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Abstract

Cone beam computed tomography (CBCT) has become a vital tool in interventional radiol-

ogy. Usually, a circular source-detector trajectory is used to acquire a three-dimensional

(3D) image. Kinematic constraints due to the patient size or additional medical equipment

often cause collisions with the imager while performing a full circular rotation. In a previous

study, we developed a framework to design collision-free, patient-specific trajectories for the

cases in which circular CBCT is not feasible. Our proposed trajectories included enough

information to appropriately reconstruct a particular volume of interest (VOI), but the con-

straints had to be defined before the intervention. As most collisions are unpredictable, per-

forming an on-the-fly trajectory optimization is desirable. In this study, we propose a search

strategy that explores a set of trajectories that cover the whole collision-free area and subse-

quently performs a search locally in the areas with the highest image quality. Selecting the

best trajectories is performed using simulations on a prior diagnostic CT volume which

serves as a digital phantom for simulations. In our simulations, the Feature SIMilarity Index

(FSIM) is used as the objective function to evaluate the imaging quality provided by different

trajectories. We investigated the performance of our methods using three different anatomi-

cal targets inside the Alderson-Rando phantom. We used FSIM and Universal Quality

Image (UQI) to evaluate the final reconstruction results. Our experiments showed that our

proposed trajectories could achieve a comparable image quality in the VOI compared to the

standard C-arm circular CBCT. We achieved a relative deviation less than 10% for both

FSIM and UQI metrics between the reconstructed images from the optimized trajectories

and the standard C-arm CBCT for all three targets. The whole trajectory optimization took

approximately three to four minutes.
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1. Introduction

Cone beam computed tomography (CBCT) has become a mainstay in interventional imaging

with applications in image-guided surgery, interventional radiology, and image-guided radio-

therapy [1–5]. Considerable research has focused on limited-angle or non-isocentric trajecto-

ries for CBCTs, motivated by either a reduction of dose [6–9] or spatial constraints [10–12].

The authors in [10] proposed a rotate-plus-shift C-arm trajectory that enables the acquisition

of complete CT data with less than a 180˚ rotation. Their suggested method relaxes the

requirement for a 180-plus fan-angle rotation and leads to a much broader use of intraopera-

tive 3D imaging by reducing constraints on the C-arm geometry. Another study [11] proposed

an accelerated implementation of an iterative method for CBCT reconstruction suitable for a

limited angular span, which reduced computational time using GPU-accelerated kernels. That

proposed scheme enables the use of advanced reconstruction methods that are needed in lim-

ited-data scenarios such as surgery. The authors in [12] introduced a CBCT verification

method using unconventional and limited imaging angles for cancer patients undergoing

non-coplanar radiation therapy. They illustrated that non-coplanar beams with coach rota-

tions of 45˚ can be sufficiently verified with their CBCT acquisition technique.

Some studies have investigated patient-specific trajectories for CBCT acquisitions. Gang

et al. [13] introduced a task-based imaging acquisition protocol for robotic C-arm CBCT sys-

tems using a gradient-based optimization of the reconstruction kernel, tube current, and

orbital tilt (range: ±30˚). Noncircular source-detector trajectories have been investigated using

periodic and B-spline-based functions for simulation studies, as well as in neuroradiology

applications [14, 15]. An increased image quality in a volume of interest (VOI) over the stan-

dard circular orbit was the main aim of these studies [13–15]. In a recent study, optimal sinu-

soidal trajectories were introduced to avoid the metal parts of the imaged object while still

guaranteeing a high coverage in Radon space and its vicinity [16]. Another group [17] also

introduced metal artifact reduction trajectories by computing a quality map of plausible views

from the expected spectral shift, which is caused by beam hardening and depends on various

path lengths of the photons passing through metal objects. All the aforementioned studies

[13–17] were successfully applied to C-arm CBCT trajectory optimization. However, in all

these approaches, hard constraints on the rotation angle were used for trajectory design; thus,

the proposed trajectories did not incorporate patient-specific collisions. In addition, all these

studies [13–17] computed optimal trajectory parameters in a (semi) offline manner.

