (i.e., fitness value)
f � (f1, f2, . . . , fNpop) of each test point is calculated
based on the objective function:

fi � obj Xi,1, Xi,2, . . . , Xi,n , i � 1, 2, . . . , Npop. (2)

2.2.DownwardLeaderMovement toward theGround. In this
phase, all the test points are considered as the downward
leader and move down towards the ground. -e average
value of all test points and its corresponding fitness value are
calculated as follows:

Xave � mean Xi,j , (3)

fave � obj Xave( . (4)

Given the fact that the lightning has a random behavior,
for test point i, a random point k is selected among the
population (i ≠ k), and the new test point is updated based on
the following rules: (i) if the electric field of point k is higher
than the average electric field, then

X
new
i,j � Xi,j + rand( )∗ Xave − rand( )∗Xk,j , (5)

and (ii) if the electric field of point k is lower than the average
electric field, then

X
new
i,j � Xi,j − rand( )∗ Xave − rand( )∗Xk,j . (6)

If the electric field of the new test point is better than the
old one, the branch sustains; otherwise, it fades. -is feature
is mathematically formulated as

Xi,j �
Xnew

i,j , if f Xnew
i,j <f Xi,j ,

Xi,j, otherwise.

⎧⎨

⎩ (7)

2.3. Upward Leader Movement. In the upward movement
phase, all the test points are considered as the upward leader
towards the cloud. -e new test points are generated as
follows:

X
new
i,j � Xi,j + rand( )∗ S∗ Xbest −Xworst( , (8)

where Xbest and Xworst are the best and the worst solutions of
the population and S is an exponent factor that is a function
of the number of iterations Iter and the maximum number
of iterations Itermax:

S � 1−
Iter

Itermax
 ∗ exp

Iter
Itermax

 . (9)

From a computational point of view, this iteration-de-
pendent exponent factor is important for the balance of
exploration and exploitation capabilities of the algorithm.
Similar to the downward movement, the branch fading
feature also occurs in this phase.

2.4. Enhancement of the Performance. In order to enhance
the performance of LAPO, in each iteration, the worst test

point is replaced by the average test point if the fitness of the
former is worse than the latter:

Xworst � Xave, if fave <f Xworst( . (10)

2.5. Stopping Criterion. -e algorithm terminates if the
maximum number of iterations is satisfied. Otherwise, the
procedures of downward and upward leadermovements and
of performance enhancement are repeated.

2.6. Procedure of the Basic LAPO. -e complete computa-
tional procedure of the basic LAPO is provided in Algorithm 1.

3. The Enhanced Lightning Attachment
Procedure Optimization

-e enhanced lightning attachment procedure optimization
(ELAPO) is presented in this section. Two main strategies
exist in the ELAPO. First, a quasi-opposition-based learning
strategy is developed and employed randomly to diversify
the population. Second, the dimensional search strategy is
proposed to improve the quality of the best solution in each
iteration. -e key ideas behind ELAPO are illustrated as
follows.

3.1. Quasi-Opposition-Based Learning. In order to prevent
the proposed algorithm from being trapped in local optimal
solutions, a monitoring condition is introduced and checked
in each iteration. Following steps are involved. First, a
distance constant between the average test point and the best
test point is calculated:

Dc �

����������������



n

j�1
Xave,j −Xbest,j 

2




. (11)

Second, the minimum value of the distance constant
condition is computed:

Dcmin �
15

10 Iter/ Itermax( )( )
, (12)

and the monitoring condition is then checked. If Dc <Dcmin,
the concept of opposition-based learning is employed to
further diversify the population and improve the conver-
gence rage of the algorithm. In the strategy, a portion of test
points is randomly selected, based on which the corre-
sponding opposite test points are generated and both are
considered at the same time. -en, the fitness of the original
test points and the quasi-opposite test points are calculated
and ranked in a descending order, fromwhich the firstNpop
solutions are selected for proceeding the downward leader
movement and the upward leader movement. In order to
maintain the stochastic nature of ELAPO, a quasi-opposite
solution is randomly generated between the center of the
search space CS and the mirror point of the corresponding
test point MP:
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X
q

i,j �

CS + rand( )∗ (MP−CS), if MP>CS,

MP + rand( )∗ (CS−MP), otherwise,

i � 1, 2, . . . , Nq,

⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

CS �
Xmax + Xmin

2
,

MP � Xmax + Xmin −Xi,j,

(13)

where Nq is the number of randomly chosen test points for
the generation of opposite test points, and it is set to be 5 in
this paper.

3.2. Enhancing Dimensional Search. During the search
process of the basic LAPO, all dimensions of each test point
are updated simultaneously after each iteration. In other
words, different variables in each dimension are dependent.
However, this procedure has one obvious drawback: the
change in one dimensional variable may cause negative

impacts on other dimensional variables, thereby leading to
poor convergence performance in each dimension. In order
to enhance the dimensional search for each variable, the
following four steps are carried out in each iteration: (a) find
the best test point, (b) generate one new solution based on
the best test point in a way that the value of one variable is
revised while the rest of variables are preserved, (c) compare
fitness values of the new-generated solution with the old
solution, and reserve the better one, and (d) repeat steps (b)
and (c) for other dimensional variables. -e new-generated
solution is produced according the following rule:

X
new
best,j � Xbest,j + rand( )∗ S∗ Xbest,j −Xworst,j ,

j � 1, 2, . . . , n.
(14)

3.3. Procedure of ELAPO. -e complete computational pro-
cedure of the enhanced ELAPO is provided in Algorithm 2.

4. Experimental Results and Analysis

In this section, the performance of ELPAO is evaluated by
means of 32 different benchmark functions and the results

(1) Set Itermax, Npop, n, Xmax and Xmin
(2) Randomly initialize the test points
(3) Xi,j � Xmin + rand( )∗ (Xmax −Xmin), i � 1, 2, . . . , Npop, j � 1, 2, . . . , n

(4) Calculate fitness value
(5) fi � obj(Xi,1, Xi,2, . . . , Xi,n), i � 1, 2, . . . , Npop
(6) while Iter< Itermax
(7) Calculate average value of all test points and its fitness value
(8) Xave � mean(Xi,j)

(9) fave � obj(Xave)

(10) iffave <f(Xworst)

(11) Xworst � Xave
(12) end
(13) Downward leader movement toward the ground
(14) for i� 1:Npop
(15) randomly select Xk,j (Xk,j ≠Xi,j)

(16) iffave <f(Xk,j)

(17) Xnew
i,j � Xi,j + rand( )∗ (Xave − rand( )∗Xk,j)

(18) else
(19) Xnew

i,j � Xi,j − rand( )∗ (Xave − rand( )∗Xk,j)

(20) end
(21) Calculate fitness value of new test points
(22) iff(Xnew

i,j )<f(Xi,j)

(23) Xi,j � Xnew
i,j

(24) end
(25) end
(26) Upward leader movement
(27) for i� 1:Npop
(28) S � 1− (Iter/Itermax)∗ exp(Iter/Itermax)

(29) Xnew
i,j � Xi,j + rand( )∗ S∗ (Xbest −Xworst)

(30) iff(Xnew
i,j )<f(Xi,j)

(31) Xi,j � Xnew
i,j

(32) end
(33) end
(34) Iter � Iter + 1
(35) end

ALGORITHM 1: Pseudocode of basic LAPO.
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(1) Set Itermax, Npop, Nq, n, Xmax and Xmin
(2) Randomly initialize the test points
(3) Xi,j � Xmin + rand( )∗ (Xmax −Xmin), i � 1, 2, . . . , Npop, j � 1, 2, . . . , n

(4) Calculate fitness value
(5) fi � obj(Xi,1, Xi,2, . . . , Xi,n), i � 1, 2, . . . , Npop
(6) while Iter< Itermax
(7) Calculate average value of all test points and its fitness value
(8) Xave � mean(Xi,j)

(9) fave � obj(Xave)

(10) if fave <f(Xworst)

(11) Xworst � Xave
(12) end
(13) Generate quasi-opposite test points
(14) Dc �

������������������


n
j�1(Xave,j −Xbest,j)

2


, Dcmin � 15/(10Iter/(Itermax))

(15) if Dc <Dcmin

(16) CS � (Xmax + Xmin)/2; MP � Xmax + Xmin −Xi,j

(17) X
q
i,j �

CS + rand( )∗ (MP−CS), if MP>CS,

MP + rand( )∗ (CS−MP), otherwise, i � 1, 2, . . . , Nq,

(18) end
(19) Select good solutions from the original test points and the quasi-opposite test points
(20) Downward leader movement toward the ground
(21) for i� 1:Npop
(22) randomly select Xk,j (Xk,j ≠Xi,j)

(23) if fave <f(Xk,j)

(24) Xnew
i,j � Xi,j + rand( )∗ (Xave − rand( )∗Xk,j)

(25) else
(26) Xnew

i,j � Xi,j − rand( )∗ (Xave − rand( )∗Xk,j)

(27) end
(28) Calculate fitness value of new test points
(28) if f(Xnew

i,j )<f(Xi,j)

(29) Xi,j � Xnew
i,j

(30) end
(31) end
(32) Upward leader movement
(33) for i� 1:Npop
(34) S � (1− (Iter/Itermax))∗ exp(Iter/Itermax)

(35) Xnew
i,j � Xi,j + rand( )∗ S∗ (Xbest −Xworst)

(36) if f(Xnew
i,j )<f(Xi,j)

(37) Xi,j � Xnew
i,j

(38) end
(39) end
(40) Enhance intensive dimensional search
(41) Find Xbest, fbest
(42) for j� 1: n
(43) Xnew

best,j � Xbest,j + rand( )∗ S∗ (Xbest,j −Xworst,j), j � 1, 2, . . . , n

(44) Calculate fitness value of the new solution
(45) fnew

best � f(Xbest,1, Xbest,2, . . . , Xnew
best,j, . . . , Xbest,n)

(46) if fnew
best <fbest

(47) Xbest,j � Xnew
best,j

(48) fbest � fnew
best

(49) end
(50) end
(51) Iter � Iter + 1
(52) End

ALGORITHM 2: Pseudocode of ELAPO.
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are compared to those of several state-of-the art meta-
heuristic optimization algorithms.-e benchmark functions
are listed in Tables 1–3, among which F1–F11 are unimodal

functions, F13–F25 belong to multimodal functions, and
F26–F32 are composite functions provided by IEEE CEC
2014 special section [62]. In these tables, n refers to

Table 1: Unimodal benchmark functions.

Function n Range Fmin

F1(x) � 
n
i�1ix

2
i

30, 100 [−10, 10] 0
F2(x) � 

n
i�2i(2x2

i −xi−1)
2 + (x1 − 1)2 30, 100 [−10, 10] 0

F3(x) � −exp(−0.5
n
i�1x

2
i ) 30, 100 [−1, 1] −1

F4(x) � 
n
i�1(10

6)((i−1)/(n−1))x2
i

30, 100 [−100, 100] 0
F5(x) � 

n
i�1ix

4
i + rand( ) 30, 100 [−1.28, 1.28] 0

F6(x) � 
n−1
i�1 [100(xi+1 − x2

i )2 + (xi − 1)2] 30, 100 [−30, 30] 0
F7(x) � 

n
i�1(

i
j�1x

2
j) 30, 100 [−100, 100] 0

F8(x) � max |xi|, 1≤ i≤ n  30, 100 [−100, 100] 0
F9(x) � 

n
i�1|xi| + 

n
i�1|xi| 30, 100 [−10, 10] 0

F10(x) � 
n
i�1x

2
i

30, 100 [−100, 100] 0
F11(x) � 

n
i�1|xi|

i+1 30, 100 [−1, 1] 0

Table 2: Multimodal benchmark functions.

