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Abstract 

Background:  DNA methylation-regulated genes have been demonstrated as the crucial participants in the occur-
rence of coronary heart disease (CHD). The machine learning based on DNA methylation-regulated genes has 
tremendous potential for mining non-invasive predictive biomarkers and exploring underlying new mechanisms of 
CHD.

Results:  First, the 2085 age-gender-matched individuals in Framingham Heart Study (FHS) were randomly divided 
into training set and validation set. We then integrated methylome and transcriptome data of peripheral blood leuko-
cytes (PBLs) from the training set to probe into the methylation and expression patterns of CHD-related genes. A total 
of five hub DNA methylation-regulated genes were identified in CHD through dimensionality reduction, including 
ATG7, BACH2, CDKN1B, DHCR24 and MPO. Subsequently, methylation and expression features of the hub DNA meth-
ylation-regulated genes were used to construct machine learning models for CHD prediction by LightGBM, XGBoost 
and Random Forest. The optimal model established by LightGBM exhibited favorable predictive capacity, whose AUC, 
sensitivity, and specificity were 0.834, 0.672, 0.864 in the validation set, respectively. Furthermore, the methylation and 
expression statuses of the hub genes were verified in monocytes using methylation microarray and transcriptome 
sequencing. The methylation statuses of ATG7, DHCR24 and MPO and the expression statuses of ATG7, BACH2 and 
DHCR24 in monocytes of our study population were consistent with those in PBLs from FHS.

Conclusions:  We identified five DNA methylation-regulated genes based on a predictive model for CHD using 
machine learning, which may clue the new epigenetic mechanism for CHD.
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Introduction
On the basis of data released by the American Heart 
Association in 2022, the mortality of coronary heart 
disease (CHD) has reached 1.2‰ in USA [1]. The high 
mortality of CHD is partly due to the insufficiency and 
insensitivity of traditional clinical prediction indicators, 
such as age, gender, serum lipid and blood pressure. For 
instance, serum cholesterol level failed to identify 2/3 
CHD patients in the Framingham Heart Study (FHS) 
[2]. Even the most extensively used Framingham 10-year 
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risk scale exhibited poor accuracy in CHD prediction [3]. 
Mining more sensitive non-invasive biomarkers will be of 
great benefit to the population screening and prediction 
of CHD, as well as epigenetic pathogenesis discovery.

DNA methylation has been widely demonstrated to be 
involved in the pathogenesis of CHD [4, 5]. Among the 
mechanisms by which DNA methylation affects the pro-
gression of CHD, the regulation of gene expression by 
promoter methylation plays a major role. For instance, 
the hypermethylation of brain and muscle ARNT-like 
protein 1 (BMAL1) promoter was proved to suppress 
BMAL1 transcription and further elevate oxidative stress 
and inflammatory response in human aortic endothelial 
cells [6]. Like BMAL1, genes regulated by their meth-
ylation status are defined as DNA methylation-regulated 
genes [7]. Identification of CHD-associated DNA methyl-
ation-regulated genes may shed light on the pathogenesis 
of CHD and improve the accuracy of CHD prediction.

In the era where the barrier to profile and access high-
throughput data with large sample size was quite low, 
machine learning is becoming more widely applied in 
both basic medical research and clinical practice. The 
essence of machine learning is to generalize features and 
construct models from existing data through specific 
algorithms, so that the optimized models can be applied 
in the prediction of new data [8–10]. Combining appro-
priate algorithms with prospective CHD biomarkers to 
construct machine learning models will be advantageous 
for hub gene identification and prediction of CHD.

In the present study, we integrated methylome and 
transcriptome data of 2085 individuals from FHS to 
screen candidate DNA methylation-regulated genes in 
CHD. After multiple dimensionality reductions, pre-
dictive models were created based on five genes’ meth-
ylation and/or expression statuses using three machine 
learning algorithms. Finally, the expression and methyla-
tion statuses of the five genes were further confirmed in 
our population using DNA methylation microarray and 
transcriptome sequencing.

Results
Baseline characteristics of the individuals from FHS
There were 2085 individuals in the FHS with methylome 
data and transcriptome data met our standards. We ran-
domly divided these individuals into training set and vali-
dation set. The clinical baseline information of the two 
subsets is displayed in Table 1. It could be observed that 
diastolic blood pressure (DBP) and high-density lipo-
protein cholesterol (HDL-C) were much lower in CHD 
patients than in controls. Consistent with previous stud-
ies, higher levels of body mass index (BMI), fasting blood 
glucose (FBG) and triglycerides (TG) were found in CHD 
patients. Instead of increasing, low-density lipoprotein 
cholesterol (LDL-C) and total cholesterol (TC) were 
significantly reduced in CHD patients. And there were 
no significant differences in smoking and systolic blood 
pressure (SBP), which were widely reported to predispose 
to CHD.