In study [18], scene-specific collision-avoiding trajectories were introduced for linac-

mounted CBCT systems using a virtual isocenter and variable magnification during acquisi-

tion. The proposed trajectories in that study achieved contrast and resolution comparable to

that of a standard circular scan and would be suitable for patients who cannot be imaged with

CBCT for image-guided radiation therapy because of their position, size, or fixation devices

that could cause collisions with the gantry and the detector. Although their proposed approach

could integrate case-specific collisions into the trajectory design, it requires a high amount of

computational time which hampers its use for real-time trajectory optimization. Therefore, it

is not suitable to react to unforeseen collisions that happen during interventions. To our

knowledge, the only study that proposed real-time trajectory optimization was [19], in which

the authors suggested optimizing the C-arm CBCT source-detector trajectory during the

CBCT scan to improve reconstruction image quality in the presence of metal artifacts. They

performed the adjustments on-the-fly using a convolutional neural network and regressed an

image quality metric over all possible next projections given the current X-ray image. How-

ever, as the main focus of this study was metal artifact reduction, the proposed trajectories did

not incorporate patient-specific collisions in their design. The research we present in this
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study is the first demonstration that introduces an on-the-fly trajectory optimization protocol

for CBCT acquisition that is able to react to unpredictable collisions.

The work basically builds on a recently published method to optimize imaging quality for

CBCT using non-isocentric semi-circular scan trajectories which can also be arranged out-of-

plane [8, 20, 21]. A volume-of-interest (VOI) is selected from a pre-existing diagnostic com-

puted tomography (CT) scan, and a variety of possible trajectory combinations from short

arcs is simulated while taking into account kinematic constraints. The optimal arc combina-

tion is selected based on the image quality within the VOI. The main purpose of the trajectory

optimization in this study is to facilitate CBCT imaging in situations with strong kinematic

constraints where standard circular trajectories are not feasible. While it is clear that such an

approach cannot provide images of equivalent or better quality in the full field of view com-

pared to a standard CBCT scan, which fully samples voxels near the central transverse plane,

the main goal was to provide reasonable image quality in the selected VOI. We also note that

our proposed optimization protocol is targeted to applications where repeated scans are

required and a pre-operative high-quality scan exists. It is evident that this process is time-con-

suming. While it is possible to run the simulation and the associated trajectory selection pro-

cess offline, the current time required to design a patient-specific imaging protocol was in the

range of 80 minutes [20]. This required kinematic constraints to be known previously. As colli-

sions are mostly unpredictable in a clinical scenario, e.g., caused by patient size or additional

medical devices (Fig 1), a real-time trajectory optimization framework is of potential clinical

importance even at the cost of a loss of image quality.

In this study, we propose a new search strategy to overcome the aforementioned computa-

tional limitation, which has the potential to optimize trajectories on-the-fly, and therefore, can

take into account unforeseen collisions during interventions. We introduce a heuristic optimi-

zation procedure by identifying arcs with the greatest information to reconstruct the VOI, and

consequently, perform a local search around those best initial candidate paths and investigate

better arc solutions among newly created neighbors. The proposed search scheme requires

identification of the collision-free trajectory area from a sensor input and searches among a

reduced subset of possible arcs as the initial search space. Compared to our previous work

Fig 1. Two examples of kinematic constraints during interventions. Collision due to the patient size (a), and other medical

devices (b).

https://doi.org/10.1371/journal.pone.0245508.g001
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[20], the main scientific novelty of this study lies in the introduction of a new search strategy

that enables the on-the-fly feature for the path optimization scheme; this finally brings a signif-

icantly important clinical benefit for interventions where a 3D CBCT is otherwise not possible

due to unpredictable collisions.

2. Materials and methods

2.A. Adaptation of workflow for the on-the-fly customized CBCT

We previously introduced a workflow to design patient-specific, source-detector trajectories

for a CBCT imaging system [20]. In this study, we modified our methodology to integrate

kinematic constraints caused during the interventions into the trajectory optimization process,

which enables a dynamic optimization in the operating theater.

2.B. On-the-fly trajectory optimization method

In this study, the geometry of the Philips Allura FD20 Xper C-arm is used to define the set of

possible arcs. This C-arm can perform two types of rotations: 1) It is able to rotate by angle θ1

towards the Right Anterior Oblique (RAO)/Left Anterior Oblique (LAO) direction while hav-

ing a tilt ψ at different fixed Cranial (CRA)/Caudal (CAU) angles (Fig 2a). It is also able to

rotate by angle θ2 towards the CRA /CAU direction while having a tilt φ at different fixed

RAO/LAO angles (Fig 2b). Arc definition is similar to that in the previous work [20]: two sub-

set of arcs were defined (Figs 3, 4a and 4b), each corresponding to a rotation on the Philips

Allura, rotation on RAO/LAO (Figs 3 and 4a) and CRA/CAU directions (Figs 3 and 4b). In

each of those directions, the C-arm can have oblique angles, C and F, which define the rota-

tion on that direction of the arc. Each arc included less than 80 projections, which were sam-

pled every degree. During interventions, kinematic constraints due to other medical devices