Function n Range Fmin

F12(x) � −20 exp(−0.2
����������
(1/n)

n
i�1x

2
i


)− exp(1/n

n
i�1cos(2πxi)) + 20 + exp(1) 30,100 [−32, 32] 0

F13(x) � 
n
i�1|xi sin(xi) + 0.1xi| 30,100 [−10, 10] 0

F14(x) � fs(x1, x2) + . . . + fs(xn, x1), fs(x, y) � (x2 + y2)0.25[sin2(50(x2 + y2)0.1) + 1] 30,100 [−100, 100] 0
F15(x) � fs(x1, x2) + . . . + fs(xn, x1), fs(x, y)

� 0.5((sin2(
������
x2 + y2


)− 0.5)/(1 + 0.001(x2 + y2))2)

30,100 [−100, 100] 0

F16(x) � π/n 10 sin2(πyi) + 
n−1
i�1 (yi −1)2[1 + 10 sin2(πyi+1)] + (yn −1)2 

+ 
n
i�1u(xi, 10, 100, 4), yi � 1 + (1/4)(xi + 1), u(xi, a, k, m) �

k(xi −a)m, xi >a,

0, −a≤xi ≤a,

k(−xi −a)m, xi >a.

⎧⎪⎨

⎪⎩

30,100 [−50, 50] 0

F17(x) � (1/4000)
n
i�1x

2
i −

n
i�1cos(xi/

�
i

√
) + 1 30,100 [−100, 100] 0

F18(x) � −n−1
i�1 (exp(−(x2

i + x2
i+1 + 0.5xixi+1)/8)∗ cos(4

�����������������
x2

i + x2
i+1 + 0.5xixi+1


)) 30,100 [−5, 5] 1− n

F19(x) � 
n
i�1(xi − 1)2 −

n
i�2xixi−1 30,100 [−n2, n2] (n(n + 4)(n− 1))/−6

F20(x) � 
n−1
i�2 (0.5 + (sin2(

����������
100x2

i + x2
i+1


)− 0.5))/((1 + 0.001(x2

i − 2xixi−1 + x2
i−1))

2) 30,100 [−100, 100] 0

F21(x) � 
n
i�1[x2

i − 10 cos(2πxi) + 10] 30,100 [−5.12,
5.12] 0

F22(x) � 
n
i�1[y2

i − 10 cos(2πyi) + 10], yi �
xi, |xi|< 0.5,

round(2xi)/2, |xi|< 0.5.


30,100 [−5.12,
5.12] 0

F23(x) � 1− cos(2π
������


n
i�1x

2
i


) + 0.1

������


n
i�1x

2
i


30,100 [−100, 100] 0

F24(x) � 
n
i�1 

kmax
k�0 [ak cos(2πbk(xi + 0.5))] − n

kmax
k�0 [ak cos(2πbk0.5)] 30,100 [−0.5, 0.5] 0

F25(x) � 
n
k�1

n
j�1((y2

jk/4000)− cos(yjk) + 1), yjk � 100(xk −x2
j)2 + (1− x2

j)2 30,100 [−100, 100] 0

Table 3: CEC 2014 benchmark functions.

Function n Range Fmin

F26 (CEC1: rotated high-conditioned elliptic
function) 30, 100 [−100, 100] 100

F27 (CEC2: rotated bent cigar function) 30, 100 [−100, 100] 200
F28 (CEC4: shifted and rotated Rosenbrock’s
function) 30, 100 [−100, 100] 400

F29 (CEC17: hybrid function 1) 30, 100 [−100, 100] 1700
F30 (CEC23: composition function 1) 30, 100 [−100, 100] 2300
F31 (CEC24: composition function 2) 30, 100 [−100, 100] 2400
F32 (CEC25: composition function 3) 30, 100 [−100, 100] 2500
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dimension of functions, Range donates the search space, and
Fmin is the true optimal value of the test functions. Two
kinds of dimension (n� 30, and 100) are chosen in order to
evaluate the capability of the proposed algorithm for solving
different scale test functions.

Six metaheuristic optimization algorithms are utilized in
this section as a comparison with the proposed algorithm,
including the basic LAPO, squirrel search algorithm (SSA)
[28], Jaya [59], improved big bang-big crunch algorithm
(IBB-BC) [60], opposition-based differential evolution al-
gorithm (ODE1) [61], and ant lion optimizer (ALO) [20].
-e population size and the maximal iteration number are
set to be 50 and 1000, respectively. -e same set of initial
random populations is used to evaluate different algorithms.
-e error value, defined as f(x)− Fmin, is recorded for the
solution x, where f(x) is the optimal fitness value of the
function calculated by the algorithms. -e widely used
parametric settings of all algorithms are listed in Table 4.
Each algorithm is applied on the test functions in 10 in-
dependent runs. -e average and standard deviation of the
error values over all independent runs is calculated.
Meanwhile, all algorithms are compared in terms of con-
vergence behavior with different curves (Figures 1–6). In
addition, the effectiveness of each strategy is tested.

4.1. Experimental Test 1: Unimodal Functions. Unimodal
benchmark functions have one global optimal solution, and
they are commonly used for evaluating the exploitation
ability of optimization algorithms. Tables 5 and 6 list the
statistical results (the mean error and standard deviation) by
different algorithms through 10 independent runs at n� 30
and 100, respectively. In these tables, the best values are
highlighted in bold. It is obvious from the results that
ELAPO has an extremely high level of accuracy and con-
vergence precision for most of unimodal functions in
comparison to other six counterpart algorithms. Taken F10
as an example, ELAPO can reach a mean error level of
10E− 195 with zero standard deviation at n � 30, while the
accuracy of the rest algorithms is ranked in an order of
LAPO (10E− 27), ODE1 (10E− 11), ALO (10E− 7), SSA
(10E− 6), IBB-BC (10E− 4), and Jaya (10E− 2). It is also
found that ELAPO is able to achieve the true minimal value
of F3 and F11, while the rest of algorithms fail to obtain the
same level of accuracy except for LAPO on F3. -e increase
in the number of dimensions seems to not affect the out-
standing accuracy of ELAPO in comparison to other al-
gorithms, though the accuracy of all algorithms tends to
decrease.

Figures 1 and 2 show the convergence behaviors of some
test functions for ELAPO and its competitors at n� 30 and
100, respectively. As can be seem from these figures, for most
of test functions, ELAPO dramatically outperforms its
competitors in terms of both convergence rate and precision.
For F5 and F6, the convergence performance of ELAPO is
still the best, though LAPO tends to have similar behaviors,
and the difference between ELAPO and the rest five algo-
rithms seems to be not very significant. Such excellent
performance of ELAPO may be due to the introduction of

quasi-opposition-based learning strategy as well as the di-
mensional search strategy.

4.2. Experimental Test 2: Multimodal Functions. Different
from unimodal function, multimodal test functions have
multiple local optimal solutions and thus are commonly
adopted by researchers for testing the exploration ability of
an algorithm. Tables 7 and 8 provide the recorded results of
statistical analysis over 10 independent runs for n� 30 and
100, respectively. From these tables, it is clear that ELAPO
can get better level of accuracy for most of test functions
compared with other six algorithms. Particularly, ELAPO is
able to obtain the exact true values of F17, F18, F21, F22, and
F24. It is also interesting to find that ELAPO is still better
than LAPO on F20 although both cannot match with SSA at
all dimensions involved. Similar to the observation in the
unimodal functions, ELAPO seems to be insensitive to the
increase of dimensional number.

-e convergence performance of all algorithms for several
multimodal benchmark functions at n� 30 and 100 are
presented in Figures 3 and 4, respectively. As can be found in
these figures, ELAPO always has the fastest convergence rate
and can reach the best (at least comparable) convergence
precision in comparison to other six algorithms. For some
multimodal functions such as F13, F14, and F16, the con-
vergence performance of LAPO is unsatisfactory, while the
global convergence ability of ELAPO is improved greatly.-is
is mainly contributed by the quasi-opposition-based strategy
in which new opposite test points are generated according to a
portion of randomly selected test points and both are si-
multaneously employed for global searching.

4.3. Experimental Test 3: CEC 2014 Benchmark Functions.
In this experimental study, most intensely investigated
benchmark functions used in IEEE CEC 2014 are considered
for evaluating both exploration and exploitation capabilities
of ELAPO. Seven CEC 2014 functions are considered, which
consist of several novel basic problems (e.g., with shifting
and rotation) and hybrid and composite test problems.
-ese modern benchmark functions are specially developed
with complex features; consequently, all the algorithms can
hardly reach the global optimum. However, as per statistical
results obtained from different algorithms through 10 in-
dependent runs in Tables 9 and 10, ELAPO is able to yield
highly competitive results for all CEC 2014 functions under
consideration as compared with other six algorithms. For
example, the mean error of F27 is as low as a level of 10E− 1

Table 4: Parameter setting for the involved algorithms.

Algorithm Parameter
ELAPO —
LAPO —
SSA Gc � 1.9, sf� 18, Pdp � 0.01, Nfs � 4
Jaya —
IBB-BC c � 0.2, α� 3
ALO —
ODE1 F� 0.5, Cr� 0.9, JR� 0.3
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for ELAPO, while the corresponding mean errors are dra-
matically larger for LAPO (10E+2), ODE1 (10E+ 3), SSA,
IBB-BC and ALO (10E+ 4), and Jaya (10E+ 9). As the number
of dimension increases, all algorithms produce relatively larger
mean errors for F26–29 with higher standard deviations,
among which ELAPO still ranks No. 1. For the composite
functions (F30–32), the increase of dimension seems to not
affect the statistical results of all algorithms and ELAPO tends
to give slightly better results than other six algorithms.

Figures 5 and 6 show the average convergence curves for
four selected CEC 2014 benchmark functions at n� 30 and

100, respectively. It is clear that ELAPO has promising
convergence behavior compared with other six algorithms,
and thus ELAPO proves to be the best among all algorithms
on seven CEC 2014 functions. -is serves as a further
confirmation that ELAPO possesses excellent balance be-
tween exploration and exploitation.

4.4. Effectiveness of the Two Strategies. In order to verify the
effectiveness of the two strategies in the proposed algorithm,
this subsection performs the previous three experiments for
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Figure 1: Average convergence curves for the selected unimodal functions (n � 30). (a) F1. (b) F4. (c) F5. (d) F6. (e) F7. (f) F8. (g) F9. (h) F10.
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ELAPO, LAPO with quasi-opposition-based learning only
(denoted as ELAPO1), and LAPO with dimensional search
strategy only (denoted as ELAPO2), respectively. -e sta-
tistical results (the minimum, mean and maximum fitness
values, and the standard deviation) of different ELAPO
variants are recorded in Tables 11–16 for various test
functions at n� 30 and 100. For each function, the overall
best results among the three algorithms are highlighted in
bold.