Table 1  Clinical characteristics of the individuals from FHS

Data were showed as mean ± standard deviation or median (interquartile range)

BMI Body mass index, FBG Fasting blood glucose, SBP Systolic blood pressure, DBP Diastolic blood pressure, HDL-C High-density lipoprotein cholesterol, LDL-C Low-
density lipoprotein cholesterol, TC Total cholesterol, TG Triglycerides
a Student’s t test. bMann–Whitney U test. cChi-square test

Characteristic Training controls Training CHD patients p value Validation controls Validation CHD patients p value

Number 1364 199 – 455 67 –

Male/Female 554/810 95/104 0.0644c 186/269 32/35 0.2917c

Age (year) 66 (60, 72) 66 (61, 72) 0.1747b 60 (52, 65) 63 (53, 67) 0.2557 b

Smoker / non-smoker 101 / 1261 19 / 180 0.3173c 39 / 416 10 / 57 0.1138c

BMI (kg/m2) 27.55 (24.51, 30.84) 29.38 (25.30, 32.70) 0.0003b 27.39 (24.82, 30.90) 28.97 (26.48, 33.15) 0.0133b

FBG (mg/dL) 101.00 (95.00, 110.00) 106.00 (97.00, 120.00)  < 0.0001b 101.00 (94.00, 110.30) 109.00 (99.00, 122.00) 0.0005b

SBP (mmHg) 127.00 (117.00, 139.00) 130.50 (118.00, 141.30) 0.1229b 127.00 (116.00, 139.00) 128.50 (118.00, 139.00) 0.4886b

DBP (mmHg) 74.00 (68.00, 80.00) 71.00 (66.00, 80.00) 0.0100b 74.05 ± 10.12 70.66 ± 11.14 0.0118a

Hypertension 
treatment (treated/
untreated)

596 / 700 130 / 56  < 0.0001c 200 / 225 43 / 19 0.0011c

HDL-C (mg/dL) 57.00 (46.00, 69.00) 48.00 (40.00, 60.00)  < 0.0001b 58.00 (46.00, 70.00) 52.00 (41.00, 62.00) 0.0136b

LDL-C (mg/dL) 106.00 (86.00, 126.80) 89.50 (71.00, 112.30)  < 0.0001b 108.00 ± 30.09 92.52 ± 31.68 0.0001a

TC (mg/dL) 188.00 (164.00, 214.00) 169.00 (142.00, 195.5)  < 0.0001b 189.20 ± 34.78 171.10 ± 38.22 0.0002a

TG (mg/dL) 101.00 (73.00, 139.00) 125.00 (81.00, 161.30)  < 0.0001b 99.00 (71.00, 133.50) 120.50 (82.00, 150.50) 0.0053b
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DMPs distribution and gene set enrichment pattern in CHD
We identified 40,015 differentially methylated posi-
tions (DMPs) between 199 CHD patients and 1364 
controls in the training set. Among the recognized 
DMPs, 24,659 CpGs were hypermethylated and 15,356 
CpGs were hypomethylated. The widespread distri-
bution of DMPs on chromosomes hinted the crucial 
role of DNA methylation in the pathogenesis of CHD 
(Fig. 1A). In terms of quantity, the open sea region and 
the gene body were the main distribution regions of 
DMP (Fig. 1B, C). However, if the distribution density 
was considered, the CpG island and regions around 
transcriptional start site (TSS) were the most enriched 
regions. In addition, it was also observed that DMPs 
tended to appear in adjacent gene regions, such as 
TSS200 and 5’UTR, 5’UTR and 1stExon, gene body 
and 3’UTR (Fig.  1D). Considering that the regions 
surrounding TSS have received the most attention in 
CHD-related epigenetic researches, we further focused 
on the distribution of DMPs in TSS1500 and TSS200. 
Although DMPs were evenly spread in TSS1500 and 
TSS200 on each chromosome (Fig.  1E), certain differ-
ences were also observed in the distribution of DMPs 
in TSS1500 and TSS200. As shown in Fig.  1F, DMPs 
in TSS1500 were mainly located in CpG shores, while 
CpG islands were the principal distribution areas for 
DMPs in TSS200 (Fig. 1G).

We then performed gene set enrichment analysis 
(GSEA) based on the transcriptome data of the training 
set to probe into the underlying pathogenesis of CHD. 
The Gene Ontology (GO) analysis revealed that genes 
bounded up with autophagy of nucleus and cell redox 
homeostasis were up-regulated in CHD patients, while 
monocyte differentiation related genes were down-reg-
ulated (Fig.  1H). In Kyoto Encyclopedia of Genes and 
Genomes (KEGG) analysis, pathways involving fatty acid 
metabolism and lysosome were up-regulated in CHD 
(Fig.  1I). According to the results of Reactome analysis, 
genes correlated to autophagy and LDL clearance were 
notably up-regulated in CHD patients (Fig. 1J).

WGCNA and core module analysis
Weighted correlation network analysis (WGCNA) was 
carried out in the training set to discriminate gene mod-
ules that linked with CHD related phenotypes (Fig. 2A). 
A total of 7 functional gene modules were recognized 
through WGCNA, among which the red module had the 
most prominent negative correlation with CHD (Fig. 2B). 
Besides, the red module was also negatively related to TG 
and positively related to HDL-C. Genes in the red mod-
ule participated in a variety of functions and pathways 
that interrelated with CHD, including autophagosome 

assemble, cell cycle signaling, apoptosis, oxidative stress, 
and cholesterol metabolism (Fig. 2C–E).

The red module was further visualized based on the 
connectivity obtained from the topological overlap 
matrix (TOM) (Fig.  2F). Core module of the TOM was 
consisted of the top 10 pivotal genes (Fig. 2G). Another 
network was established on the grounds of the protein 
interactions in the red module (Fig. 2H). The top 10 cru-
cial genes of the protein–protein interaction (PPI) net-
work are shown in Fig.  2I. It was noteworthy that the 
gene Autophagy Related 7 (ATG7) was the intersection of 
TOM core module and PPI network core module.