Fig 2. Philips Allura FD20 Xper C-arm possible rotations. (a) RAO/LAO rotation with cranial CRA/ CAU tilt, (b) CRA/CAU rotation with RAO/

LAO tilt. Rotation axes for RAO/LAO and CRA/CAU rotations are Z and X, respectively, which are shown in the blue color.

https://doi.org/10.1371/journal.pone.0245508.g002
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Fig 3. Possible rotations are divided into arcs with less than 80˚. (a) RAO/LAO arcs with CRA/CAU obliques shown in the purple, green, and red

colors, (b) CRA/CAU arcs with RAO/LAO obliques shown in the blue color, (c) and (d) spherical plot of arcs with a forbidden area, (e) and (f) spherical

plot of the arcs after removing those that intersected the forbidden area, (g) and (h) spherical plot of these remaining arcs after sparsification. Only these

arcs were in the search space for trajectory optimization. (Kinematic constraints are simulated as forbidden areas on the geometry of the system and are

shown as yellow rectangles.).

https://doi.org/10.1371/journal.pone.0245508.g003

Fig 4. Possible rotations are divided into arcs with an 80˚ maximum and are shown in different colors. (a) RAO/LAO arcs with CRA/CAU obliques

shown in the purple, green, and red colors, (b) CRA/CAU arcs with RAO/LAO obliques shown in the blue color, (c) and (d) spherical plot of arcs with

an illustration of two forbidden areas as the area inside the yellow rectangles, (e) and (f) spherical plot of the residual arcs after removing those which

were inside the forbidden area, (g) and (h) spherical plot of the residual arcs after sparsification. Only those remaining arcs were included in the search

space for our trajectory optimization. (Kinematic constraints are simulated as forbidden areas on the geometry of the system and are shown as yellow

rectangles.).

https://doi.org/10.1371/journal.pone.0245508.g004
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and patient size may occur (as shown in Fig 1a and 1b). In this study, we simulated such kine-

matic constraints as forbidden areas on the geometry of the C-arm system (shown as yellow

rectangles in Figs 3, 4c and 4d).

We removed arcs that had more than 10% of their angular range in the forbidden area and

cropped those that had less than 10% in it, Figs 3, 4e and 4f. To accelerate further the optimiza-

tion process, we modified our previous approach by sparsifying the initial subset of arcs (Figs

3, 4e and 4f) to include just arcs for every six degrees (Figs 3, 4g and 4h). This step will signifi-

cantly reduce the brute-force search space, and therefore, lead to a significant reduction in the

computation time. However, a reduction of the initial subset of arcs may introduce an unfa-

vorable bias in the trajectory selection process. To address this issue, we performed a heuristic

local search around the arcs with the highest amount of information. In fact, the major differ-

ence from the previous approach [20] is that we concentrated on the most informative areas in

3D space to reconstruct the VOI (rather than searching among all plausible arcs as proposed

in our previous study [20]), and consequently, we performed a local search around those

selected optimal areas to find a better arc solution. In detail, first, the three arcs with the best

objective function values were selected as the arcs with the greatest amount of information.

Afterward, we created new neighbor arcs for each of these three selected arcs and searched

through such nearest neighbor arcs until we observed an improvement in the objective func-

tion. Finally, the arc with the highest objective function was selected. This procedure was

repeated for the arc subset RAO/LAO and CRA/CAU one after the other until a predefined

number of arcs was selected as the final trajectory.

We illustrate the procedure of arc selection with an example of the neck image target while

simulating one forbidden area in Fig 5. For arc selection, we first searched through the RAO/

LAO arc sparsely sampled initial subset (Fig 3g) and we selected the three neighboring arcs

(every one degree) with the highest objective function value (Fig 5a). Then, we searched the

Fig 5. Illustration of the search strategy proposed for the on-the-fly trajectory optimization, with the optimized

trajectory that included three arcs selected for the neck target with one forbidden area simulation. (a-d) Optimizing

the first best arc, (e-h) optimizing the second best arcs, and (i-k) optimizing the third best arc. The number close to each

arc shows the value of FSIM achieved related to that arc. The sign (�) shows that the arc included more than 10% of its

angular range in the forbidden area, and therefore, was rejected from the search space and FSIM was not calculated.

https://doi.org/10.1371/journal.pone.0245508.g005
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nearby arcs until the objective function decreased (Fig 5b and 5c). The best arc from this opti-

mization was then selected for the final trajectory (Fig 5d), and the optimization changes to

the CRA/CAU subset of arcs, while the previous best arc was still being used, were prepended

onto the CRA/CAU arcs (Fig 5e). This process was then repeated for the second arc subset