For most of the unimodal functions, as shown in Ta-
bles 11 and 12, ELAPO outperforms the other two variants

in terms of the minimum, mean and maximum fitness
values, and the standard deviation. -is confirms that for
most of the functions, both strategies take effects on en-
hancing the global search ability and the contribution of the
quasi-opposition-based learning strategy is more important.
As for F6, it seems that the dimensional search strategy has
bigger contributions on the exploitation ability of ELAPO. It
is also noted that ELAPO and its two variants have almost
the same statistical results because, as per Table 5, the basic
LAPO has already converged to desirable accuracy and thus
the two strategies seem to have no effects.
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Figure 2: Average convergence curves for the selected unimodal functions (n � 100). (a) F1. (b) F4. (c) F5. (d) F6. (e) F7. (f) F8. (g) F9. (h) F10.
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Figure 3: Average convergence curves for the selected multimodal functions (n � 30). (a) F12. (b) F13. (c) F14. (d) F16. (e) F19. (f ) F23.
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Figure 4: Continued.
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Tables 13 and 14 show the minimum, mean and max-
imum fitness values, and the standard deviation of the
multimodal benchmark functions using ELAPO and its
two variants. It is clear to find that for most of benchmark
functions, both strategies are beneficial to the global
search performance and their individual contributions

vary for a specific function. For example, the quasi-op-
position-based learning strategy has more important ef-
fects on F13, F14, and F17; the dimensional search
strategy plays a more important role on F15, F16, and F20;
both strategies have almost equal contributions on F12
and F23. For F21, F22, and F24, both strategies seem to
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Figure 4: Average convergence curves for the selected multimodal functions (n � 100). (a) F12. (b) F13. (c) F14. (d) F16. (e) F19. (f ) F23.
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Figure 5: Average convergence curves for the selected CEC 2014 functions (n � 30). (a) F26. (b) F27. (c) F28. (d) F31.
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Figure 6: Average convergence curves for the selected CEC 2014 functions (n � 100). (a)F26. (b) F27. (c) F28. (d) F31.

Table 5: Statistical results obtained by different algorithms through 10 independent runs for unimodal benchmark functions at n � 30.

Function ELAPO LAPO SSA Jaya IBB-BC ODE1 ALO

F1 Mean 7.5637E− 200 5.6012E− 27 1.1428E− 07 2.2752E− 03 1.3687E− 02 1.0558E− 10 4.4514E− 01
Std 0.0000E+ 00 8.4361E− 27 4.8364E− 08 8.0246E− 04 1.5007E− 02 3.2551E− 10 7.8851E− 01

F2 Mean 6.6667E− 01 6.6667E− 01 9.4666E− 01 1.5883E+ 00 1.9627E+ 00 8.2956E− 01 1.9322E+ 00
Std 1.1703E− 16 2.6825E− 15 9.0549E− 01 1.4893E+ 00 3.0291E+ 00 3.4162E− 01 1.6808E+ 00

F3 Mean 0.0000E+ 00 0.0000E+ 00 4.8854E− 11 1.0043E− 06 9.5870E− 01 0.0000E+ 00 1.1247E− 11
Std 0.0000E+ 00 0.0000E+ 00 2.4693E− 11 3.2914E− 07 1.6557E− 02 6.3238E− 16 5.3013E− 12

F4 Mean 1.8129E− 180 3.6621E− 22 1.4830E− 03 1.5201E+ 01 3.1383E+ 06 4.6192E− 08 2.4627E+ 06
Std 0.0000E+ 00 9.1437E− 22 1.3430E− 03 5.5752E+ 00 1.5412E+ 06 9.0067E− 08 1.2642E+ 06

F5 Mean 8.6010E− 05 3.3511E− 04 1.4931E− 01 6.6240E− 02 1.1173E− 02 4.5462E− 02 5.6409E− 02
Std 8.9264E− 05 2.3261E− 04 4.1331E− 02 8.9128E− 03 1.7186E− 03 1.1837E− 02 2.0886E− 02

F6 Mean 1.8767E+ 00 1.3696E+ 01 6.0642E+ 01 9.2536E+ 01 1.6858E+ 02 5.2937E+ 01 1.6217E+ 02
Std 8.1532E− 01 9.9927E− 01 3.5585E+ 01 4.5618E+ 01 2.2938E+ 02 2.9763E+ 01 1.6493E+ 02

F7 Mean 2.5280E− 188 1.3524E− 25 9.7179E− 06 2.7516E− 01 7.1328E− 01 5.3976E− 10 1.7832E+ 01
Std 0.0000E+ 00 1.3883E− 25 5.6762E− 06 1.1147E− 01 9.4554E− 01 1.2392E− 09 2.0860E+ 01

F8 Mean 5.2137E− 83 8.3427E− 13 2.6260E+ 00 6.9426E+ 00 1.6891E− 01 7.1509E+ 00 8.1078E+ 00
Std 8.6122E− 83 5.5630E− 13 6.1185E− 01 3.4493E+ 00 1.3435E− 01 3.2087E+ 00 2.2939E+ 00

F9 Mean 3.6582E− 104 6.5210E− 15 1.9378E− 04 7.0569E− 02 5.0370E− 02 7.7739E− 07 3.4909E+ 01
Std 5.3056E− 104 1.4104E− 14 5.6284E− 05 2.2004E− 02 2.9201E− 02 3.0011E− 07 4.8480E+ 01

F10 Mean 8.1828E− 195 5.8616E− 27 1.0567E− 06 1.9651E− 02 3.5197E− 04 1.5345E− 11 6.6424E− 07
Std 0.0000E+ 00 8.6367E− 27 8.7349E− 07 6.2693E− 03 1.4587E− 04 1.5332E− 11 5.6633E− 07

F11 Mean 0.0000E+ 00 1.4564E− 103 1.3567E− 41 3.4416E− 13 6.3934E− 08 9.7599E− 13 1.3755E− 07
Std 0.0000E+ 00 3.7807E− 103 3.3385E− 41 7.5948E− 13 6.9210E− 08 2.3650E− 12 9.0853E− 08
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Table 7: Statistical results obtained by different algorithms through 10 independent runs for multimodal benchmark functions at n � 30.

Fun ELAPO LAPO SSA Jaya IBB-BC ODE1 ALO

F12 Mean 8.8818E− 16 2.8955E− 14 9.2571E− 04 9.1487E− 02 1.7601E+ 01 2.5302E− 05 1.6649E+ 00
Std 0.0000E+ 00 2.4640E− 14 9.2067E− 04 7.7490E− 02 6.9501E− 01 7.7013E− 05 7.7554E− 01

F13 Mean 6.1910E− 102 2.2608E− 16 1.1359E− 04 1.8262E+ 01 5.4072E− 02 5.6933E− 04 5.2074E+ 00
Std 1.7386E− 101 1.6391E− 16 5.9272E− 05 8.6301E+ 00 4.1391E− 02 1.2644E− 03 3.1551E+ 00

F14 Mean 1.4029E− 48 4.0494E− 07 3.4234E+ 00 5.1721E+ 01 1.1805E+ 02 6.8554E− 01 1.3231E+ 02
Std 1.7605E− 48 2.6617E− 07 9.0812E− 01 9.8384E+ 00 1.7959E+ 01 1.7645E− 01 2.0228E+ 01

F15 Mean 1.4563E+ 00 9.4103E+ 00 9.0346E− 01 1.2447E+ 01 1.2934E+ 01 1.2364E+ 01 1.2030E+ 01
Std 4.3965E− 01 5.3815E− 01 3.2252E− 01 2.9666E− 01 5.3194E− 01 2.5704E− 01 7.5729E− 01

F16 Mean 8.4188E− 25 1.0367E− 02 2.2266E− 09 4.1310E+ 00 4.1888E− 02 4.2953E− 02 9.0097E+ 00
Std 1.5385E− 24 3.2783E− 02 1.5417E− 09 1.6123E+ 00 5.4071E− 02 5.2502E− 02 3.2448E+ 00

F17 Mean 0.0000E+ 00 7.3960E− 04 2.2384E− 02 2.9603E− 01 5.1123E− 02 5.4206E− 03 1.0343E− 02
Std 0.0000E+ 00 2.3388E− 03 1.3974E− 02 2.2107E− 01 6.7979E− 02 6.1229E− 03 1.0090E− 02

F18 Mean 0.0000E+ 00 1.6903E+ 01 5.7452E+ 00 2.1310E+ 01 2.5789E+ 01 2.0659E+ 01 1.8115E+ 01
Std 0.0000E+ 00 6.2598E+ 00 1.6003E+ 00 8.2816E− 01 4.4569E− 01 8.8290E− 01 2.5728E+ 00

F19 Mean 5.8977E+ 01 2.5151E+ 02 4.5305E+ 03 1.7584E+ 03 6.3780E+ 03 3.0747E+ 03 5.5289E+ 02
Std 2.4102E+ 01 1.0785E+ 02 3.6141E+ 03 2.6629E+ 03 6.1551E+ 03 1.1640E+ 03 1.7077E+ 02

F20 Mean 2.0743E− 03 1.5861E− 02 3.1866E− 04 7.3750E− 02 3.3350E− 03 3.9377E− 03 8.3297E− 03
Std 2.6236E− 03 1.5529E− 02 3.6113E− 04 2.9955E− 02 1.3663E− 03 2.3799E− 03 4.6551E− 03

F21 Mean 0.0000E+ 00 0.0000E+ 00 8.1814E− 06 2.2150E+ 02 5.3244E+ 01 1.5228E+ 02 7.8900E+ 01
Std 0.0000E+ 00 0.0000E+ 00 1.2639E− 05 2.0149E+ 01 1.7451E+ 01 2.5607E+ 01 2.5535E+ 01

F22 Mean 0.0000E+ 00 1.2264E+ 01 1.6897E− 01 2.0120E+ 02 4.6472E+ 01 1.1726E+ 02 8.5910E+ 01
Std 0.0000E+ 00 2.5856E+ 01 2.7200E− 01 1.4093E+ 01 1.2995E+ 01 4.0305E+ 01 5.0467E+ 01

F23 Mean 7.9899E− 02 9.9873E− 02 7.1987E− 01 1.1289E+ 00 1.2306E+ 00 2.1167E− 01 6.0987E− 01
Std 4.2110E− 02 9.2544E− 09 6.3246E− 02 7.3969E− 02 2.7575E− 01 3.1132E− 02 7.3786E− 02

F24 Mean 0.0000E+ 00 0.0000E+ 00 2.0537E− 02 1.6488E+ 00 1.4966E+ 01 1.8835E− 02 1.7219E+ 01
Std 0.0000E+ 00 0.0000E+ 00 8.4213E− 03 7.2301E− 01 4.3592E+ 00 3.8947E− 02 3.2418E+ 00

F25 Mean 3.4556E+ 02 6.2050E+ 02 3.6018E+ 02 8.1492E+ 02 8.1624E+ 02 7.6337E+ 02 7.3879E+ 02
Std 3.3722E+ 01 1.4539E+ 02 1.1172E+ 02 1.9261E+ 01 2.0303E+ 01 5.3897E+ 01 3.2218E+ 01

Table 6: Statistical results obtained by different algorithms through 10 independent runs for unimodal benchmark functions at n � 100.