Identification and function analysis of the hub genes
A total of 312 intersection genes between differentially 
methylated genes (DMGs) and differentially expressed 
genes (DEGs) were identified from the training set, 
among which 54 genes had significant correlations 
between methylation and expression statuses (Fig.  3A). 
These 54 genes were regarded as potential DNA meth-
ylation-regulated genes and the representative infor 4 
mation were displayed in Fig.  3B. Similar to the results 
of WGCNA, the DNA methylation-regulated genes were 
also enriched in autophagy, oxidative stress, inflamma-
tion, immune cells function and proliferation related 
terms (Fig. 3C).

The methylation and expression statuses of the 54 DNA 
methylation-regulated genes were taken as 108 inde-
pendent features and were all included into least abso-
lute shrinkage and selection operator (LASSO) analysis. 
A total of 68 features were retained in the LASSO model 
(Fig. 3D, E). Of the retained features, only 13 genes had 
both methylation and expression features. In order to 
screen the features more rigorously, we introduced 
SelectFpr into the dimensionality reduction process. 
Finally, there were five genes selected by LASSO and 
SelectFpr simultaneously, namely BTB domain and CNC 
homolog 2 (BACH2), cyclin dependent kinase inhibi-
tor 1B (CDKN1B), 24-dehydrocholesterol reductase 
(DHCR24), myeloperoxidase (MPO), and the aforemen-
tioned ATG7 (Fig. 3F).

The five DNA methylation-regulated genes mentioned 
above were incorporated into the subsequent machine 
learning model construction as hub genes of CHD. These 
hub genes were primarily enriched in autophagy, oxida-
tive stress, lipoprotein metabolism, cell proliferation and 
aging (Fig. 3G). ATG7 (p < 0.0001), DHCR24 (p < 0.0001), 
MPO (p < 0.0001) were hypomethylated in CHD patients 
from the training set (Fig.  4A). Meanwhile, the expres-
sion levels of ATG7 (p = 0.0238), DHCR24 (p = 0.0091), 
MPO (p = 0.0019) were increased in CHD patients 
(Fig. 4B). Conversely, BACH2 (p < 0.0001) and CDKN1B 
(p < 0.0001) were hypermethylated in CHD patients. The 
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Fig. 1  Methylation and expression patterns in the training set of FHS. A Locations of DMPs on chromosomes. Hypermethylated and 
hypomethylated DMPs in CHD were marked in red and blue, respectively. B, C Distributions of DMPs in various gene regions. D UpSet plot for DMPs 
in various gene regions. E DMPs distribution in TSS regions of each chromosome. F DMPs distribution in TSS1500. G DMPs distribution in TSS200. 
H–J GO, KEGG and Reactome enrichment results in GSEA based on the transcriptome data of all genes
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expression levels of BACH2 (p = 0.0421) and CDKN1B 
(p = 0.0001) were declined in CHD patients. The expres-
sion levels of the five genes were all negatively correlated 
with the corresponding methylation status, whether in 
CHD patients, controls or all individuals (Fig. 4C–G).

Machine learning modeling based on the hub genes
Decision curve analysis (DCA) and clinical impact curve 
analysis (CICA) were conducted to initially appraise the 
clinical practicability of the hub genes. We established 
three models in DCA and CICA based on the methyla-
tion parameters, expression parameters, and methyla-
tion-expression combination parameters of the five hub 
genes in the training set, respectively. The results from 
DCA indicated that when the risk threshold probabil-
ity was set to CHD prevalence, which was 0.07 [17], the 
overall net benefit of the combination model was supe-
rior than unitary model based on methylation or expres-
sion parameters (Fig.  5A). Besides, CICA showed the 
false positive rate of the combination model was much 
lower than the methylation model and expression model 
when the risk threshold probability set to 0.07 (Fig. 5B).

Given that the appropriate algorithms could take 
full advantage of the current data to construct models 
with more excellent performance, we then established 
machine learning models using LightGBM, XGBoost and 
Random Forest. Finally, nine models were built through 
the three algorithms based on the methylation features, 
the expression features, and the methylation-expression 
combination features from the five hub genes. It could be 
observed that models formed by LightGBM always per-
formed better than XGBoost and Random Forest models 
(Table 2). Compared with the methylation or expression 
models, the performances of the combination models 
were substantially improved (Fig. 5C–Q). Of all the nine 
models, the combination model established by Light-
GBM was the top performer, whose F1 score and AUC 
were 0.517 and 0.834 in the validation set, respectively. 
In addition, the methylation and expression model estab-
lished by LightGBM performed well in another two data-
sets obtained from the GEO database (Additional file 1: 
Table S1).

The traditional FRS model showed extremely poor 
capability in distinguishing CHD patients (Fig.  5R). The 

true positive rate (TPR), also known as sensitivity, was 
as low as 0.194 in the validation set of the FRS model. 
In contrast, the LightGBM-based combination model 
had considerable sensitivity in CHD identification, and 
its TPR reached 0.672 in the validation set. The true 
negative rate (TNR) of the LightGBM-based combina-
tion model even reached 0.864 in the validation set. In 
addition, the expression and methylation of ATG7 were 
identified as the dominant features in LightGBM-based 
models (Fig. 6A–F).