(Fig 3h) in such a way that the combination of two arcs would give us the best objective func-

tion value (Fig 5e–5h). This process can be repeated for arc subsets RAO/LAO and CRA/CAU

successively as many times as the user requires. In this example, we optimized for a third arc

on the RAO/LAO subset as well (Fig 5i–5k). As the objective function, we used the value of

Feature SIMilarity Index (FSIM), as in our previous study [20]. The pseudocode for this proce-

dure is presented in Algorithm 1.
Algorithm 1. Trajectory optimization
Input: Search space, number of desired arcs
Step 1: Simulate projections for all defined arcs with the digital
phantom
Step 2: FOR 1: number of subsets

Step 3: FOR 1: number of arcs in subset
• Reconstruct the image using the set of projections related to

the corresponding arc
• Crop the reconstructed image at the VOI
• Calculate the objective function at the cropped area

END
Step 4: Select best three arcs from Step3
Step 5: WHILE expanded arcs increase objective function

Step 6: FOR 1:number of arcs to expand
• Create neighboring arcs at one degree each side
• Evaluate objective function in newly created neighbors

END
END
Step 7: Select best arc and prepend to search space
END

Step 8: Return selected trajectory (combined arcs)

2.C. Image reconstruction

We used a modified version of the TIGRE toolkit for arbitrary trajectories similar to [20–22],

but with the Adaptive Steepest Descent Projection Onto Convex Sets (ASD-POCS) reconstruc-

tion limited to five iterations.

Projections were sampled every four degrees, and therefore, 20, 40, and 60 projections were

simulated for trajectories that included one, two, and three arcs, respectively. We note that this

projection number reduction was done only in simulations for a further acceleration of the

optimization method; however, for the real data, the full sampling projections were used for

the reconstruction.

2.D. Optimization of computational time

We modified the implementation of ASD-POCS in the TIGRE toolbox to run the reconstruc-

tion on the GPU. This implementation takes approximately 1.4, 2.2, and 3.05 seconds for each

ASD-POCS reconstruction (with five iterations), including 20, 40, and 60 projection angles

using a computer with an NVIDIA GeForce RTX 2080 and a 32-core Advanced Micro Devices

(AMD) processor. The total number of RAO/LAO arcs after sparsification (Figs 3 and 4g) was

28 and 23, respectively, using one and two simulated forbidden areas. In addition, the total

number of CRA/CAU arcs after sparsification (Figs 3 and 4h) was 15 and 10, respectively,

using one and two simulated forbidden areas. We used 2563 voxel volumes with 5122
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projections for the reconstruction. Optimizing the first optimal arc (including 20 projections)

required 28 and 23 reconstruction runs, which took approximately 39 and 32 seconds, respec-

tively, while one and two simulated forbidden areas were simulated. In addition, optimizing

the second optimal arc (including 40 projections) required 15 and 10 reconstruction runs,

which took approximately 33 and 22 seconds for one and two simulated forbidden areas,

respectively. Finally, optimizing a third optimal arc (including 60 projections) required 28 and

23 reconstruction runs, which took approximately 84 and 70 seconds for one and two simu-

lated forbidden areas, respectively. The overall time needed for the whole procedure, including

also the calculation of the objective function and projection simulations, was approximately

three to four minutes. The numbers reported in this study used one GPU for reconstruction.

2.E. Evaluation

2.E.1. Phantoms. We evaluated three imaging targets in two regions of the Alderson-

Rando phantom. Target 1 and Target 2 were considered the two VOIs in the T3/T4 (Fig 6a)

and T10/T11 (Fig 6b) regions of the thoracic spine, respectively. Target 3 was considered the

VOI in the C1/C2 region of the cervical spine (Fig 6c).

2.E.2. Experiments. CT scan parameters for the Alderson phantom were 120 kV, 350

mAs, and 1 mm3 voxel size, on a SOMATOM Definition AS, Siemens Healthineers, Erlangen,

Germany. For each target, we optimized trajectories for two and three arcs, with one or two

forbidden areas each. Using a step-and-shoot protocol, the optimal trajectories were imple-

mented. The reconstruction results were then compared to the C-arm standard circular

trajectory (313 projections, 210˚ angular range). In addition, they were also compared to a

reconstruction from a simple, partial circular trajectory with an angular range and projections

equivalent to the optimized trajectory. For all reconstructions, we used the ASD-POCS and

evaluated using FSIM and Universal Quality Image (UQI). For both metrics, the image quality

index between the C-arm standard circular CBCT and the prior CT was considered the refer-

ence value. The quality index value between the optimized/partial circular trajectory and the

prior CT was considered as the measured value. The relative deviation between the reference

and measured values was used for the image quality evaluation.