Function ELAPO LAPO SSA Jaya IBB-BC ODE1 ALO

F1 Mean 5.2007E− 193 1.3425E− 22 1.6628E+ 01 6.9384E+ 02 1.8003E+ 03 1.8499E+ 01 1.1049E+ 02
Std 0.0000E+ 00 2.7548E− 22 3.1328E+ 00 1.5143E+ 02 1.1134E+ 03 1.2793E+ 01 3.4927E+ 01

F2 Mean 6.6667E− 01 6.6667E− 01 9.3976E+ 01 1.7780E+ 04 5.8507E+ 01 2.4492E+ 02 6.5552E+ 01
Std 1.1703E− 16 3.1465E− 07 1.8308E+ 01 9.2943E+ 03 5.5585E+ 01 1.0120E+ 02 1.6325E+ 01

F3 Mean 0.0000E+ 00 0.0000E+ 00 2.1775E− 03 8.7150E− 02 1.0000E+ 00 3.7746E− 03 1.7589E− 06
Std 0.0000E+ 00 0.0000E+ 00 4.0246E− 04 1.9928E− 02 1.4447E− 06 4.3774E− 03 7.2246E− 07

F4 Mean 3.5068E− 174 7.6209E− 18 5.7986E+ 04 3.3097E+ 06 6.4465E+ 07 1.1275E+ 05 3.7806E+ 07
Std 0.0000E+ 00 1.4480E− 17 1.0700E+ 04 1.8257E+ 06 1.8345E+ 07 1.3526E+ 05 1.0211E+ 07

F5 Mean 6.9030E− 05 5.0481E− 04 1.7809E+ 00 3.7596E+ 00 1.1013E− 01 3.4775E− 01 6.9402E− 01
Std 1.2101E− 04 3.4086E− 04 2.8494E− 01 1.2333E+ 00 3.0997E− 02 1.6561E− 01 8.1848E− 02

F6 Mean 7.8513E+ 01 9.4177E+ 01 1.7444E+ 03 1.1493E+ 06 7.2389E+ 02 2.3396E+ 04 1.4132E+ 03
Std 1.6552E+ 00 8.9340E− 01 5.2182E+ 02 4.4284E+ 05 4.8630E+ 02 2.7369E+ 04 1.2610E+ 03

F7 Mean 1.1968E− 182 6.3973E− 20 1.8395E+ 03 6.3193E+ 04 1.3746E+ 05 2.9564E+ 03 1.2062E+ 04
Std 0.0000E+ 00 1.2555E− 19 3.3413E+ 02 1.2607E+ 04 7.9074E+ 04 2.1890E+ 03 3.5187E+ 03

F8 Mean 4.0687E− 78 1.5876E− 10 5.6812E+ 01 5.0409E+ 01 5.3766E+ 01 2.4541E+ 01 2.7036E+ 01
Std 3.8556E− 78 8.3377E− 11 3.3342E+ 00 4.5067E+ 00 4.7994E+ 00 4.2786E+ 00 3.7373E+ 00

F9 Mean 1.7153E− 97 6.0151E− 13 3.7898E+ 00 4.0015E+ 01 2.2845E+ 02 2.5136E+ 00 2.5022E+ 02
Std 2.6804E− 97 7.2192E− 13 3.3142E− 01 9.5389E+ 00 2.4337E+ 01 1.1042E+ 00 1.8829E+ 02

F10 Mean 2.1712E− 185 1.0305E− 21 4.5309E+ 01 2.0729E+ 03 1.5794E+ 03 1.5935E+ 02 7.2968E− 01
Std 0.0000E+ 00 1.3847E− 21 8.5410E+ 00 5.9716E+ 02 1.4768E+ 03 2.6888E+ 02 3.5403E− 01

F11 Mean 0.0000E+ 00 6.1091E− 103 4.7120E− 29 2.4029E− 07 8.6095E− 08 1.6291E− 10 1.5573E− 07
Std 0.0000E+ 00 1.6435E− 102 1.1490E− 28 3.3712E− 07 5.7812E− 08 5.1012E− 10 1.0685E− 07
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have no effect. -is is because, as per Table 8, the basic
LAPO has already obtained the exact optimum. It is also
interesting to find that negative effect may be exerted on
the global optimization capability. Taking F25 as an ex-
ample, the best minimum, mean, and maximum fitness

values all lied on ELAPO2. In other words, the di-
mensional search strategy and the quasi-opposition-based
learning strategy take positive and negative effects on F25,
respectively; the combination of both (ELAPO) can only
achieve a middle place of statistical results between

Table 8: Statistical results obtained by different algorithms through 10 independent runs for multimodal benchmark functions at n � 100.

Fun ELAPO LAPO SSA Jaya IBB-BC ODE1 ALO

F12 Mean 8.8818E− 16 1.2518E− 12 1.6404E+ 01 7.5892E+ 00 1.8804E+ 01 3.7259E+ 00 6.8021E+ 00
Std 0.0000E+ 00 1.9773E− 12 7.3335E+ 00 6.3212E – 01 2.1140E− 01 9.9069E− 01 1.3361E+ 00

F13 Mean 3.6083E− 99 2.2834E− 14 3.9731E+ 00 5.3830E+ 01 5.3426E+ 01 4.6040E− 01 3.6655E+ 01
Std 5.4747E− 99 1.5184E− 14 1.0066E+ 00 8.5028E+ 00 8.0583E+ 00 3.3718E− 01 1.1067E+ 01

F14 Mean 1.7929E− 44 4.5968E− 06 4.1324E+ 02 6.3538E+ 02 7.7868E+ 02 1.4752E+ 02 6.0052E+ 02
Std 2.8722E− 44 2.6509E− 06 5.0767E+ 01 4.8142E+ 01 3.4226E+ 01 2.1587E+ 01 5.0591E+ 01

F15 Mean 7.2183E+ 00 4.0465E+ 01 2.7036E+ 01 4.6481E+ 01 4.4956E+ 01 4.5921E+ 01 4.1953E+ 01
Std 8.8821E+ 00 9.3027E− 01 1.9176E+ 00 3.0431E – 01 8.6263E− 01 1.0532E+ 00 2.1483E+ 00

F16 Mean 4.7116E− 33 3.3016E− 03 9.3548E− 01 2.7447E+ 05 3.2179E− 01 1.5236E+ 02 2.2466E+ 01
Std 1.9082E− 48 9.8103E− 03 3.5109E− 01 4.6952E+ 05 2.2593E− 01 2.5273E+ 02 7.5516E+ 00

F17 Mean 0.0000E+ 00 0.0000E+ 00 4.9065E− 01 1.4511E+ 00 2.2854E+ 00 3.9525E− 01 1.7248E− 01
Std 0.0000E+ 00 0.0000E+ 00 6.1173E− 02 9.6738E – 02 3.8727E− 01 1.6189E− 01 3.8321E− 02

F18 Mean 2.4937E+ 01 8.3464E+ 01 2.9867E+ 01 8.6792E+ 01 9.2907E+ 01 8.6137E+ 01 6.7602E+ 01
Std 3.2165E+ 01 3.3841E+ 00 2.0862E+ 00 1.0848E+ 00 1.0617E+ 00 9.8553E− 01 6.6475E+ 00

F19 Mean 1.0585E+ 05 1.6900E+ 05 1.4604E+ 07 6.4959E+ 06 3.7560E+ 07 4.1557E+ 06 1.5224E+ 05
Std 4.1853E+ 04 2.9643E+ 02 4.0214E+ 06 1.5787E+ 06 1.4721E+ 07 1.1991E+ 06 1.1620E+ 04

F20 Mean 7.3630E− 02 1.5070E+ 00 4.4115E− 02 2.8379E+ 00 2.9689E− 01 1.7898E− 01 3.3727E− 01
Std 1.5569E− 01 3.5022E− 01 1.4144E− 02 4.1322E – 01 1.3280E− 01 5.3857E− 02 9.9795E− 02

F21 Mean 0.0000E+ 00 0.0000E+ 00 1.3590E+ 02 9.3314E+ 02 4.9346E+ 02 7.0721E+ 02 2.4664E+ 02
Std 0.0000E+ 00 0.0000E+ 00 1.1534E+ 01 5.9504E+ 01 4.5275E+ 01 8.4180E+ 01 5.1974E+ 01

F22 Mean 0.0000E+ 00 0.0000E+ 00 9.0892E+ 01 9.5631E+ 02 5.4737E+ 02 7.5311E+ 02 4.1579E+ 02
Std 0.0000E+ 00 0.0000E+ 00 1.3962E+ 01 6.2407E+ 01 5.9740E+ 01 4.7769E+ 01 1.0978E+ 02

F23 Mean 9.9873E− 02 9.9873E− 02 4.0825E+ 00 1.2141E+ 01 2.7545E+ 01 4.1911E+ 00 5.8799E+ 00
Std 7.7820E− 17 9.5023E− 09 4.1814E− 01 8.9201E – 01 1.7224E+ 00 5.9174E− 01 8.4301E− 01

F24 Mean 0.0000E+ 00 0.0000E+ 00 1.5556E+ 01 5.0470E+ 01 1.2573E+ 02 1.0650E+ 01 8.9877E+ 01
Std 0.0000E+ 00 0.0000E+ 00 2.0040E+ 00 3.8831E+ 00 6.1093E+ 00 1.7570E+ 00 6.6157E+ 00

F25 Mean 3.6192E+ 03 4.5995E+ 03 1.0766E+ 04 3.5395E+ 06 1.0381E+ 04 6.5557E+ 04 1.2502E+ 04
Std 8.1059E+ 02 9.5869E− 13 2.6120E+ 02 1.8511E+ 06 2.2635E+ 02 6.1928E+ 04 6.4827E+ 02

Table 9: Statistical results obtained by different algorithms through 10 independent runs for CEC 2014 benchmark functions at n � 30.

Fun ELAPO LAPO SSA Jaya IBB-BC ODE1 ALO

F26 Mean 4.4625E+ 05 8.6316E+ 05 7.4184E+ 06 1.2764E+ 08 1.0313E+ 07 2.4740E+ 06 1.1687E+ 07
Std 4.1890E+ 05 4.7927E+ 05 4.2619E+ 06 4.7324E+ 07 7.9033E+ 06 2.0985E+ 06 4.7916E+ 06

F27 Mean 3.0019E− 01 4.8777E+ 02 1.2834E+ 04 6.8890E+ 09 1.2215E+ 04 3.6652E+ 03 1.2669E+ 04
Std 5.2289E− 01 4.4184E+ 02 1.1687E+ 04 8.9349E+ 08 6.3267E+ 03 5.1977E+ 03 7.5825E+ 03

F28 Mean 7.0443E+ 00 4.9654E+ 01 1.2784E+ 02 9.7486E+ 02 1.5431E+ 02 7.9861E+ 01 1.3876E+ 02
Std 2.1148E+ 01 3.3024E+ 01 3.9603E+ 01 1.8138E+ 02 1.0217E+ 01 1.9594E+ 01 4.1850E+ 01

F29 Mean 1.6076E+ 05 2.9803E+ 05 1.2743E+ 06 6.8526E+ 06 6.1188E+ 05 2.4020E+ 04 1.1616E+ 06
Std 1.0464E+ 05 1.4700E+ 05 6.7634E+ 05 3.2198E+ 06 4.6454E+ 05 2.4324E+ 04 7.6552E+ 05

F30 Mean 3.1524E+ 02 3.1524E+ 02 3.1526E+ 02 3.6242E+ 02 4.0373E+ 02 3.1525E+ 02 3.2299E+ 02
Std 4.7935E− 13 9.3896E− 12 1.5792E− 02 1.1067E+ 01 3.7105E+ 01 3.7343E− 03 3.8656E+ 00

F31 Mean 2.0000E+ 02 2.0001E+ 02 2.3645E+ 02 2.6188E+ 02 3.5442E+ 02 2.2897E+ 02 2.4859E+ 02
Std 3.5666E− 04 1.7300E− 03 8.9457E+ 00 8.8881E+ 00 1.5967E+ 01 5.5403E+ 00 5.1698E+ 00

F32 Mean 2.0000E+ 02 2.0000E+ 02 2.0932E+ 02 2.2711E+ 02 2.4501E+ 02 2.0312E+ 02 2.2389E+ 02
Std 0.0000E+ 00 2.1437E− 13 5.7620E+ 00 3.4992E+ 00 1.1029E+ 01 3.2954E− 01 4.8761E+ 00
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Table 10: Statistical results obtained by different algorithms through 10 independent runs for CEC 2014 benchmark functions at n � 100.

