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ABSTRACT
Background: The transcription factor 7-like 2 (TCF7L2)
locus is strongly implicated in the pathogenesis of type 2
diabetes (T2D). We previously mapped the genomic
regions bound by TCF7L2 using ChIP (chromatin
immunoprecipitation)-seq in the colorectal carcinoma cell
line, HCT116, revealing an unexpected highly significant
over-representation of genome-wide association studies
(GWAS) loci associated primarily with endocrine (in
particular T2D) and cardiovascular traits.
Methods: In order to further explore if this observed
phenomenon occurs in other cell lines, we carried out
ChIP-seq in HepG2 cells and leveraged ENCODE data for
five additional cell lines. Given that only a minority of the
predicted genetic component to most complex traits has
been identified to date, plus our GWAS-related
observations with respect to TCF7L2 occupancy, we
investigated if restricting association analyses to the
genes yielded from this approach, in order to reduce the
constraints of multiple testing, could reveal novel T2D
loci.
Results:We found strong evidence for the continued
enrichment of endocrine and cardiovascular GWAS
categories, with additional support for cancer. When
investigating all the known GWAS loci bound by TCF7L2
in the shortest gene list, derived from HCT116, the
coronary artery disease-associated variant, rs46522 at the
UBE2Z-GIP-ATP5G1-SNF8 locus, yielded significant
association with T2D within DIAGRAM. Furthermore,
when we analyzed tag-SNPs (single nucleotide
polymorphisms) in genes not previously implicated by
GWAS but bound by TCF7L2 within 5 kb, we observed a
significant association of rs4780476 within CPPED1 in
DIAGRAM.
Conclusions: ChIP-seq data generated with this GWAS-
implicated transcription factor provided a biologically
plausible method to limit multiple testing in the
assessment of genome-wide genotyping data to uncover
two novel T2D-associated loci.

INTRODUCTION
The repertoire of genes already established
to play a role in the pathogenesis of type
2 diabetes (T2D) has grown substantially as
a consequence of results from recent

genome-wide association studies (GWAS).
One of the strongest T2D associations to
date, based on risk conferred, is with vari-
ation within the transcription factor 7-like 2
(TCF7L2) gene.1–6 Indeed, the common
intronic variant at this locus is strongly asso-
ciated with the disease in all major racial
groups.7

In order to better understand the functional
role of TCF7L2, we previously performed a
ChIP (chromatin immunoprecipitation)-seq
experiment with this transcription factor to
elucidate its binding repertoire genome
wide.8 9 This approach performed well with
the human colorectal carcinoma cell line,
HCT116, where the TCF7L2 protein is abun-
dantly expressed. Unexpectedly, and despite
employing a carcinoma cell line, our initial
data suggested that the gene list correspond-
ing to TCF7L2 occupancy sites was strongly
enriched for pathway categories related to
metabolic-related functions and traits.
To our surprise, we also observed a highly

significant over-representation of GWAS-
implicated loci within the list of genes
harboring a TCF7L2 occupancy site; indeed,
the primary GWAS categories enriched were

Key messages

▪ Across multiple data sets derived from various cell
lines, there is consistent evidence of a highly sig-
nificant over-representation of genome-wide asso-
ciation study (GWAS)-implicated loci within the list
of genes harboring a transcription factor 7-like 2
(TCF7L2) occupancy site.

▪ Given this TCF7L2 genome-wide occupancy
behavior, we observe that through cross-
referencing GWAS-derived statistics with specific
ChIP (chromatin immunoprecipitation)-seq data,
one can facilitate biologically plausible limitations
to multiple testing and thus aid gene discovery
efforts.

▪ We reveal UBE2Z-GIP-ATP5G1-SNF8 and CPPED1
as novel type 2 diabetes loci using this approach.
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for endocrine, in particular T2D, and cardiovascular traits.
Our observations are supported by the recent report that
classically defined transcription factors operating in the
β-cell cluster around variants reported in GWAS.10

As only a minority of the predicted genetic compo-
nent to most complex traits has been identified to date,
termed the ‘missing heritability’,11 there is potential for
using knowledge of TCF7L2 occupancy to aid further
gene discovery for T2D. The rationale behind this is that
if one restricted association analyses to just the genes
occupied by TCF7L2, one could limit the extent of cor-
rection for multiple testing that typically blights GWAS
analyses.
In order to elucidate this possibility, we first elected to

expand on our initial findings to investigate if this intri-
guing pattern holds across multiple cell lines, using the
algorithm HOMER (Hypergeometric Optimization of
Motif EnRichment); indeed, we have already reported
our use of this program when analyzing ChIP-seq data for
other GWAS-implicated transcription factors, namely
MEF2C12 and FOXA2.13 To that end, we meshed our
in-house-derived ChIP-seq data sets, both for HCT116 and
HepG2, with those made available by the ENCODE
project.14 In addition to analyzing these data sets separ-
ately to further investigate possible GWAS locus enrich-
ment, we postulated that many novel genes on the
TCF7L2 target list could be relevant to T2D; as such, we
analyzed the shortest ChIP-seq-derived gene list, generated
in HCT116, in the context of GWAS data itself to investi-
gate if novel T2D loci could be revealed when restricting
testing to just the loci derived from this approach.