3. Experimental results

We display the reconstructed images and the optimized trajectories only for Target 1 (Fig 6a),

but all the quantified results can be found in the tables.

Fig 6. Three VOI selected for our experiments, (a) T3/T4 regions of the thoracic spine (Target 1), (b) T10/T11 regions of the thoracic spine (Target 2),

and (c) C1/C2 region of the cervical spine (Target 3).

https://doi.org/10.1371/journal.pone.0245508.g006
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3.A. Optimized trajectories

3D visualizations of the optimized trajectories for one and two simulated forbidden areas for

Target 1 are shown in Fig 7a and 7b, respectively. Angular range and projection numbers

related to optimized trajectories selected for all targets can be found in Tables 1 and 2. The (-)

sign denotes rotation to the right/caudal directions and the (+) sign denotes rotation to the

left/cranial, both with respect to the patient reference position. For Targets 1 and 2, the final

trajectories were the same when using one or two simulated forbidden areas, while for Target

Fig 7. 3D visualization of the optimized trajectories with respect to the C-arm circular trajectory for the Target 1 with

one simulated forbidden area (a) and two simulated forbidden areas (b). (Trajectories were the same when simulating one

or two forbidden areas).

https://doi.org/10.1371/journal.pone.0245508.g007

Table 1. The angular range and projection number of the three selected arcs for the optimized trajectories related to both thorax targets using one simulated for-

bidden area, and total of projections number for the final optimized trajectories related to both Target 1 and Target 2. (For both Target 1 and Target 2, the three

selected arcs were the same when considering one or two simulated forbidden areas; therefore, the numbers reported here are the same when using two forbidden areas.).

Trajectory Arc Angle Projection number per arc Total number of projections

Target 1 Arc 1 θ1 = -39:1:+39, ψ = -26 72 228

Arc 2 θ2 = -34:1:+40, φ = -60 75

Arc 3 θ1 = +44:1:+124, ψ = -6 81

Target 2 Arc 1 θ1 = -22:1:+50, ψ = 10 73 227

Arc 2 θ2 = -40:1:+38, φ = -50 79

Arc 3 θ1 = +9:1:+83, ψ = +32 75

https://doi.org/10.1371/journal.pone.0245508.t001

Table 2. The angular range and projection number of the three selected arcs for the optimized trajectories related to Target 3 using one or two simulated forbidden

areas. (For Target 3, the three selected arcs were different when considering one or two simulated forbidden areas.).

Trajectory Arc Angle Projection number per arc Total number of projections

Target 3 Arc 1 θ1 = -110:1:-34, ψ = + 6 77 234

One forbidden area Arc 2 θ2 = -39:1:+38, φ = -22 78

Arc 3 θ1 = +8:1:+86, ψ = 18 79

Target 3 Arc 1 θ1 = +49:1:+124, ψ = 10 76 234

Two forbidden areas Arc 2 θ2 = -40:1:+38, φ = -18 79

Arc 3 θ1 = -39:1:+39, ψ = +42 79

https://doi.org/10.1371/journal.pone.0245508.t002
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3 different trajectories were achieved when simulating one or two forbidden areas (Tables 1

and 2). The reconstructed images for Target 1 based on simulation data using optimized tra-

jectories that included two and three arcs, are found in Figs 8a and 9a, respectively.

3.B. Reconstructed images

For both Target 1 and Target 2, the three selected arcs were the same when considering one or

two simulated forbidden areas; therefore, the reconstructed images and also the computed

image quality metrics were the same when using one or two forbidden areas (Table 3). For

Target 3, however, two different trajectories were selected when simulating one or two for-

bidden areas; therefore, the calculated image quality metrics were different for one or two for-

bidden area simulations (Table 4).

3.B.1. Reconstructed images using two arcs. Reconstruction results based on real data

for the optimized trajectories that included two arcs, standard C- arm circular, and partial cir-

cular trajectories related to Target 1, are shown in Fig 8b–8d. Relative deviation of the image

quality measures FSIM and UQI related to the optimized trajectories that included two arcs

Fig 8. Reconstructions with one forbidden area (the reconstructions are also the same for two forbidden areas, as

the trajectories happened to be the same) related to Target 1 using (a) optimized trajectory that included two arcs

based on simulation data, (b) optimized trajectory that included two arcs based on real data, (c) C-arm circular

trajectory based on real data, and (d) partial circular trajectory based on real data. The display window uses the

range 200–3000 HU for (a), and a range of 0–21 in gray values for (b-d), respectively.