Fun ELAPO LAPO SSA Jaya IBB-BC ODE1 ALO

F26 Mean 5.2160E+ 06 4.1519E+ 07 2.1696E+ 08 2.7847E+ 09 2.2334E+ 08 1.1944E+ 08 1.9248E+ 08
Std 3.1061E+ 06 1.0226E+ 07 6.2278E+ 07 5.3126E+ 08 4.9251E+ 07 4.6916E+ 07 5.2322E+ 07

F27 Mean 7.6528E+ 03 3.6048E+ 08 7.7122E+ 07 1.3095E+ 11 2.9545E+ 10 3.1169E+ 08 1.9225E+ 08
Std 4.6668E+ 03 4.0022E+ 08 1.5673E+ 07 1.4234E+ 10 1.6259E+ 10 2.7877E+ 08 1.2626E+ 08

F28 Mean 1.4633E+ 02 4.8679E+ 02 3.8588E+ 02 2.3145E+ 04 7.7160E+ 02 4.5681E+ 02 5.5644E+ 02
Std 4.9530E+ 01 8.2735E+ 01 4.7462E+ 01 4.8763E+ 03 1.1464E+ 02 6.2699E+ 01 5.1636E+ 01

F29 Mean 2.0346E+ 06 3.8720E+ 06 2.3420E+ 07 2.7397E+ 08 9.2325E+ 06 9.7017E+ 06 8.6593E+ 06
Std 1.2767E+ 06 2.1761E+ 06 1.3998E+ 07 3.4244E+ 07 4.6827E+ 06 2.9845E+ 06 3.3179E+ 06

F30 Mean 3.4508E+ 02 3.5079E+ 02 3.5220E+ 02 1.1047E+ 03 9.8448E+ 02 3.5205E+ 02 4.8240E+ 02
Std 6.2281E+ 01 1.2145E+ 00 2.1181E+ 00 1.5451E+ 02 1.4673E+ 02 3.0127E+ 00 2.5739E+ 01

F31 Mean 2.0000E+ 02 2.0002E+ 02 3.8192E+ 02 6.6879E+ 02 9.6557E+ 02 4.2456E+ 02 5.5390E+ 02
Std 1.0968E− 03 5.9258E− 03 3.3080E+ 00 3.1583E+ 01 3.6526E+ 01 5.7272E+ 00 4.5437E+ 01

F32 Mean 2.0000E+ 02 2.0000E+ 02 2.7324E+ 02 5.6117E+ 02 5.2303E+ 02 2.6458E+ 02 3.3362E+ 02
Std 0.0000E+ 00 1.4101E− 11 1.9475E+ 01 4.0497E+ 01 5.1939E+ 01 8.5014E+ 00 1.5205E+ 01

Table 11: Statistical results for unimodal benchmark functions of different ELAPO (n � 30).

Function Algorithm Min. Mean Max. Std

F1
ELAPO 4.3947E− 207 7.5637E− 200 7.5041E− 199 0.0000E+ 00
ELAPO1 1.0983E− 196 2.0585E− 192 1.1337E− 191 0.0000E+ 00
ELAPO2 1.3264E− 45 9.8461E− 45 4.1225E− 44 1.2223E− 44

F2
ELAPO 6.6667E− 01 6.6667E− 01 6.6667E− 01 1.1703E− 16
ELAPO1 6.6667E− 01 6.6667E− 01 6.6667E− 01 9.7912E− 17
ELAPO2 6.6667E− 01 6.6667E− 01 6.6667E− 01 5.5299E− 14

F3
ELAPO −1.0000E+ 00 −1.0000E+ 00 −1.0000E+ 00 0.0000E+ 00
ELAPO1 −1.0000E+ 00 −1.0000E+ 00 −1.0000E+ 00 0.0000E+ 00
ELAPO2 −1.0000E+ 00 −1.0000E+ 00 −1.0000E+ 00 0.0000E+ 00

F4
ELAPO 1.0516E− 186 1.8129E− 180 1.0021E− 179 0.0000E+ 00
ELAPO1 3.4388E− 184 1.3329E− 178 6.4548E− 178 0.0000E+ 00
ELAPO2 1.5771E− 42 1.5959E− 29 1.5959E− 28 5.0466E− 29

F5
ELAPO 1.4582E− 05 8.6010E− 05 2.4099E− 04 8.9264E− 05
ELAPO1 2.9369E− 05 1.8099E− 04 5.7794E− 04 1.6862E− 04
ELAPO2 1.1022E− 04 2.5442E− 04 6.2774E− 04 1.5210E− 04

F6
ELAPO 8.4106E− 01 1.8767E+ 00 3.5521E+ 00 8.1532E− 01
ELAPO1 9.7267E+ 00 1.2179E+ 01 1.3300E+ 01 1.0108E+ 00
ELAPO2 3.4946E− 02 2.7249E+ 00 4.7309E+ 00 1.5030E+ 00

F7
ELAPO 3.3224E− 193 2.5280E− 188 1.9516E− 187 0.0000E+ 00
ELAPO1 1.8360E− 187 1.6201E− 184 9.7195E− 184 0.0000E+ 00
ELAPO2 2.7107E− 42 3.5402E− 41 1.3260E− 40 3.8879E− 41

F8
ELAPO 2.1127E− 84 5.2137E− 83 2.6909E− 82 8.6122E− 83
ELAPO1 1.1547E− 83 2.3096E− 81 1.0418E− 80 3.6979E− 81
ELAPO2 2.2641E− 15 4.7375E− 15 7.9828E− 15 2.0046E− 15

F9
ELAPO 1.1064E− 106 3.6582E− 104 1.8075E− 103 5.3056E− 104
ELAPO1 6.8578E− 100 1.1707E− 98 4.2746E− 98 1.3897E− 98
ELAPO2 1.8562E− 23 4.1160E− 23 1.2816E− 22 3.2696E− 23

F10
ELAPO 5.7179E− 200 8.1828E− 195 5.1517E− 194 0.0000E+ 00
ELAPO1 1.4263E− 190 9.8501E− 186 9.8128E− 185 0.0000E+ 00
ELAPO2 3.7860E− 45 1.1357E− 43 4.8673E− 43 1.4768E− 43

F11
ELAPO 0.0000E+ 00 0.0000E+ 00 0.0000E+ 00 0.0000E+ 00
ELAPO1 0.0000E+ 00 0.0000E+ 00 0.0000E+ 00 0.0000E+ 00
ELAPO2 5.5187E− 111 1.5603E− 107 7.9877E− 107 2.6781E− 107
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Table 12: Statistical results for unimodal benchmark functions of different ELAPO (n � 100).

Function Algorithm Min. Mean Max. Std

F1
ELAPO 1.2060E− 201 5.2007E− 193 4.8628E− 192 0.0000E+ 00
ELAPO1 9.1470E− 188 1.2551E− 185 8.4746E− 185 0.0000E+ 00
ELAPO2 1.3352E− 42 7.5917E− 41 5.2215E− 40 1.5892E− 40

F2
ELAPO 6.6667E− 01 6.6667E− 01 6.6667E− 01 1.1703E− 16
ELAPO1 6.6667E− 01 6.6667E− 01 6.6667E− 01 4.6472E− 08
ELAPO2 6.6667E− 01 6.6667E− 01 6.6667E− 01 1.1703E− 16

F3
ELAPO −1.0000E+ 00 −1.0000E+ 00 −1.0000E+ 00 0.0000E+ 00
ELAPO1 −1.0000E+ 00 −1.0000E+ 00 −1.0000E+ 00 0.0000E+ 00
ELAPO2 −1.0000E+ 00 −1.0000E+ 00 −1.0000E+ 00 0.0000E+ 00

F4
ELAPO 2.5939E− 179 3.5068E− 174 2.9799E− 173 0.0000E+ 00
ELAPO1 2.2028E− 176 2.5228E− 171 2.4291E− 170 0.0000E+ 00
ELAPO2 2.3879E− 38 2.6197E− 25 2.6197E− 24 8.2841E− 25

F5
ELAPO 1.6572E− 06 6.9030E− 05 4.1043E− 04 1.2101E− 04
ELAPO1 4.9616E− 05 1.3763E− 04 2.8369E− 04 8.4291E− 05
ELAPO2 9.1224E− 05 2.5213E− 04 5.0008E− 04 1.3659E− 04

F6
ELAPO 7.5408E+ 01 7.8513E+ 01 8.1196E+ 01 1.6552E+ 00
ELAPO1 9.2775E+ 01 9.3408E+ 01 9.4160E+ 01 4.6870E− 01
ELAPO2 2.5737E− 03 8.2837E+ 01 1.8433E+ 02 4.3749E+ 01

F7
ELAPO 5.8216E− 187 1.1968E− 182 8.1321E− 182 0.0000E+ 00
ELAPO1 3.1789E− 181 2.5647E− 178 9.2747E− 178 0.0000E+ 00
ELAPO2 2.7609E− 39 2.9492E− 36 2.7378E− 35 8.5881E− 36

F8
ELAPO 1.2973E− 79 4.0687E− 78 1.3134E− 77 3.8556E− 78
ELAPO1 9.2722E− 80 5.4812E− 78 2.3545E− 77 7.5349E− 78
ELAPO2 1.1764E− 12 6.5701E− 12 2.2367E− 11 6.4475E− 12

F9
ELAPO 5.4476E− 100 1.7153E− 97 8.1258E− 97 2.6804E− 97
ELAPO1 2.1502E− 97 1.1376E− 94 7.0599E− 94 2.1352E− 94
ELAPO2 1.4540E− 22 1.1495E− 21 2.7186E− 21 9.4578E− 22

F10
ELAPO 4.8377E− 192 2.1712E− 185 1.6637E− 184 0.0000E+ 00
ELAPO1 1.7640E− 181 1.7228E− 178 7.7291E− 178 0.0000E+ 00
ELAPO2 7.6665E− 42 2.0437E− 40 1.2371E− 39 3.8039E− 40

F11
ELAPO 0.0000E+ 00 0.0000E+ 00 0.0000E+ 00 0.0000E+ 00
ELAPO1 0.0000E+ 00 0.0000E+ 00 0.0000E+ 00 0.0000E+ 00
ELAPO2 6.2316E− 111 2.4731E− 105 1.4424E− 104 4.8050E− 105

Table 13: Statistical results for multimodal benchmark functions of different ELAPO (n � 30).