METHODS
Cell culture and reagent
The HepG2 hepatocarcinoma cell line was purchased
from the American Type Cell Center (ATCC, Manassas,
Virginia, USA). Cells were cultured at 37°C, 95% humid-
ity, and supplied with 5% CO2 in ATCC-formulated
Eagle’s Minimum Essential Medium supplemented with
10% fetal bovine serum (Sigma, St. Louis, Missouri,
USA), 2 mM L-glutamine (Gibco Invitrogen, Carlsbad,
California, USA), 100 units/mL penicillin/100 μg/mL
streptomycin (Cellgro, Manassas, Virginia, USA). On the
basis of previous papers outlining TCF7L2 isoforms,15–17

we chose from antibodies that were raised to antigen at
the most constant region among TCF7L2 isoforms, that
is, the amino acids encoded by exons 1–3 (Cat.05-511;
Millipore, Billerica, Massachusetts, USA) as described
previously.8

Chromatin Immunoprecipitation
ChIP was performed in triplicate following the instruc-
tions provided by the suppliers of the EZ-ChIP kit
(Cat.17-371; Millipore, Billerica, Massachusetts, USA)
and as described previously.18 Cells were sonicated on ice
for 12 cycles of 15 s on and 45 s off at setting 3 (2100XL
ultrasonic liquid processors, Misonix, Farmingdale,

New York, USA). Sonicated chromatin was primarily in
the 100–500 bp range, averaging 200–300 bp.
After overlaying all reads from two independent experi-

ments for HepG2, a total of 3810 binding sites were
observed at a false discovery rate of 1%, cumulative
Poisson p value of 0.0001, and fold coverage threshold of
four times normalized sequence tags in the target experi-
ment comparable with random background sequence
tags using the HOMER19 analysis package. The TCF7L2
ChIP signal was clearly distinct from the pseudo-ChIP
signal as identified by GLITR18 (online supplementary
figure S1). In addition, we chose 17 sites with a variable
binding score for validation purposes by real-time PCR,
all of which showed clear evidence of enrichment
(online supplementary figure S2 and table S1).

Sequencing
The sequencing library was prepared as per Illumina’s
instructions (http://www.illumina.com, San Diego,
California, USA). Sequencing on the Illumina Genome
Analyzer and subsequent analyses were performed at the
Functional Genomics Core at the University of Pennsylvania.
DNA libraries were assessed for size, purity, and quan-

tity using an Agilent 2100 Bioanalyzer (Agilent
Technologies, Santa Clara, California, USA), followed by
sequencing using an Illumina GA-II according to the
manufacturer’s instructions, and have been described
previously.8 The ENCODE ChIP-seq ((HepG2, HeLa-S3
(×2), HEK293, MCF7, and PANC1) and input raw
sequence files were downloaded from the UCSC data-
base (http://genome.ucsc.edu/ENCODE/dataMatrix/
encodeChipMatrixHuman.html). HOMER19 was utilized
to determine TCF7L2 binding sites and their association
with RefSeq transcripts aligned to hg19 was downloaded
from UCSC via HOMER. The candidate target gene was
the closest gene regardless of the direction from the
binding site. In all cases, the transcription start site of
the aligned transcript was used as the anchor point for
distance measurements.

TCF7L2 ChIP-seq in ENCODE
We processed the ENCODE TCF7L2 ChIP-seq data for
the HepG2, HeLa-S3, HEK293, MCF7, and PANC1 cell
lines14 and also reanalyzed our HCT116 data,8 using
HOMER.
We observed a wide range in the occupancy site

number, location, and nearest unique gene. HCT116
was found to harbor the lowest number of binding sites
(n=865) and corresponding genes (n=750). ENCODE’s
HeLa-S3 (exons 1–3) revealed the highest number of
binding sites (n=11 817) and corresponding genes
(n=6451; online supplementary table S2).
We elected to reanalyze all of ENCODE’s and our own

generated TCF7L2 ChIP-seq data with the same
HOMER peak parameters described above to eliminate
any threshold effects that would be caused by comparing
the occupancy sites between different peak finding pro-
grams and threshold parameter settings. The number of
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placed sequence reads for all eight ChIP-seq experi-
ments varied from a low of 18 139 284 to a high of
57 938 025 (online supplementary table S3).