https://doi.org/10.1371/journal.pone.0245508.g008

PLOS ONE On-the-fly trajectory optimization

PLOS ONE | https://doi.org/10.1371/journal.pone.0245508 February 9, 2021 10 / 17

https://doi.org/10.1371/journal.pone.0245508.g008
https://doi.org/10.1371/journal.pone.0245508


Fig 9. Reconstructions with one forbidden area (the reconstructions are also the same for two forbidden areas, as

trajectories happened to be the same) related to Target 1 using (a) optimized trajectory that included three arcs

based on simulation data, (b) optimized trajectory that included three arcs based on real data, (c) C-arm circular

trajectory based on real data, and (d) partial circular trajectory based on real data. The display window uses a

range of 200–3000 HU for (a) and a range of 0–21 in gray values for (b-d), respectively.

https://doi.org/10.1371/journal.pone.0245508.g009

Table 3. Relative deviations (%) of image quality measures FSIM and UQI related to Target 1 and Target 2 for both optimized and partial circular trajectories using

one forbidden area (for both Target 1 and Target 2, the three selected arcs were the same when considering one or two simulated forbidden areas; therefore, the

reconstructed images and the computed image quality metrics reported here are the same when using two forbidden areas).

Image quality metric Trajectory Two arcs Three arcs

R
el
at
iv
ed
ev
ia
tio

n
ð%
Þ

Target 1 FSIM Opt. 13.90 9.47

Partial-circ. 15 7.87

UQI Opt. 13.57 8.49

Partial-circ. 16.77 4.83

Target 2 FSIM Opt. 8.04 3.90

Partial-circ. 8.30 5.39

UQI Opt. 10.47 4.06

Partial-circ. 12.45 5.38

https://doi.org/10.1371/journal.pone.0245508.t003
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and also partial circular trajectories for all three targets, are given in Tables 3 and 4. According

to the results of Table 3, for both FSIM and UQI metrics, the reconstructed image related to

the optimized trajectory that included two arcs, showed a relative deviation up to 13.90% and

10.47% for Target 1 and Target 2, respectively. We also achieved a relative deviation up to

16.77% and 12.45% for Target 1 and Target 2, respectively, for the reconstructed images related

to partial circular trajectories. In addition, according to the results of Table 4, for both FSIM

and UQI metrics, the reconstructed image related to the optimized trajectory that included

two arcs for Target 3, using one and two simulated forbidden areas, represents the relative

deviation up to 16.08% and 16.26%, respectively. For the reconstructed images related to par-

tial circular trajectories, a relative deviation up to 17.42% was achieved for Target 3 with one

and two forbidden areas. According to the results of Tables 3 and 4, a lower relative deviation

using both FSIM and UQI metrics was achieved for all three targets when using optimized tra-

jectories that included two arcs, compared to the partial circular trajectory. These results show

that the reconstruction results related to optimized trajectories that included two arcs for all

three targets, slightly increased the image quality in the VOI compared to the partial circular

trajectory.

3.B.2. Reconstructed images using three arcs. Reconstruction results based on real data

for the optimized trajectories that included three arcs, standard CBCT, and partial circular tra-

jectories are shown in Fig 9b–9d. Relative deviation of the image quality measures FSIM and

UQI related to the three targets for optimized trajectories that included three arcs and partial

circular trajectories are also given in Tables 3 and 4. The optimized trajectories delivered rela-

tive deviations up to 9.47% and 4.06% in both image quality metrics for Target 1 and Target 2,

respectively (see Table 3). A relative deviation up to 7.87% and 5.39% for Target 1 and Target

2, respectively, was also calculated for the reconstructed images related to partial circular tra-

jectories. In addition, the results of Table 4 show that, for both FSIM and UQI metrics, the

reconstructed image related to the optimized trajectories that included three arcs for Target 3,

including one and/or two simulated forbidden areas, represents the relative deviation up to

8.67% and 9.93%, respectively. For the reconstructed images related to partial circular trajecto-

ries, a relative deviation up to 7.48% was achieved for Target 3 with one and/or two forbidden

areas. According to the results of Tables 3 and 4, we observed a slightly higher relative devia-

tion using both FSIM and UQI metrics for Target 1 and Target 3 (for both one and two for-

bidden areas) when using optimized trajectories that included three arcs compared to the

partial circular trajectories. In contrast, a slightly lower relative deviation using both FSIM and

UQI metrics for Target 2 was achieved when using optimized trajectories that included three

arcs compared to the partial circular trajectory. These results show a small decreased recon-

struction performance for Target 1 and Target 3, while a small increased image quality for

Table 4. Relative deviation (%) of image quality measures FSIM and UQI related to Target 3 for both optimized and partial circular trajectories using one and two

simulated forbidden areas.