Validation of the identified DNA methylation‑regulated 
genes
Since monocytes were the principal cell type in periph-
eral blood involved in the pathogenesis of CHD, we veri-
fied the methylation and expression statuses of the five 
hub genes in monocytes. In accordance with the results 
from FHS, ATG7 (p = 0.0080), DHCR24 (p = 0.0044) and 
MPO (p = 0.0465) were hypomethylated in monocytes 
from CHD patients compared with controls (Fig.  6G). 
The expression levels of ATG7 (p = 0.0146) and DHCR24 
(p < 0.0001) were up-regulated in CHD patients (Fig. 6H). 
Although no significant methylation difference was 
observed in BACH2, the expression of BACH2 was obvi-
ously reduced in CHD patients (p = 0.0074). The princi-
pal component analysis (PCA) revealed the five hub DNA 
methylation-regulated genes could effectively distinguish 
CHD patients from controls, especially when methyla-
tion and expression data were applied simultaneously 
(Fig. 6I–K).

Discussion
In the present study, the methylation and expression pat-
terns in CHD were elucidated. Further, we constructed 
a machine learning model based on five identified DNA 
methylation-regulated genes, which exhibited eminent 
discriminability for CHD. The five DNA methylation-
regulated genes were also validated in monocytes of our 
study population.

It has been extensively documented that DNA meth-
ylation is involved in the etiopathogenesis of CHD as a 
dominant epigenetic factor [11–13]. In addition to the 
previously reported enrichment of DMGs in TSS regions, 
CpG islands and adjacent intragenic regions [14, 15], we 

Fig. 2  WGCNA and module analysis based on the training set of FHS. A Modules identified from WGCNA were assigned unique colors. The 
heatmap showed the correlation between genes and phenotypes. Red and blue represented positive and negative correlations, respectively. B 
Correlations between modules and phenotypes. The top number was the correlation coefficient, and the bottom number was the corresponding p 
value. C–E GO (C), Reactome (D) and KEGG (E) enrichment results of the red module. F, G Network and core network based on connectivity of TOM 
in the red module. H, I Network and core network based on PPI in the red module. The diameter of each circle was positively correlated with the 
expression difference of the corresponding gene. Analogously, the deeper color indicated greater statistical significance. Red edge of circles meant 
the genes were up-regulated in CHD, while blue represented the genes were down-regulated in CHD

(See figure on next page.)
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Fig. 2  (See legend on previous page.)
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noticed differences in the distribution of DMGs between 
TSS1500 and TSS200. There were totally 5032 and 3023 
DMPs identified in TSS1500 and TSS200, respectively. In 
view of the linear length, it could be considered that the 
DMPs density of TSS200 was much higher than that of 
TSS1500. Besides, the DMPs located in the CpG shores 
accounted for 49.24% of all DMPs in TSS1500, but only 
occupied 18.82% of all DMPs in TSS200. On the con-
trary, DMPs in the CpG islands only made up 20.09% of 
all DMPs in TSS1500, but accounted for 51.70% of the 
DMPs in TSS200 located in CpG islands. The phenome-
non not only showed the proportion of CpG island-shore 
was discrepant in TSS1500 and TSS200, but also hinted 
the difference of methylation pattern between TSS1500 
and TSS200 in CHD.

A review written by Xia et al. summarized recent find-
ings of large-scale epigenome-wide association stud-
ies (EWASs) related with incident CHD (iCHD) and 
CHD risk factors [5]. Similarly, our study identified five 
DNA methylation-regulated genes as epigenetic risk fac-
tors and elucidated the mechanisms of DNA methyla-
tion involved in the progression of CHD. GSEA showed 
that genes related to CHD were mainly enriched in 
autophagy, oxidative stress and monocyte regulation, 
highly consistent with the functions of the red module in 
WGCNA. Furthermore, ATG7 was identified as the hub 
gene of both the TOM-based network and the PPI-based 
network in the red module. ATG7 has been reported as 
an indispensable participant in the process of autophagy 
in atherosclerosis [16, 17]. The vital identity of ATG7 
in the aforementioned two networks reconfirmed that 
autophagy played crucial roles in the pathological mech-
anism of CHD.

The enormous data from thousands of individuals in 
FHS were excellent resources for construction cred-
ible models via machine learning. The models based on 
the methylation features of DNA methylation-regulated 
genes performed much better than those using expres-
sion features. This superiority of models based on meth-
ylation data insinuated the DNA methylation statuses 
might have more potentials in CHD prediction than the 

mRNA expressions. The performance of models that 
constructed by methylation-expression combination 
features had made further leaps than the unitary meth-
ylation models. Although the specificity of the optimal 
combination model (0.864) was equivalent to that of 
the traditional FRS model (0.885), the sensitivity of the 
optimal combination model (0.672) was three times out-
numbered the FRS model (0.194). Though it is desired 
for prediction tools to perform with high sensitivity and 
specificity, given the adverse effect of false negative, sen-
sitivity should be considered as the more important met-
ric in population screening [18].

Navas-Acien et  al. reported multiple DMPs associ-
ated with incident CHD in American Indians could be 
recurrent in other ethnicities, such as Hispanics, Afri-
can Americans and Asians [19]. Similarly, of the five 
DNA methylation-regulated genes identified from PBLs 
in FHS, the differential methylation and/or expression 
of ATG7, BACH2, DHCR24 and MPO were further 
validated in monocytes from Chinese populations. The 
consistency confirmed the reliability of the bioinformat-
ics analysis and suggested similarities of the methylation 
and expression patterns of these genes in the pathological 
process of CHD among multiple ethnicities. Even though 
no significant differences were observed for CDKN1B in 
monocytes, CDKN1B was still worthy of further study. 
The bias might be caused by the interference of other cell 
types in peripheral blood and the insufficient number of 
samples in the monocyte verification procedure.