Function Algorithm Min. Mean Max. Std

F12
ELAPO 8.8818E− 16 8.8818E− 16 8.8818E− 16 0.0000E+ 00
ELAPO1 8.8818E− 16 8.8818E− 16 8.8818E− 16 0.0000E+ 00
ELAPO2 8.8818E− 16 8.8818E− 16 8.8818E− 16 0.0000E+ 00

F13
ELAPO 7.4429E− 107 6.1910E− 102 5.5536E− 101 1.7386E− 101
ELAPO1 1.4046E− 100 8.2536E− 100 1.6045E− 99 4.1699E− 100
ELAPO2 3.4320E− 19 3.5435E− 04 1.9397E− 03 6.1675E− 04

F14
ELAPO 7.0864E− 50 1.4029E− 48 5.2017E− 48 1.7605E− 48
ELAPO1 5.9353E− 47 1.4937E− 46 2.8483E− 46 6.9910E− 47
ELAPO2 2.1593E− 10 4.4564E− 10 7.7516E− 10 1.7974E− 10

F15
ELAPO 9.0744E− 01 1.4563E+ 00 2.0765E+ 00 4.3965E− 01
ELAPO1 8.3340E+ 00 9.5357E+ 00 1.0784E+ 01 8.6499E− 01
ELAPO2 3.3712E− 01 2.5937E+ 00 1.0258E+ 01 3.4500E+ 00

F16
ELAPO 1.5705E− 32 8.4188E− 25 4.2955E− 24 1.5385E− 24
ELAPO1 1.5184E− 17 7.2242E− 17 2.2432E− 16 6.2807E− 17
ELAPO2 1.5705E− 32 7.6947E− 05 7.6947E− 04 2.4333E− 04

F17
ELAPO 0.0000E+ 00 0.0000E+ 00 0.0000E+ 00 0.0000E+ 00
ELAPO1 0.0000E+ 00 0.0000E+ 00 0.0000E+ 00 0.0000E+ 00
ELAPO2 0.0000E+ 00 3.2209E− 02 1.0586E− 01 4.3686E− 02
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Table 13: Continued.

Function Algorithm Min. Mean Max. Std

F18
ELAPO −2.9000E+ 01 −2.9000E+ 01 −2.9000E+ 01 0.0000E+ 00
ELAPO1 −2.9000E+ 01 −2.9000E+ 01 −2.9000E+ 01 0.0000E+ 00
ELAPO2 −2.4010E+ 01 −2.0005E+ 01 −9.7242E+ 00 5.3079E+ 00

F19
ELAPO −4.9123E+ 03 −4.8710E+ 03 −4.8355E+ 03 2.4102E+ 01
ELAPO1 −4.9107E+ 03 −4.7477E+ 03 −4.3972E+ 03 1.6214E+ 02
ELAPO2 −4.9239E+ 03 −4.8603E+ 03 −4.7473E+ 03 5.2864E+ 01

F20
ELAPO 7.1841E− 05 2.0743E− 03 6.5185E− 03 2.6236E− 03
ELAPO1 1.6150E− 03 1.5982E− 02 4.3113E− 02 1.2385E− 02
ELAPO2 1.1119E− 04 3.4940E− 03 1.2353E− 02 4.8505E− 03

F21
ELAPO 0.0000E+ 00 0.0000E+ 00 0.0000E+ 00 0.0000E+ 00
ELAPO1 0.0000E+ 00 0.0000E+ 00 0.0000E+ 00 0.0000E+ 00
ELAPO2 0.0000E+ 00 0.0000E+ 00 0.0000E+ 00 0.0000E+ 00

F22
ELAPO 0.0000E+ 00 0.0000E+ 00 0.0000E+ 00 0.0000E+ 00
ELAPO1 0.0000E+ 00 0.0000E+ 00 0.0000E+ 00 0.0000E+ 00
ELAPO2 0.0000E+ 00 0.0000E+ 00 0.0000E+ 00 0.0000E+ 00

F23
ELAPO 5.8304E− 90 7.9899E− 02 9.9873E− 02 4.2110E− 02
ELAPO1 3.3769E− 85 8.9886E− 02 9.9873E− 02 3.1583E− 02
ELAPO2 9.9873E− 02 9.9873E− 02 9.9873E− 02 5.2771E− 13

F24
ELAPO 0.0000E+ 00 0.0000E+ 00 0.0000E+ 00 0.0000E+ 00
ELAPO1 0.0000E+ 00 0.0000E+ 00 0.0000E+ 00 0.0000E+ 00
ELAPO2 0.0000E+ 00 0.0000E+ 00 0.0000E+ 00 0.0000E+ 00

F25
ELAPO 3.0957E+ 02 3.4556E+ 02 3.9799E+ 02 3.3722E+ 01
ELAPO1 3.8740E+ 02 4.0865E+ 02 4.1395E+ 02 1.1183E+ 01
ELAPO2 4.0677E+ 00 7.4112E+ 01 2.4969E+ 02 7.3468E+ 01

Table 14: Statistical results for multimodal benchmark functions of different ELAPO (n � 100).

Function Algorithm Min. Mean Max. Std

F12
ELAPO 8.8818E− 16 8.8818E− 16 8.8818E− 16 0.0000E+ 00
ELAPO1 8.8818E− 16 8.8818E− 16 8.8818E− 16 0.0000E+ 00
ELAPO2 8.8818E− 16 8.8818E− 16 8.8818E− 16 0.0000E+ 00

F13
ELAPO 8.7095E− 103 3.6083E− 99 1.8257E− 98 5.4747E− 99
ELAPO1 2.5297E− 98 2.0018E− 96 1.4412E− 95 4.4005E− 96
ELAPO2 4.9659E− 04 1.0832E− 02 4.9968E− 02 1.6131E− 02

F14
ELAPO 2.0856E− 46 1.7929E− 44 9.4887E− 44 2.8722E− 44
ELAPO1 3.9777E− 45 4.6572E− 44 1.1290E− 43 3.4345E− 44
ELAPO2 1.5153E− 08 7.9214E− 08 3.0473E− 07 8.5298E− 08

F15
ELAPO 3.1824E+ 00 7.2183E+ 00 3.2412E+ 01 8.8821E+ 00
ELAPO1 3.9427E+ 01 4.0794E+ 01 4.1923E+ 01 8.9874E− 01
ELAPO2 3.3002E+ 00 1.7828E+ 01 4.0400E+ 01 1.7857E+ 01

F16
ELAPO 4.7116E− 33 4.7116E− 33 4.7116E− 33 1.9082E− 48
ELAPO1 7.3562E− 05 1.4325E− 04 2.6188E− 04 5.4182E− 05
ELAPO2 4.7116E− 33 3.1101E− 03 3.1101E− 02 9.8349E− 03

F17
ELAPO 0.0000E+ 00 0.0000E+ 00 0.0000E+ 00 0.0000E+ 00
ELAPO1 0.0000E+ 00 0.0000E+ 00 0.0000E+ 00 0.0000E+ 00
ELAPO2 0.0000E+ 00 1.0827E− 02 5.1706E− 02 1.7751E− 02

F18
ELAPO −9.9000E+ 01 −7.4063E+ 01 −2.6004E+ 01 3.2165E+ 01
ELAPO1 −9.9000E+ 01 −2.3413E+ 01 −1.2547E+ 01 2.6599E+ 01
ELAPO2 −8.0137E+ 01 −6.3474E+ 01 −2.8524E+ 01 2.0801E+ 01

F19
ELAPO −1.3042E+ 05 −6.5750E+ 04 −9.5402E+ 02 4.1853E+ 04
ELAPO1 −3.0396E+ 03 −2.5921E+ 03 −2.1467E+ 03 2.2698E+ 02
ELAPO2 −1.3365E+ 05 −7.7752E+ 04 −3.4716E+ 04 3.3300E+ 04

F20
ELAPO 3.4881E− 04 7.3630E− 02 4.5528E− 01 1.5569E− 01
ELAPO1 8.5545E− 01 1.6562E+ 00 2.0958E+ 00 3.8738E− 01
ELAPO2 9.3205E− 04 1.2621E− 01 5.5200E− 01 1.7669E− 01
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ELAPO1 and ELAPO2. -is phenomenon is expected and
reasonable according to the “no free lunch” (NFL) the-
orem [59] that stated that no any single algorithm is able
to efficiently solve all optimization problems. For some
other multimodal functions, the two strategies are sen-
sitive to the number of dimensions. For instance, the
contribution of F18 mainly comes from the quasi-op-
position-based learning strategy under the condition at
n � 30, while at n � 100 the main contribution is from the
dimensional search strategy. For F19, ELAPO1 seems to
have equal contribution as ELAPO2 at n � 30, while at
n � 100, the former tends to have negative effect on the
global search performance.

-e statistical results for CEC 2014 benchmark functions
are presented in Tables 15 and 16. It can be seen from the

tables that both strategies have positive influences on F26,
F27, F28, and F29, and the dimensional search strategy tends
to take greater effects especially when the number of di-
mensions is higher. For composite functions, as the com-
plexity of the function increases, the two strategies are still
able to make slight contributions, and thus, as per Tables 9
and 10, ELAPO can get competitive results over all other
algorithms.

In summary, equipping with any individual strategy only
is insufficient to achieve the desired results, but integrating
the two strategies results in excellent performance for most
of benchmark functions. -is superior performance of
ELAPO verifies its appropriate taking care of the explora-
tion-exploitation trade-off problem with the introduction of
the proposed two strategies.

Table 14: Continued.

Function Algorithm Min. Mean Max. Std

F21
ELAPO 0.0000E+ 00 0.0000E+ 00 0.0000E+ 00 0.0000E+ 00
ELAPO1 0.0000E+ 00 0.0000E+ 00 0.0000E+ 00 0.0000E+ 00
ELAPO2 0.0000E+ 00 0.0000E+ 00 0.0000E+ 00 0.0000E+ 00

F22
ELAPO 0.0000E+ 00 0.0000E+ 00 0.0000E+ 00 0.0000E+ 00
ELAPO1 0.0000E+ 00 0.0000E+ 00 0.0000E+ 00 0.0000E+ 00
ELAPO2 0.0000E+ 00 0.0000E+ 00 0.0000E+ 00 0.0000E+ 00

F23
ELAPO 9.9873E− 02 9.9873E− 02 9.9873E− 02 7.7820E− 17
ELAPO1 9.9873E− 02 9.9873E− 02 9.9873E− 02 9.4568E− 11
ELAPO2 9.9873E− 02 9.9873E− 02 9.9873E− 02 9.6023E− 16

F24
ELAPO 0.0000E+ 00 0.0000E+ 00 0.0000E+ 00 0.0000E+ 00
ELAPO1 0.0000E+ 00 0.0000E+ 00 0.0000E+ 00 0.0000E+ 00
ELAPO2 0.0000E+ 00 0.0000E+ 00 0.0000E+ 00 0.0000E+ 00

F25
ELAPO 1.5069E+ 03 3.6192E+ 03 4.2156E+ 03 8.1059E+ 02
ELAPO1 4.5995E+ 03 4.5995E+ 03 4.5995E+ 03 9.5869E− 13
ELAPO2 2.3949E+ 01 1.0427E+ 03 3.1627E+ 03 1.1139E+ 03

Table 15: Statistical results for CEC 2014 benchmark functions of different ELAPO (n � 30).