Image quality metric Trajectory Two arcs Three arcs

R
el
at
iv
ed
ev
ia
tio

n
ð%
Þ

Target 3 FSIM Opt. 11.01 5.90

Partial-circ. 12.94 3.98

One forbidden area UQI Opt. 16.08 8.67

Partial-circ. 17.42 7.48

Target 3 FSIM Opt. 10.86 5.69

Partial-circ. 12.94 3.98

Two forbidden areas UQI Opt. 16.26 9.93

Partial-circ. 17.42 7.48

https://doi.org/10.1371/journal.pone.0245508.t004
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Target 2 can be seen when using optimized trajectories that included three arcs compared to

the partial circular trajectory. Furthermore, we observed almost similar relative deviation for

both image quality metrics for Target 3 using optimized trajectories (including both two and

three arcs) when simulating two forbidden areas compared to one forbidden area. In addition,

when comparing the reconstruction results achieved for optimized trajectories that included

two and three arcs, we observed a decrease in the relative deviation related to three-arc opti-

mized trajectories compared to two-arc optimized trajectories for all three targets.

4. Discussion and conclusion

We introduced a framework for a patient-specific trajectory design for CBCT imaging under

strong kinematic constraints. The proposed framework has the potential to be done on-the-fly;

therefore, this framework is considered suitable for interventions with arbitrary and unex-

pected collisions. The authors in [10, 11] proposed generic trajectories and reconstruction

implementations suitable for data with an angular range less than 180˚. However, compared to

our study, their trajectories were not patient-specific and could not incorporate case-depen-

dent collisions in the trajectory design. The proposed approach in [18] could incorporate

scene-specific collisions and the angular constraints due to gantry, patient, couch, and an

onboard imaging system for linac-mounted CBCT systems in the patient trajectory design, but

the drawback of their approach is that it requires angular constraints and collisions to be

known in advance and cannot incorporate unexpected collisions in the path optimization on-

the-fly due to the high computation demands. We note that, in [18], which is the most similar

approach to our solution in terms of customized collision avoidance trajectory design, compa-

rable reconstruction results with respect to standard circular scan were achieved. In this study,

we also achieved comparable image quality compared to the reference circular CBCT; how-

ever, a comparison of the image quality of our method with that study [18] is not possible due

to the completely different image quality metrics used. In addition, the only conceptually simi-

lar study to our approach in terms of on-the-fly trajectory optimization is [19], which proposes

a near-online trajectory optimization design; however, the focus of their approach is to reduce

metal artifacts, and unforeseen collisions cannot be incorporated in their trajectory design. To

our knowledge, our study is the first demonstration of the feasibility for the design of scene-

specific, noncircular CBCT trajectories that are suitable to react to unforeseen collisions.

Our results, based on both head and thorax targets, showed that optimized trajectories

could achieve an image quality comparable to that of the reference circular CBCT for a given

VOI. We investigated optimized trajectories that included two and three arcs. We observed a

reasonable image quality for thorax targets, even using trajectories with two arcs. Considering

that each arc includes around 80 projections and 80˚, the optimized trajectory with two arcs

includes approximately 160 projections and 160˚. The two-arc trajectories employ limited-

angle view data with at least 50˚ less and 150 projections compared to standard C-arm CBCT,

which includes 313 projections and a 210˚ angular range. This makes our proposed trajectories

suitable for a low-dose and limited-angle CBCT reconstruction. In addition, we observed the

optimized trajectories with three arcs (with, at maximum, 234 projections and 234˚) achieved

an image quality comparable to that of the standard C-arm CBCT for all three targets. We

achieved a relative deviation of less than 10% for both the FSIM and UQI metrics using opti-

mized trajectories that included three arcs for all targets. In our previous study [14], relative

deviations less than 7% were achieved for both FSIM and UQI for one target. In this study, we

evaluated the results on three targets and observed a slight reduction in image quality. We note

that, in our new search method the reduction of initial arc space helps to accelerate the optimi-

zation process, but this previously limited arc search space can cause neglect of good plausible
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arcs. Although the proposed heuristic local search performed around the newly created neigh-

bor arcs compensates for this inefficiency to some extent and avoids skipping such good arcs,

this limited trajectory space still affects the efficiency of the reconstructed results and caused a

slight degradation of the image quality compared to our previous approach [20]. However,

considering that the trajectory optimization can now be done on-the-fly, the reconstruction

performance achieved in this study seems sufficient. In a clinical application, one could start

with optimization using two arcs and, if there are higher image quality demands at the VOI,

search for a third optimized arc.