Whether in the methylation model, expression 
model or combination model, the methylation and 
expression features of ATG7 always occupied deci-
sive positions among all features, indicating ATG7 
played an irreplaceable role in the predictive models 
of CHD. Integrating our results with published stud-
ies, the underlying pathways that ATG7 involved in 
the pathological progression of CHD were exhibited 
in Fig.  7. The hypomethylation in ATG7 promoter 
might enhance ATG7 expression in CHD. The up-
regulated ATG7 catalyzed the formation of LC3-II 
by collaborating with LC3-I, ATG3 and phosphatidyl 

(See figure on next page.)
Fig. 3  Dimensionality reduction to screen hub genes in the training set. A Part of the differentially methylated and expressed genes had statistically 
significant correlations between methylation and expression levels. The diameter of each circle was positively correlated with the absolute values 
of Spearman correlation coefficients. B Information of the potential DNA methylation-regulated genes. The circles from inside to outside were 
respectively: PPI networks among the genes, p value histogram and logFC scatter plot of the expression difference, p value histogram and delta 
beta scatter plot of the methylation difference, names and chromosomal locations of representative genes. C GO clustering enrichment results 
of the potential DNA methylation-regulated genes. The inner loop showed the Spearman correlation coefficients between methylation and 
expression status. D Tuning parameter selection of the potential DNA methylation-regulated genes by misclassification error in the LASSO model. 
E LASSO coefficients profiles of the features. F Intersection between LASSO and SelectFpr test. The dash lines indicated the threshold value of 
SelectFpr test. Genes chosen by both LASSO and SelectFpr were marked in red. G GO enrichment results of ATG7, BACH2, CDKN1B, DHCR24 and 
MPO
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Fig. 3  (See legend on previous page.)
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Fig. 4  Methylation and expression statuses of the five hub genes in the training set. A, B Methylation and expression levels of the five hub genes 
in PBLs from CHD patients and controls. C–G Correlations between methylation and expression levels of the five hub genes. CHD patients and 
controls were marked in yellow and green, respectively. The trendline of all individuals was marked in red
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ethanolamine (PE) [20, 21]. The increased LC3-II 
facilitated the phagophore elongation [22], which 
might lead to monocyte dysfunction through aber-
rant excessive autophagy. DHCR24 was the pivotal 
gene that catalyzed the formation of cholesterol from 
desmosterol [23]. The up-regulation of DHCR24 
might be induced by the hypomethylation of its pro-
moter in CHD, leading to the immoderate consump-
tion of desmosterol [24]. The diminished desmosterol 
in mitochondria allowed ROS production and thus 
promoting the glycolytic metabolic switch, a hallmark 
of inflammatory macrophages [24, 25]. The inhibi-
tory effect of CKDN1B on macrophage proliferation 
might be reversed by hypermethylation of CKDN1B 
promoter [26]. Further, down-regulation of CDKN1B 
has been reported to induce atherosclerotic plaques 
formation and inflammatory response in the plaques. 
The transcription inhibition of BACH2 might be 
mediated by its promoter hypermethylation in CHD. 
The reduced BACH2 disabled the maintenance of its 
inhibitory effect on IFN-γ, resulting in IFN-γ mediated 
inflammation in monocytes [27]. MPO released from 
monocytes was thought to contribute to endothelial 
dysfunction by limiting nitric oxide (NO) bioavail-
ability via formation of reactive oxidants including 
hypochlorous acid (HOCl) [28]. The hypomethyla-
tion of MPO promoter in CHD might promoted MPO 
expression in monocyte, thereby accelerating vascu-
lar endothelial cell (VEC) injury. The dysfunction of 
monocytes caused by the above DNA methylation-reg-
ulated genes might affect the process of macrophages 
and foam cells formation, and then participated in the 
occurrence and development of CHD [29].

Some limitations in the present study deserved 
attentions. In view of FHS mainly contained European 
descents, the results in Chinese or other populations 
might deviate, though DNA methylation-regulated 
genes were verified in a small Chinese population. 
Moreover, the sample size was relatively insufficient 
for the validation of DNA methylation-regulated 
genes in monocytes. Besides, the epigenetic regulation 
mechanisms of ATG7 and other hub genes in CHD 
were also required to be further investigated in multi-
ethnic populations.

Conclusion
In summary, we identified five DNA methylation-regu-
lated genes based on a predictive model for CHD using 
machine learning, which may clue the new epigenetic 
mechanism for CHD.

Methods
Methylome and transcriptome data in FHS
The dbGaP database authorized us to obtain FHS data 
(accession number: phs000007) and the Medical Ethics 
Committee of Zhongnan Hospital of Wuhan University 
approved all analyses described in this study (approval 
number: 2018017). The methylome and transcriptome 
data were collected from individuals of the Offspring 
cohort, who attended the eighth examination cycle of 
FHS. The CHD designation was evaluated and deter-
mined by a panel of three investigators from the Framing-
ham Endpoint Review Committee. The basic criterion for 
CHD diagnosis was that at least one coronary artery had 
more than 50% stenosis. The CHD status of each indi-
vidual was assessed in the eighth and ninth examination 
cycles from 2005 to 2008 and 2011 to 2014, respectively.

The DNA methylome data were obtained from PBLs of 
2724 individuals and were detected by Illumina Infinium 
HumanMethylation450 BeadChip. The PBLs transcrip-
tome data were available for 2441 individuals and were 
profiled by Affymetrix Human Exon 1.0 ST Array. There 
were a total of 2321 individuals provided both PBLs 
methylome and transcriptome data. In order to prevent 
the interference of age and gender between control group 
and CHD group, we adopted stratified sampling among 
the 2321 individuals to select age-gender-matched indi-
viduals. Through sampling, we selected 2117 age-gender-
matched individuals (p = 0.0700 for age; p = 0.0552 for 
gender) to conduct subsequent quality control process.