Pathway analysis
Data were analyzed through the use of Ingenuity
Pathways Analysis (Ingenuity Systems, http://www.
ingenuity.com, Redwood City, California, USA) specified
for ‘Human’. The genes that corresponded to at least
one function or pathway annotation in the Ingenuity
Knowledge Base were eligible for the analysis. The p
value associated with functions and pathways was calcu-
lated using the right-tailed Fisher exact test.

GWAS category analyses
We based our analysis on all GWAS genes summarized in
a freeze of the National Human Genome Research
Institute (NHGRI) GWAS catalog (http://www.genome.
gov/gwastudies) from 19 February 2013. Enrichment was
investigated using a χ2 analysis. Our method of scoring
overlapping GWAS-implicated genes detected in the
ChIP-seq data was to assign 1 point to a GWAS region
where all the genes in the region were found in our list
and a fraction of a point determine by how many genes
where found in our gene list divide by the total genes in
the GWAS region. For instance, this analysis model would
give a GWAS region with 1 gene the same weight as a
region harboring 8 genes.

Association analyses
We derived the list of genes bound by TCF7L2 within
5 kb of the transcription start site in the HCT116 cell
line, as it yielded the smallest number of binding sites
and thus the smallest list of corresponding genes. First,
we derived the list of single nucleotide polymorphisms
(SNPs) at GWAS-implicated loci on this gene list (n=40).
Furthermore, we aimed to look at the remainder of the
gene list, the members of which had not been previously
implicated by GWAS, and in order to minimize multiple
testing we elucidated which tag-SNPs represented on the
basic Illumina Human Hap 550 BeadChip resided with
our genes of interest (n=892). We then separately
queried both lists against the publicly available GWAS
meta-analysis data set generated by DIAGRAM (http://
diagram-consortium.org/downloads.html)20 to deter-
mine if any variants would yield a p value lower than the
Bonferroni-corrected p value for the respective test,
where the threshold for significance for the previously
reported GWAS loci test was set at 1.25×10−3 and for the
non-GWAS-implicated loci test it was set at 5.61×10−5.

RESULTS
ChIP-seq data appraisal
To extend our previous genomic occupancy analyses for
TCF7L2 in HCT116 cells,8 we performed ChIP-seq in
the human heptocarcinoma cell line, HepG2, to map
DNA sequences bound by TCF7L2. Utilizing HOMER,

the distribution of the binding sites was 1555 intronic,
1920 intergenic, and the remaining 335 in various other
genic regions (online supplementary figure S3). We also
processed similarly with HOMER TCF7L2 ChIP-seq data
for the HepG2, HeLa-S3, HEK293, MCF7, and PANC1
cell lines from ENCODE,14 plus our previously gener-
ated HCT116-derived data.8

We went on to employ the de novo motif discovery
algorithm, also within HOMER, to derive the consensus
binding site for these other seven ChIP-seq data sets
compared with the consensus motif derived from our
HCT116 ChIP-seq data and from previous work by
others.21 A similar 12 bp consensus was found in
24–53% of all binding sites (online supplementary
figure S4). The majority of occupancy (>93%) fell
within 5–500 kb of a RefSeq gene transcription start site
in the remaining seven ChIP-seq data sets analyzed
(online supplementary table S4).
We went on to perform pathway analyses for each of

the eight ChIP-seq-derived gene sets. In HCT116, we
observed pathways related to ‘Factors Promoting
Cardiogenesis in Vertebrates’, ‘Type II Diabetes Mellitus
Signaling’, and ‘NF-κB Activation by Viruses,’ respectively,
making them the most significant annotations and
readily surviving correction for multiple comparisons
(see all categories that achieved a nominal p<0.05 in
online supplementary table S5).We also observed that
HeLaS3 (exons 1–3), HeLaS3 (exons 4–16), MCF7, and
PANC1 yielded significant enrichment, following adjust-
ment for multiple comparisons (uncorrected p value:
4.47×10−6, 9.12×10−6, 5.62×10−4, and 9.33×10−4) for
genes in the ‘Type II Diabetes Mellitus Signaling’ cat-
egory from the top 20 canonical pathway analyses (see all
categories that achieved a nominal p<0.05 in online sup-
plementary tables S6–S9). We observed consistent under-
representation of members of the β-cell-related pathway
in the ‘Type II Diabetes Mellitus Signaling’ category and
over-representation of binding in other tissues within the
same category across these data sets (see figure 1 for rep-
resentative image derived from HCT116 in-house data).
Three of the data sets, two derived from the liver and