Function Algorithm Min. Mean Max. Std

F26
ELAPO 1.7031E+ 05 4.4635E+ 05 1.4637E+ 06 4.1890E+ 05
ELAPO1 1.3255E+ 05 7.8737E+ 05 1.6349E+ 06 5.4983E+ 05
ELAPO2 8.6131E+ 04 6.9261E+ 05 2.3688E+ 06 6.8875E+ 05

F27
ELAPO 2.0002E+ 02 2.0030E+ 02 2.0173E+ 02 5.2289E− 01
ELAPO1 2.1032E+ 02 4.5935E+ 02 9.2097E+ 02 2.0827E+ 02
ELAPO2 2.0000E+ 02 2.0045E+ 02 2.0248E+ 02 7.6958E− 01

F28
ELAPO 4.0001E+ 02 4.0704E+ 02 4.6723E+ 02 2.1148E+ 01
ELAPO1 4.0408E+ 02 4.6828E+ 02 5.6357E+ 02 4.7798E+ 01
ELAPO2 4.0001E+ 02 4.0766E+ 02 4.6765E+ 02 2.1129E+ 01

F29
ELAPO 1.3442E+ 04 1.6246E+ 05 3.3345E+ 05 1.0464E+ 05
ELAPO1 1.0292E+ 05 2.6555E+ 05 6.1334E+ 05 2.0477E+ 05
ELAPO2 6.9968E+ 03 4.2214E+ 05 1.5059E+ 06 5.2014E+ 05

F30
ELAPO 2.6152E+ 03 2.6152E+ 03 2.6152E+ 03 4.7935E− 13
ELAPO1 2.6152E+ 03 2.6152E+ 03 2.6152E+ 03 1.2234E− 11
ELAPO2 2.6152E+ 03 2.6152E+ 03 2.6152E+ 03 3.6190E− 12

F31
ELAPO 2.6000E+ 03 2.6000E+ 03 2.6000E+ 03 3.5666E− 04
ELAPO1 2.6000E+ 03 2.6000E+ 03 2.6000E+ 03 1.7811E− 04
ELAPO2 2.6000E+ 03 2.6000E+ 03 2.6000E+ 03 1.5511E− 03

F32
ELAPO 2.7000E+ 03 2.7000E+ 03 2.7000E+ 03 0.0000E+ 00
ELAPO1 2.7000E+ 03 2.7000E+ 03 2.7000E+ 03 0.0000E+ 00
ELAPO2 2.7000E+ 03 2.7000E+ 03 2.7000E+ 03 0.0000E+ 00
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Table16: Statistical results for CEC 2014 benchmark functions of different ELAPO (n � 100).

Function Algorithm Min. Mean Max. Std

F26
ELAPO 2.4634E+ 06 5.2161E+ 06 1.3141E+ 07 3.1061E+ 06
ELAPO1 2.2387E+ 07 4.5695E+ 07 6.2258E+ 07 1.4119E+ 07
ELAPO2 2.4614E+ 06 7.0362E+ 06 1.5330E+ 07 4.6938E+ 06

F27
ELAPO 6.2568E+ 02 7.8528E+ 03 1.6154E+ 04 4.6668E+ 03
ELAPO1 9.6085E+ 07 2.1771E+ 08 3.3325E+ 08 6.8438E+ 07
ELAPO2 1.4145E+ 03 1.0199E+ 04 2.4210E+ 04 7.4670E+ 03

F28
ELAPO 4.8012E+ 02 5.4633E+ 02 6.3713E+ 02 4.9530E+ 01
ELAPO1 7.2188E+ 02 8.8310E+ 02 9.4605E+ 02 7.5816E+ 01
ELAPO2 4.0910E+ 02 5.6801E+ 02 6.3932E+ 02 6.6571E+ 01

F29
ELAPO 8.6796E+ 05 2.0363E+ 06 5.4231E+ 06 1.2767E+ 06
ELAPO1 1.2845E+ 06 3.6401E+ 06 7.6576E+ 06 2.5212E+ 06
ELAPO2 7.0505E+ 05 2.1188E+ 06 6.4199E+ 06 1.7726E+ 06

F30
ELAPO 2.5000E+ 03 2.6451E+ 03 2.7624E+ 03 6.2281E+ 01
ELAPO1 2.5000E+ 03 2.7849E+ 03 3.4244E+ 03 3.5275E+ 02
ELAPO2 2.5000E+ 03 2.6186E+ 03 2.6483E+ 03 6.2509E+ 01

F31
ELAPO 2.6000E+ 03 2.6000E+ 03 2.6000E+ 03 1.0968E− 03
ELAPO1 2.6000E+ 03 2.6000E+ 03 2.6000E+ 03 6.0886E− 04
ELAPO2 2.6000E+ 03 2.6000E+ 03 2.6000E+ 03 4.5087E− 03

F32
ELAPO 2.7000E+ 03 2.7000E+ 03 2.7000E+ 03 0.0000E+ 00
ELAPO1 2.7000E+ 03 2.7000E+ 03 2.7000E+ 03 0.0000E+ 00
ELAPO2 2.7000E+ 03 2.7000E+ 03 2.7000E+ 03 0.0000E+ 00

Table 17: Results of Wilcoxon’s test for ELAPO against other six algorithms for each benchmark function with 10 independent runs at
n � 30 (α� 0.05).

Function
LAPO vs. ELAPO SSA vs. ELAPO Jaya vs. ELAPO IBB-BC vs.

ELAPO ODE1 vs. ELAPO ALO vs. ELAPO

p value Win p value Win p value Win p value Win p value Win p value Win
F1 6.5157E− 02 − 3.8030E− 05 + 8.8057E− 06 + 1.8054E− 02 + 3.3181E− 01 − 1.0788E− 01 −
F2 1.1430E− 03 + 3.5370E− 01 − 8.2032E− 02 − 2.0905E− 01 − 1.6587E− 01 − 4.1164E− 02 +
F3 — = 1.4851E− 04 + 4.8142E− 06 + 2.1981E− 17 + 1.4807E− 02 + 8.7627E− 05 +
F4 2.3713E− 01 − 6.8108E− 03 + 1.2111E− 05 + 1.1967E− 04 + 1.3930E− 01 − 1.6670E− 04 +
F5 3.2636E− 03 + 1.1738E− 06 + 2.1936E− 09 + 6.6659E− 09 + 6.8124E− 07 + 1.3194E− 05 +
F6 3.9780E− 11 + 5.6264E− 04 + 1.4458E− 04 + 4.7296E− 02 + 3.8957E− 04 + 1.3327E− 02 +
F7 1.3127E− 02 + 4.2515E− 04 + 2.6918E− 05 + 4.0856E− 02 + 2.0166E− 01 − 2.4269E− 02 +
F8 1.0554E− 03 + 2.6806E− 07 + 1.3055E− 04 + 3.2266E− 03 + 6.0020E− 05 + 1.4067E− 06 +
F9 1.7774E− 01 − 1.7559E− 06 + 3.1821E− 06 + 4.0316E− 04 + 1.8318E− 05 + 4.8798E− 02 +
F10 6.0410E− 02 − 4.0552E− 03 + 3.8508E− 06 + 3.2237E− 05 + 1.1459E− 02 + 4.8526E− 03 +
F11 2.5412E− 01 − 2.3083E− 01 − 1.8567E− 01 − 1.6998E− 02 + 2.2426E− 01 − 9.9079E− 04 +
F12 5.7296E− 03 + 1.1192E− 02 + 4.6725E− 03 + 3.7373E− 14 + 3.2594E− 01 − 8.0055E− 05 +
F13 1.8191E− 03 + 1.8814E− 04 + 8.9399E− 05 + 2.5553E− 03 + 1.8822E− 01 − 5.4968E− 04 +
F14 9.5904E− 04 + 8.1454E− 07 + 4.6052E− 08 + 6.4579E− 09 + 6.2990E− 07 + 6.7484E− 09 +
F15 1.3848E− 10 + 1.2732E− 03 + 3.4198E− 13 + 3.2496E− 12 + 1.9113E− 13 + 7.5973E− 11 +
F16 3.4344E− 01 − 1.3527E− 03 + 1.9997E− 05 + 3.6772E− 02 + 2.9349E− 02 + 1.0442E− 05 +
F17 3.4344E− 01 − 6.7604E− 04 + 2.1918E− 03 + 4.1350E− 02 + 2.0726E− 02 + 1.0132E− 02 +
F18 1.3100E− 05 + 1.2328E− 06 + 3.2377E− 14 + 2.2121E− 17 + 7.6070E− 14 + 3.5169E− 09 +
F19 2.9586E− 04 + 3.4911E− 03 + 7.4745E− 02 − 9.9030E− 03 + 1.7725E− 05 + 7.2303E− 06 +
F20 2.8427E− 02 + 6.2178E− 02 + 4.0529E− 05 + 1.7734E− 01 − 1.1848E− 01 − 8.2189E− 04 +
F21 — = 7.0957E− 02 + 6.6615E− 11 + 4.8172E− 06 + 1.5624E− 08 + 4.3379E− 06 +
F22 1.6787E− 01 − 8.1058E− 02 + 6.4191E− 12 + 1.2747E− 06 + 7.1310E− 06 + 4.4267E− 04 +
F23 1.6785E− 01 − 3.4082E− 10 + 5.7993E− 11 + 3.9727E− 07 + 1.0620E− 05 + 2.6960E− 08 +
F24 — = 2.9637E− 05 + 5.0207E− 05 + 1.7982E− 06 + 1.6055E− 01 − 4.2089E− 08 +
F25 2.7440E− 04 + 6.8708E− 01 − 9.8070E− 12 + 9.7584E− 12 + 2.6606E− 08 + 1.6495E− 09 +
F26 6.1439E− 02 − 7.0291E− 04 + 1.3762E− 05 + 3.8405E− 03 + 6.1551E− 03 + 5.0196E− 05 +
F27 6.8071E− 03 + 7.0180E− 03 + 1.5724E− 09 + 1.7808E− 04 + 5.2722E− 02 − 5.0467E− 04 +
F28 3.6344E− 03 + 4.8441E− 05 + 3.0928E− 08 + 3.2500E− 09 + 1.7440E− 07 + 1.9483E− 05 +
F29 4.6908E− 02 + 4.9702E− 04 + 1.1193E− 04 + 1.0340E− 02 + 3.2293E− 03 + 4.3079E− 03 +
F30 2.5163E− 02 + 2.6125E− 02 + 2.8404E− 07 + 3.5374E− 05 + 3.2647E− 01 − 1.3533E− 04 +
F31 2.6889E− 07 + 4.1868E− 07 + 3.8867E− 09 + 2.0918E− 10 + 4.8250E− 08 + 2.7003E− 10 +
F32 1.6785E− 01 − 6.3084E− 04 + 1.5043E− 09 + 4.1352E− 07 + 2.5620E− 10 + 8.4991E− 08 +
+/− — 18/11 — 26/6 — 29/3 30/2 21/11 31/1
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Table 18: Results of Wilcoxon’s test for SSA against other six algorithms for each benchmark function with 10 independent runs at n� 100
(α� 0.05).