Quality control of methylome and transcriptome data
In the quality control process for methylome data, probes 
with detection p > 0.01 calculated from ChAMP pack-
age (version 2.21.1) were considered as failed probes and 
were excluded. Non-CpG probes, probes located on sex-
ual chromosomes, and probes with bead count < 3 in at 
least 5% of the samples were also removed. Then, 6 sam-
ples were recognized as outliers by multi-dimensional 

(See figure on next page.)
Fig. 5  DCA, CICA and machine learning modeling. A DCA based on the five hub genes. The x-axis represented the threshold probability and the 
y-axis represented the net benefit. The gray line indicated a perfect prediction model, while the dash line represented a noneffective prediction 
model. The prevalence rate of CHD (0.07) was also marked in the figure. B CICA based on the five hub genes. The number of high-risk patients and 
the number of high-risk patients with events were drawn with solid lines and dash lines to represent different threshold probabilities, respectively. 
C–N Performance of the machine learning models constructed by LightGBM. ROC, PR, lift chart and KS plot of the methylation model (C–F), 
expression model (G–J) and combination model (K–N). O–R Risk plot of the validation set in the methylation model (O), expression model (P), 
combination model (Q) and FRS model (R)



Page 11 of 17Zhang et al. Clinical Epigenetics          (2022) 14:122 	

Fig. 5  (See legend on previous page.)
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scaling (MDS) plot and these samples were eliminated. 
The methylome data of the rest samples were normal-
ized through PBC method to adjust the methylated and 
unmethylated intensities. We explored for batch effect 
using MDS plots, and the batch effect was controlled by 
the ComBat function of the ChAMP package. The Ref-
Base function of the ChAMP package was used to obtain 
methylation-based estimates of the blood cell-type 
counts. And the cell heterogeneities among samples were 
further adjusted by the RefBase function.

As for the analysis of transcriptome data, probes 
without relevant gene names were removed, and the 
maximum values were taken in the circumstance that 
plural probes corresponded to the same gene name. We 
removed 26 samples as they were identified as outliers 
by MDS plot. The batch effect in the rest samples was 
adjusted by regressing out the batch variable with the 
ComBat function of the SVA package (version 3.42.0). 
We utilized the digital sorting algorithm package (DSA, 
version 1.0) to estimate the blood cell-type counts and 
adjust the cell heterogeneities of the expression data [30, 
31].

A total of 2085 samples passed the quality control pro-
cess for methylation and expression data. These samples 
were randomly divided into training set and validation 
set. The training set contained 1563 individuals, of which 

1364 individuals were controls and 199 individuals were 
CHD patients. The rest 522 individuals were classified 
into the validation set, of which 455 individuals were 
controls and 67 individuals were CHD patients. The clini-
cal characteristics of the training set and the validation 
set were listed in Table  1. The subsequent bioinformat-
ics analyses were based on the methylome and transcrip-
tome data of the training set.

Differential analysis of methylome and transcriptome data
DMPs between CHD patients and controls in the train-
ing set were identified with threshold of adj. p < 0.05 and 
delta beta > 0.015. The adj.p was calculated by Benja-
mini and Hochberg (BH) method. Considering that the 
regions of 1500 and 200 bases upstream of the transcrip-
tional start site (TSS1500; TSS200) are the paramount 
regulation regions [32–34], we took genes that had DMPs 
in the TSS1500 and TSS200 as DMGs. Further, the aver-
age beta values of DMPs in TSS1500 and TSS200 were 
regarded as the synthetic methylation statuses of the cor-
responding DMGs.

Empirical Bayes algorithm from Limma package (ver-
sion 3.50.3) was utilized to recognize DEGs in the train-
ing set. Since using adj. p < 0.05 as threshold yielded 
very few DEGs, we chose p < 0.05 as threshold for DEGs 
screening.

Table 2  Performances of the models based on machine learning

ACC​ Accuracy, AUC​ Area under the receiver operating characteristic curve, CI Confidence interval, AP Average precision score, KS Kolmogorov–Smirnov, TP True 
positive, FP False positive, TN True negative, FN False negative, TPR True positive rate, TNR True negative rate, FRS Framingham risk score. Dashes meant the parameters 
were not applicable in the Framingham 10-year risk scale

Features Algorithm Dataset F1 ACC​ AUC (95% CI) AP KS TP FP TN FN TPR TNR Kappa

Methylation LightGBM Training 0.995 0.999 1.000 (1.000–1.000) 1.000 1.000 197 0 1364 2 0.990 1.000 0.994

Validation 0.460 0.807 0.768 (0.694–0.843) 0.538 0.540 43 77 378 24 0.642 0.831 0.353

XGBoost Training 1.000 1.000 1.000 (1.000–1.000) 1.000 1.000 199 0 1364 0 1.000 1.000 1.000

Validation 0.429 0.770 0.756 (0.683–0.830) 0.391 0.525 45 98 357 22 0.672 0.785 0.308

Random forest Training 0.995 0.999 1.000 (1.000–1.000) 1.000 1.000 197 0 1364 2 0.990 1.000 0.994

Validation 0.443 0.803 0.737 (0.656–0.818) 0.611 0.517 41 77 378 26 0.612 0.831 0.334