one from the kidney, that is, two HepG2 and one
HEK293, did not yield a significant enrichment of genes
in the ‘Type II Diabetes Mellitus Signaling’ category
from the canonical pathway analyses (see all categories
that reached a nominal p<0.05 in online supplementary
tables S10–S12).
In addition, our pathway analysis also determined con-

sistent and significant enrichment of genes in the ‘Wnt/
β-catenin Signaling’, ‘Molecular Mechanisms of Cancer’,
and ‘Factors Promoting Cardiogenesis in Vertebrates’ cat-
egories from the top 20 canonical pathway analyses in all
eight of the cell lines (see all categories that achieve an
adjusted p<0.05 in online supplementary tables S5–S12).

GWAS category enrichment
Given that original HCT116 study suggested TCF7L2
occupancy was found more often at GWAS loci than
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expected by chance,8 as did our work with MEF2C12 and
FOXA2,13 we were motivated to query the results for
each data set in turn against all GWAS signals reported,
as derived from the NHGRI GWAS catalog.
Of the 2435 nearest genes with a TCF7L2 binding site in

our in-house HepG2-generated data set, representing
12.8% of all RefSeq genes used in the overall analysis
(n=19 015), there was a highly significant over-
representation of loci implicated in disease susceptibility
by GWAS (629.71 of 3607 (17.5%) loci; p=1.09×10−10;
table 1). This observation was primarily driven by excess
loci revealed from GWAS of endocrine (p=6.18×10−10),
cardiovascular (p=9.30×10−10), and cancer (p=1.04×10−6)
traits; specifically, T2D also showed an enrichment
(p=8.80×10−3). In contrast, we observed only marginal or
no significant enrichment of GWAS signals for neuro-
logical or inflammation-related traits.
Expanding our GWAS signal analyses to the data

derived from the other six cell lines (HeLaS3 (exons
1–3), HeLaS3 (exons 4–16), MCF7, PANC1, HCT116,
HEK293, and HepG2 (ENCODE)), we determined that
there was also highly significant over-representation of
GWAS loci for TCF7L2 targets in all seven cell lines
(table 1). As seen in HepG2 (in-house), this observation
was again primarily driven by excess loci from GWAS of
endocrine, cardiovascular, and cancer traits. As demon-
strated in HepG2 (in-house), T2D GWAS-implicated
loci specifically are also generally enriched, although
not statistically significant due to the relatively small

list of GWAS-implicated T2D genes being queried.
Neurological and inflammation-related GWAS signals
were largely consistently shown to have marginal or no
enrichment in the seven ChIP-seq data sets, comparable
with what was seen in HepG2 (in-house; table 1).
To contrast with control data sets, we also generated a

random list of 5000 genes from the 19 015 RefSeq genes
used by HOMER to determine the nearest gene lists
described above to ascertain if there was a bias of our
data analysis. The randomly generated gene list showed
no significant over-representation of GWAS genes in the
random gene set; in fact, it showed a trend of under-
representation of GWAS genes in the random HOMER
gene set, primarily due to the fact that some gene
names in the NHGRI GWAS catalog are not RefSeq
annotations (online supplementary table S13).

Cross comparisons with genome-wide meta-analysis
summary data
Given that only a minority of the predicted genetic com-
ponent to most complex traits has been identified to
date, plus the fact that our GWAS-implicated transcrip-
tion factor of interest shows consistent statistically signifi-
cant preferential binding to loci associated with complex
traits, we investigated if restricting association analyses to
just the genes uncovered from our ChIP-seq approach in
order to reduce multiple testing could yield novel loci
associated with T2D. When investigating all the known
GWAS loci bound within 5 kb by TCF7L2 (most likely to

Figure 1 TCF7L2 ChIP-seq in HCT116 cells. The orange color genes in the ‘Type II Diabetes Mellitus Signaling’ pathway

represents TCF7L2 binding sites candidate target genes that were the closest gene transcription start site to TCF7L2 binding

sites regardless of the direction from the binding site. Data were analyzed through the use of Ingenuity Pathways Analysis