Function
LAPO vs. ELAPO SSA vs. ELAPO Jaya vs. ELAPO IBB-BC vs. ELAPO ODE1 vs. ELAPO ALO vs. ELAPO

p value Win p value Win p value Win p value Win p value Win p value Win
F1 1.5770E− 01 − 4.2350E− 08 + 1.5231E− 07 + 6.3386E− 04 + 1.3419E− 03 + 3.5682E− 06 +
F2 7.6218E− 03 + 6.0367E− 08 + 1.9065E− 04 + 9.3693E− 03 + 3.2161E− 05 + 5.1856E− 07 +
F3 — = 3.5796E− 08 + 2.2802E− 07 + 4.4140E− 54 + 2.3346E− 02 + 3.0033E− 05 +
F4 1.3041E− 01 − 3.5293E− 08 + 2.8240E− 04 + 1.4775E− 06 + 2.7093E− 02 + 9.4948E− 07 +
F5 5.6333E− 03 + 1.0084E− 08 + 4.8518E− 06 + 1.3531E− 06 + 9.5032E− 05 + 6.7646E− 10 +
F6 9.5047E− 12 + 3.3028E− 06 + 1.8052E− 05 + 2.2892E− 03 + 2.4625E− 02 + 8.5749E− 03 +
F7 1.4156E− 01 − 3.0753E− 08 + 6.9812E− 08 + 3.8161E− 04 + 2.0774E− 03 + 1.8206E− 06 +
F8 1.9728E− 04 + 1.3132E− 12 + 5.7059E− 11 + 5.6270E− 11 + 2.1460E− 08 + 2.7677E− 09 +
F9 2.7143E− 02 + 4.6832E− 11 + 3.2634E− 07 + 2.7294E− 10 + 5.0914E− 05 + 2.2988E− 03 +
F10 4.3062E− 02 + 4.2546E− 08 + 1.6382E− 06 + 8.1021E− 03 + 9.3687E− 02 − 1.0917E− 04 +
F11 2.6996E− 01 − 2.2696E− 01 − 5.0667E− 02 − 1.1055E− 03 + 3.3891E− 01 − 1.2744E− 03 +
F12 7.6477E− 02 − 5.8330E− 05 + 3.0288E− 11 + 4.6170E− 19 + 8.3106E− 07 + 6.0946E− 08 +
F13 1.0360E− 03 + 5.5028E− 07 + 9.0010E− 09 + 5.9879E− 09 + 1.9392E− 03 + 2.4309E− 06 +
F14 3.8838E− 04 + 9.7111E− 10 + 1.2974E− 11 + 9.7901E− 14 + 4.5811E− 09 + 3.3538E− 11 +
F15 8.3808E− 07 + 9.8135E− 05 + 2.3964E− 07 + 3.5313E− 07 + 1.6716E− 07 + 1.0160E− 06 +
F16 3.1494E− 01 − 1.4591E− 05 + 9.7572E− 02 − 1.4803E− 03 + 8.8968E− 02 − 5.9325E− 06 +
F17 — = 1.1073E− 09 + 4.1210E− 12 + 1.6710E− 08 + 2.9375E− 05 + 1.7779E− 07 +
F18 3.9961E− 04 + 6.4253E− 01 − 1.7095E− 04 + 8.8954E− 05 + 2.0868E− 04 + 1.9220E− 03 +
F19 9.8149E− 04 + 1.1788E− 06 + 4.8892E− 07 + 2.1151E− 05 + 2.0236E− 06 + 1.0299E− 02 +
F20 4.3629E− 07 + 5.7602E− 01 − 6.2070E− 09 + 1.1723E− 02 + 6.6614E− 02 − 2.9847E− 04 +
F21 — = 3.5828E− 11 + 2.7658E− 12 + 7.1919E− 11 + 7.3339E− 10 + 1.1238E− 07 +
F22 — = 7.0366E− 09 + 3.4023E− 12 + 3.3868E− 10 + 2.6364E− 12 + 7.8276E− 07 +
F23 5.2427E− 02 − 2.3972E− 10 + 1.0601E− 11 + 2.3959E− 12 + 4.1327E− 09 + 4.4496E− 09 +
F24 — = 1.4813E− 09 + 1.4883E− 11 + 2.4103E− 13 + 1.3202E− 08 + 1.0014E− 11 +
F25 4.0643E− 03 + 1.3414E− 09 + 1.9271E− 04 + 3.5879E− 09 + 1.1709E− 02 + 6.5374E− 10 +
F26 9.1228E− 07 + 2.4299E− 06 + 4.8229E− 08 + 2.4166E− 07 + 2.9383E− 05 + 9.1708E− 07 +
F27 1.9144E− 02 + 8.2124E− 08 + 3.2662E− 10 + 2.7758E− 04 + 6.3573E− 03 + 9.5400E− 04 +
F28 2.7429E− 07 + 2.3276E− 07 + 1.2105E− 07 + 1.2547E− 07 + 1.7003E− 06 + 9.3832E− 09 +
F29 5.8224E− 02 − 1.1899E− 03 + 1.0274E− 09 + 2.5110E− 03 + 2.2029E− 05 + 4.0114E− 04 +
F30 7.7749E− 01 − 7.1957E− 01 − 2.2963E− 07 + 6.5996E− 07 + 7.2799E− 01 − 1.1532E− 04 +
F31 2.3273E− 05 + 3.4931E− 17 + 4.5281E− 12 + 2.0453E− 13 + 7.3367E− 16 + 1.4373E− 09 +
F32 1.0442E− 02 + 8.3154E− 07 + 4.3080E− 10 + 1.0525E− 08 + 1.7940E− 09 + 4.9109E− 10 +
+/− — 18/9 — 28/4 — 30/2 — 32/0 — 27/5 — 32/0

Table 19: Friedman ranks for each benchmark function of all algorithms at n � 30.

Fun ELAPO LAPO SSA Jaya IBB-BC ODE1 ALO
F1 1 2 4 5 6 3 7
F2 1.5 1.5 4 5 7 3 6
F3 2 2 5 6 7 2 4
F4 1 2 4 5 7 3 6
F5 1 2 7 6 3 4 5
F6 1 2 4 5 7 3 6
F7 1 2 4 5 6 3 7
F8 1 2 4 5 3 6 7
F9 1 2 4 6 5 3 7
F10 1 2 5 7 6 3 4
F11 1 2 3 4 6 5 7
F12 1 2 4 5 7 3 6
F13 1 2 3 7 5 4 6
F14 1 2 4 5 6 3 7
F15 2 3 1 6 7 5 4
F16 1 3 2 6 4 5 7
F17 1 2 5 7 6 3 4
F18 1 3 2 6 7 5 4
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Table 19: Continued.

Fun ELAPO LAPO SSA Jaya IBB-BC ODE1 ALO
F19 1 2 6 4 7 5 3
F20 2 6 1 7 3 4 5
F21 1.5 1.5 3 7 4 6 5
F22 1 3 2 7 4 6 5
F23 1 2 5 6 7 3 4
F24 1.5 1.5 4 5 6 3 7
F25 1 3 2 6 7 5 4
F26 1 2 4 7 5 3 6
F27 1 2 6 7 4 3 5
F28 1 2 4 7 6 3 5
F29 2 3 6 7 4 1 5
F30 2 2 2 6 7 3 5
F31 1.5 1.5 4 6 7 3 5
F32 1.5 1.5 4 6 7 3 5
Average 1.234375 2.234375 3.8125 5.90625 5.71875 3.65625 5.40625
Rank 1 2 4 7 6 3 5

Table 20: Friedman ranks for each benchmark function of all algorithms at n � 100.

Fun ELAPO LAPO SSA Jaya IBB-BC ODE1 ALO
F1 1 2 3 6 7 4 5
F2 1.5 1.5 5 7 3 6 4
F3 2 2 4 6 7 5 2
F4 1 2 3 5 7 4 6
F5 1 2 6 7 3 4 5
F6 1 2 5 7 3 6 4
F7 1 2 3 6 7 4 5
F8 1 2 7 5 6 3 4
F9 1 2 4 5 6 3 7
F10 1 2 4 7 6 5 3
F11 1 2 3 7 5 4 6
F12 1 2 6 5 7 3 4
F13 1 2 4 7 6 3 5
F14 1 2 4 6 7 3 5
F15 1 3 2 7 5 6 4
F16 1 2 4 7 3 6 5
F17 1.5 1.5 5 6 7 4 3
F18 1 4 2 6 7 5 3
F19 1 3 6 5 7 4 2
F20 2 6 1 7 4 3 5
F21 1.5 1.5 3 7 5 6 4
F22 1.5 1.5 3 7 5 6 4
F23 1.5 1.5 3 6 7 4 5
F24 1.5 1.5 4 5 7 3 6
F25 1 2 4 7 3 6 5
F26 1 2 5 7 6 3 4
F27 1 5 2 7 6 4 3
F28 1 4 2 7 6 3 5
F29 1 2 6 7 4 5 3
F30 1 2 4 7 6 3 5
F31 1.5 1.5 3 6 7 4 5
F32 1.5 1.5 4 7 6 3 5
Average 1.1875 2.28125 3.875 6.375 5.65625 4.21875 4.40625
Rank 1 2 3 7 6 4 5
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4.5. Statistical Analysis. In order to analyze the performance
of any two algorithms, the Wilcoxon signed-rank test and
Friedman test [63] are considered for the present work. -e
results of Wilcoxon’s test for ELAPO against other six al-
gorithms are summarized in Tables 17 and 18 for n� 30 and
100, respectively. -e test is carried out by considering the
best solution of each algorithm on each benchmark function
with 10 independent runs and a significance level of α� 0.05.
In Tables 17 and 18, “+” sign indicates that the reference
algorithm outperforms the compared one, “−” sign indicates
that the reference algorithm is inferior to the compared one,
and “�” sign indicates that both algorithms have comparable
performances. -e results of last row of the tables show that
the proposed ELAPO has a larger number of “+” counts in
comparison to other algorithms, confirming that ELAPO is
better than the other six compared algorithms under 95%
level of significance. -e results of the Friedman test are
presented in Tables 19 and 20 for n� 30 and 100, re-
spectively. -e last row of the tables depicts the ranks
computed through the Friedman test. As can be seen in the
table, ELAPO is the best performing algorithm of seven
optimization algorithms.

-e quantitative analysis is also carried out for seven
algorithms with an index of mean absolute error (MAE)
which is an effective performance index for ranking the
optimization algorithms and is defined by [64]

MAE �


N
j�1 mj − kj





N
, (15)

where mj is the mean of optimal values, kj is the actual
global optimal value, and N is the number of samples. In the
present work, N is the number of benchmark functions. -e
MAE of all algorithms and their ranking for all functions are
given in Table 19. It is clear to find that ELAPO ranks No. 1
and provides the minimum MAE in all cases. ELAPO
reaches the optimum solution 436 times out of 640 runs (10
runs for each test function for n� 30 and 100, respectively)
and comes in the first rank as shown in Figure 7. It is
concluded that ELAPO provides the best performance in
comparison to other six optimization algorithms.

5. Conclusions

In this paper, an enhanced lightning attachment procedure
optimization called ELAPO is proposed for global optimi-
zation problems. -e exploration and exploitation abilities
of the basic LAPO are appropriately balanced in the search
process. -e quasi-opposition-based learning strategy is
applied to control the convergence speed and to improve
both exploration and exploitation abilities of the algorithm.
To further enhance the exploitation capability, the di-
mensional search strategy is employed, which inherits the
good information from the best solution in each iteration
and thus increases the convergence precision of the pro-
posed algorithm. -e efficiency of ELAPO is examined on
unimodal, multimodal, and CEC 2014 benchmark functions.
-e statistic results show that the proposed algorithm has
superior performance in terms of accuracy and convergence
rates when compared with other six state-of-the-art algo-
rithms including LAPO, SSA, Jaya, IBB-BC, ODE1, and
ALO.
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