Expression LightGBM Training 0.992 0.998 1.000 (1.000–1.000) 1.000 1.000 196 0 1364 3 0.985 1.000 0.991

Validation 0.447 0.801 0.709 (0.626–0.792) 0.465 0.472 42 79 376 25 0.627 0.826 0.337

XGBoost Training 0.997 0.999 1.000 (1.000–1.000) 1.000 1.000 198 0 1364 1 0.995 1.000 0.997

Validation 0.426 0.784 0.706 (0.646–0.766) 0.538 0.494 42 88 367 25 0.627 0.807 0.309

Random forest Training 1.000 1.000 1.000 (1.000–1.000) 1.000 1.000 199 0 1364 0 1.000 1.000 1.000

Validation 0.283 0.592 0.647 (0.563–0.731) 0.347 0.320 42 188 267 25 0.627 0.587 0.105

Combination LightGBM Training 1.000 1.000 1.000 (1.000–1.000) 1.000 1.000 199 0 1364 0 1.000 1.000 1.000

Validation 0.517 0.839 0.834 (0.770–0.897) 0.616 0.615 45 62 393 22 0.672 0.864 0.427

XGBoost Training 1.000 1.000 1.000 (1.000–1.000) 1.000 1.000 199 0 1364 0 1.000 1.000 1.000

Validation 0.439 0.780 0.807 (0.740–0.874) 0.460 0.566 45 93 362 22 0.672 0.796 0.322

Random forest Training 0.995 0.999 1.000 (1.000–1.000) 1.000 1.000 197 0 1364 2 0.990 1.000 0.994

Validation 0.452 0.791 0.818 (0.758–0.878) 0.599 0.487 45 87 368 22 0.672 0.809 0.340

FRS Framingham 10- Training – 0.830 0.647 (0.606–0.687) – – 39 105 1188 147 0.210 0.919 –

Year risk scale Validation – 0.797 0.610 (0.536–0.684) – – 12 49 376 50 0.194 0.885 –
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Further, among the intersection of DMGs and DEGs, 
genes with significant correlation between methylation and 
expression status were considered as DNA methylation-
regulated genes. Spearman correlation test was applied in 
the evaluation of the correlation between methylation and 
expression status, and the threshold was p < 0.05.

Enrichment analysis and WGCNA
GO and KEGG enrichment analyses were performed 
using the ClusterProfiler package (version 4.2.2). While, 
Reactome enrichment analysis was carried out by Reac-
tomePA package (version 1.38.0). The filter criteria for 
GO, KEGG and Reactome terms was p < 0.05. GSEA was 

Fig. 6  Feature importance in the LightGBM-based machine learning models and validation of hub genes in peripheral blood monocytes. A–C 
Feature importance in the methylation model, expression model and combination model quantized by Gini importance. D-F Feature importance 
in the methylation model, expression model and combination model based on SHAP values. G, H Methylation and expression levels of the five hub 
genes in monocytes from CHD patients and controls. I-K PCA plots based on the methylation data, expression data, integrated methylation and 
expression data of the five hub genes in monocytes from CHD patients and controls
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carried out by the GSEA software (version 4.2.1). We 
took c5.all.v7.2, c2.cp.kegg.v7.2 and c2.cp.reactome.v7.4 
as the reference gene sets for GO, KEGG and Reactome 
in GSEA, respectively. Terms with normalized p < 0.05 
were deemed to be statistically significant in GSEA.

Transcriptome data of the genes that in the top 25% 
of median absolute deviation (MAD) in the training set 
were used to conduct WGCNA by WGCNA package 
(version 1.71). During the sample clustering analysis, 43 
outlying samples were eliminated when the clustering 
threshold was set to −2.5. The remaining 1520 samples 
were enrolled into the subsequent WGCNA procedure. 
With the soft threshold set to 5, the adjacency matrix 
was converted into TOM. Genes that were intrinsically 
homogeneous in expression patterns were divided into 
identical module. TOM-based connectivity network and 
PPI network were constructed in the module that was 
most intensely associated with CHD phenotype. The PPI 
network was established through Search Tool for the 
Retrieval of Interacting Genes (STRING) database with 
the interaction score set to 0.15. Core networks in the 
TOM network and PPI network were recognized based 
upon 12 algorithms provided by CytoHubba, a plug-in 
from Cytoscape (version 3.9.0).

Dimensionality reduction process
LASSO analysis has been widely applied in dimensional-
ity reduction to select vital features for high-dimensional 
data [35]. The methylation and expression data of poten-
tial DNA methylation-regulated genes in the training 
set were imported into LASSO analysis as independent 
features by glmnet package (version 4.1.4). A gene was 
considered to be eligible only if both its methylation 
and expression features passed the screening of LASSO 
analysis.

Analogously, SelectFpr implements feature screen-
ing by performing false positive rate (FPR) estimation 
through scikit-learn (version 0.23.2). A gene was deemed 
to pass the SelectFpr test when its methylation and 
expression features were both with p < 0.05. The intersec-
tion genes between LASSO analysis and SelectFpr test 
were incorporated into subsequent machine learning 
modeling.

DCA, CICA and machine learning modeling
In order to preliminarily assess the clinical net benefits 
of the candidate DNA methylation-regulated genes 
in CHD prediction, we carried out DCA based on the 
methylation and expression data of the genes in the 
training set [36]. According to the epidemiological 

Fig. 7  Potential pathways of the hub DNA methylation-regulated genes involved in the pathological progression of CHD
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statistics from 2006 to 2010 in USA, the prevalence of 
CHD was set to 0.07 in the DCA [37]. CICA was then 
performed on the basis of DCA to evaluate the prac-
tical value of the DNA methylation-regulated genes in 
CHD prediction. The DCA and CICA were both con-
ducted by rmda package (version 1.6).