We observed different relative deviations related to the reconstructed images of different

targets (Tables 3 and 4). Image quality variation over different VOIs in the reconstructed

image is common in circular CBCT due to different locations, voxel values, total attenuation

path along the X-rays, etc. This effect is, nevertheless, not omitted when using optimized paths

and is considered the reason for different relative deviation calculated for different targets in

this study. For all three targets, the reconstruction results related to optimized trajectories that

included two arcs showed an image quality improvement compared to the partial circular tra-

jectory using both the FSIM and UQI index. The improvement could be due to the limited-

angle artifact reduction (streaking artifacts appear less in Fig 8b compared to Fig 8d) achieved

by the optimized trajectory compared to the partial circular trajectory. For optimized trajecto-

ries that included three arcs, the reconstructed image related to Target 2 showed a small image

quality improvement compared to a partial circular trajectory, while the reconstruction results

related to Target 1 and Target 3 showed a small image quality degradation compared to the

partial circular trajectory. However, the differences are not significant and images recon-

structed from optimized trajectories that included three arcs exhibited a comparable image

quality for all three targets with regard to the partial circular trajectories. Considering the fact

that our approach is the first proposed protocol in the literature that can facilitate CBCT for

interventions in which a 3D circular CBCT would not be possible otherwise due to unpredict-

able collisions, our results are still significant even if there is a slightly image quality reduction

for some targets compared to the partial circular trajectory.

In this study, we simulated both one and two forbidden areas to evaluate the performance

of the optimization protocol under strong kinematic constraints. We observed a rather similar

relative deviation for image quality metrics calculated for Target 3 using optimized trajectories

when simulating one and two forbidden areas. This result shows that the optimization perfor-

mance and the achieved image quality was not influenced significantly when simulating more

forbidden areas, and therefore, embracing the robustness of our optimization protocol under

kinematic constraints. In addition, when comparing the reconstruction results achieved for

optimized trajectories that included two and three arcs, we observed a decrease in the relative

deviation (up to 7.41%) when using three-arc optimized trajectories compared to two-arc opti-

mized trajectories. However, such a result was expected, as a larger angular span and more

projection numbers were used in the optimized paths that included three arcs compared to tra-

jectories with two arcs.

The heuristic local search proposed in this study helps to find global maxima (because it is

not fixed into a choice once selected) while selecting among only limited initial arc solutions

rather than searching among all possible paths, as introduced in our previous study [20]; this

reduces the total computational time of the arc-selection process significantly. The trajectory

optimization framework requires three to four minutes overall time on one GPU and a further

reduction in time to around one minute is expected by using multiple GPUs. Compared to our

previous work [20], which required approximately 80 minutes for reconstruction, we have

achieved a considerably higher speed in this study.
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In our previous study [20], we proposed to combine short arcs (in both RAO/LAO and

CRA/CAU directions). This allowed for additional degrees of freedom compared to a single-

view arc and could enhance reconstruction performance compared to just a continuous lim-

ited view single arc. Limited angle trajectories with less than 180˚ are efficient for a wide vari-

ety of applications [10–12, 23, 24]. We selected a maximum 80˚ for each arc to avoid a final

trajectory with two arcs that would exceed 160˚. Our previous [20] and also the current study

show reasonable reconstructed results for different VOIs while using two 80˚ arcs as the final

trajectory. However, our main purpose in dividing the trajectory into short 80˚ arcs (two or

three arcs instead of a full circular trajectory) was to allow for an increased flexibility under

inevitable kinematic constraints. This facilitates CBCT under severe kinematic constraints, for

example, when arcs larger than 80˚ are not possible due to collisions. We note that the length

of each arc was selected with our constraints, but other options can also be selected. In fact,

our proposed strategy can be fully used to design a multi-arc trajectory by selecting the num-

ber of arcs and the length per arc in advance, which is especially relevant in C-arm-based

CBCT implementations and applications.

Our proposed trajectory optimization protocol can easily be applied to other imaging

devices with general source-detector trajectories and additional degrees of freedoms. In this

case, non-isocentric trajectories can also be optimized similar to the proposed framework.

Extension of our methodology for field-of-view enlargement/shift using such non-isocentric

trajectories is a future perspective of our work. Sparing the organ-at-risk (OAR) is standard in

radiotherapy dose-planning, but has not yet been considered for pre-fractional position verifi-

cation imaging. An important point of future work is to perform dose-planning for CBCT

imaging. This is feasible based on our trajectory optimization methodology by determining

the optimized orientation in 3D space and skipping projections, which deliver high doses to

the OAR.
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