Machine learning modeling with appropriate algo-
rithms can lead to observably potentiated predictive 
efficiency of biomarkers. In this study, LightGBM, 
XGBoost and Random Forest were utilized to con-
struct machine learning models based on the hub DNA 
methylation-regulated genes, which were identified by 
the dimensionality reduction analyses. Each algorithm 
established 3 models using methylation data, expres-
sion data, and the combination of methylation and 
expression data, respectively.

The performance of models was assessed by a few 
parameters as following. The discernibility was evalu-
ated by total accuracy (ACC), the classification accu-
racy was represented using Confusion matrix and 
Kappa value, while risk distinction and sorting ability 
was reflected by Kolmogorov–Smirnov (KS) and lift 
chart. Comprehensive performance of the models was 
estimated through receiver operating characteristic 
curve (ROC), area under ROC (AUC), precision-recall 
curve (PRC) and average precision score (AP). Finally, 
F1 score was considered as the paramount param-
eter that indicated the equilibrium of the models. The 
weight of features in the models was imputed by 2 
methodologies, one was based on Gini importance, the 
other was in the light of SHapley Additive exPlanations 
(SHAP) values. The machine learning modeling was 
conducted on scikit-learn (version 0.23.2).

The optimal methylation model and expression model 
generated from FHS data were further applied to two 
additional datasets from Gene Expression Omni-
bus (GEO) database. GSE107143 contained periph-
eral blood methylome data from eight atherosclerosis 
patients and eight controls. GSE42148 provided periph-
eral blood transcriptome data from 13 CHD patients 
and 11 controls. The detection platforms of GSE107143 
and GSE42148 were Illumina Infinium HumanMethyla-
tion450 BeadChip and Agilent SurePrint G3 Microar-
ray, respectively. The data of these two datasets were 
processed and normalized with reference to the data 
processing procedures for FHS data.

Wet experiment validation using transcriptome 
sequencing and methylation microarray
To further verify the identified DNA methylation-
regulated genes, we performed experimental valida-
tion in Chinese populations. A total of 12 male CHD 
patients were recruited in Zhongnan Hospital of Wuhan 

University (Wuhan, China) between December 2019 
and July 2021. The patients were diagnosed with CHD as 
coronary angiography confirmed that there were more 
that 50% stenotic lesions in at least one coronary artery. 
Another 12 males without history of cardiovascular 
events were recruited as controls. The clinical baseline 
information of the participants was listed in Additional 
file 1: Table S2.

We obtained 8  mL peripheral blood from each par-
ticipant to isolate monocytes using Ficoll-Hypaque 
solution (Sigma-Aldrich, Germany) and CD14 micro-
beads (Miltenyi, Germany) according to the manufac-
turer instructions. Half of the monocytes were used for 
DNA extraction and the other half were used for RNA 
extraction (Omega, USA). An amount of 1 μg DNA was 
treated by bisulfate (Zymo Research, USA), followed by 
whole genome amplification, enzymatic end-point frag-
mentation, precipitation, and resuspension according to 
the Illumina Infinium HD Methylation Protocol. Then, 
the resuspended samples were hybridized on Illumina 
Infinium HumanMethylation850 BeadChip. Subsequent 
methylation analyses were conducted on ChAMP pack-
age (version 2.21.1). At the same time, over 1  μg total 
RNA was used to obtain mRNA by poly-T oligo-attached 
magnetic beads. The mRNA-seq libraries were estab-
lished by the NEBNext Multiplex mRNA Library Prep 
Set for Illumina kit (New England Biolabs, USA) and 
finally sequenced on the Illumina NovaSeq 6000 plat-
form. DESeq2 package (version 1.34.0) was applied to the 
sequencing data analyses.

Statistical analysis
The Framingham 10-year risk scale is one of the most 
extensively used rating scales to evaluate the risk of 
developing cardiovascular diseases within ten years 
[38]. This scale assigns scores for a variety of tradi-
tional risk factors, including gender, age, TC, smoking, 
HDL-C and SBP [39]. The accumulated score of the 6 
factors is referred to as FRS, which corresponds to the 
probability of suffering cardiovascular diseases in ten 
years. Individuals with estimated probabilities ≥ 20% 
are considered as high-risk populations [40]. Among 
the 1563 individuals in the training set, parameters 
required for FRS calculation were applicable in 1479 
individuals. Besides, 487 of the 522 individuals in the 
validation set provided parameters required for FRS 
calculation. We calculated the FRS using the Framing-
ham 10-year risk scale and compared the performance 
between the FRS model and the DNA methylation-reg-
ulated genes models.

In the present study, normally distributed data 
were shown as mean ± standard deviation (SD), while 
data with non-normal distribution were described 
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as median and inter-quartile range. The differences 
between continuous data were analyzed by Student’s 
t test or Mann–Whitney U test. Analyses involving 
binary data were processed by Chi-square test or Fish-
er’s exact test. Pearson and Spearman correlation tests 
were applied to assess the correlations between con-
tinuous data. All statistical analyses were performed 
on GraphPad Prism (version 9.0), R (version 4.1.3) and 
Python (version 2.7.11). The threshold for the statistical 
tests was two-tail p < 0.05.
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