(Ingenuity Systems, http://www.ingenuity.com, Redwood) City, California, USA) specified for ‘Human’. The genes that contain at

least one function or pathway annotation in the Ingenuity Knowledge Base were eligible for the analysis. ChIP, chromatin

immunoprecipitation; TCF7L2, transcription factor 7-like 2; VDCC, voltage-dependent calcium channels; JNK, Jun N-terminal

kinases; ROS, reactive oxygen species; PKC, protein kinase C; NF-κB, nuclear factor-κB; SUR, sulfonylurea receptor; TNFα,
tumor necrosis factor α; INS, insulin; INSR, INS receptor; TRAF2, TNF receptor-associated factor 2; mTOR, mechanistic target of

rapamycin; SMPD, sphingomyelin phosphodiesterases; DAG, diacylglycerol; PPAR, peroxisome proliferator-activated receptors;

GK, glucokinase; PYK, pyruvate kinase; GLUT, glucose transporter; ADIPOR, adiponectin receptor.
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Table 1 Enrichment of GWAS signals for the nearest RefSeq genes to the TCF7L2 binding site in all eight cell lines

Percentage of total hg19
gene list

Percentage of ChIP-seq
gene list

p Values:
χ2

Percentage of total hg19
gene list

Percentage of ChIP-seq
gene list

p Values:
χ2

HCT116: 750 genes HEPG2 (ENCODE): 1924 genes

Endocrine 3.9 (750/19 015) 7.3 (64.66/888) 2.69×10−6 10.1 (1924/19 015) 19.7 (175.34/888) 3.38×10−15

T2D 3.9 (750/19 015) 11.0 (9/82) 0.0025 10.1 (1924/19 015) 21.7 (17.83/82) 0.0024

Cancer 3.9 (750/19 015) 10.7 (35.87/335) 5.81×10−9 10.1 (1924/19 015) 22.0 (73.86/335) 9.17×10−10

Cardiovascular 3.9 (750/19 015) 7.8 (36.19/463) 9.33×10−5 10.1 (1924/19 015) 21.3 (98.41/463) 3.34×10−11

Inflammation 3.9 (750/19 015) 7.2 (37.32/521) 0.00 062 10.1 (1924/19 015) 16.3 (85.1/521) 5.40×10−5

Neuropsychiatric 3.9 (750/19 015) 5.7 (33/584) 0.048 10.1 (1924/19 015) 13.5 (78.67/584) 0.023

All 3.9 (750/19 015) 5.9 (212.25/3607) 5.06×10−7 10.1 (1924/19 015) 15.0 (541.21/3607) 2.58×10−14

HeLa exons (4–16): 1983 genes HEPG2 (in-house): 2435 genes

Endocrine 10.4 (1983/19 015) 16.8 (148.86/888) 1.64×10−7 12.8 (2435/19 015) 21.3 (188.73/888) 6.18×10−10

T2D 10.4 (1983/19 015) 17.5 (14.33/82) 0.086 12.8 (2435/19 015) 23.8 (19.5/82) 0.0088

Cancer 10.4 (1983/19 015) 19.8 (62.21/335) 3.41×10−5 12.8 (2435/19 015) 23.7 (79.29/335) 1.04×10−6

Cardiovascular 10.4 (1983/19 015) 20.0 (92.50/463) 9.18×10−9 12.8 (2435/19 015) 24.4 (113.02/463) 9.30×10−10

Inflammation 10.4 (1983/19 015) 14.0 (73.13/521) 0.02 12.8 (2435/19 015) 15.4 (80.43/521) 0.14

Neuropsychiatric 10.4 (1983/19 015) 12.5 (72.94/584) 0.15 12.8 (2435/19 015) 18.2 (106/584) 0.0011

All 10.4 (1983/19 015) 14.0 (506.47/3607) 2.02×10−8 12.8 (2435/19 015) 17.5 (629.71/3607) 1.09×10−10

HEK293: 3519 genes MCF7: 3863 genes

Endocrine 18.5 (3519/19 015) 32.5 (288.23/888) 6.46×10−16 20.3 (3863/19 015) 31.9 (283.57/888) 8.36×10−11

T2D 18.5 (3519/19 015) 37.2 (30.5/82) 0.00 057 20.3 (3863/19 015) 36.0 (29.5/82) 0.0053

Cancer 18.5 (3519/19 015) 32.0 (107.19/335) 9.26×10−7 20.3 (3863/19 015) 32.0 (107.09/335) 4.97×10−5

Cardiovascular 18.5 (3519/19 015) 36.6 (169.37/463) 4.74×10−14 20.3 (3863/19 015) 35.6 (164.92/463) 7.28×10−10

Inflammation 18.5 (3519/19 015) 25.9 (134.85/521) 0.00 058 20.3 (3863/19 015) 28.7 (149.47/521) 0.0002

Neuropsychiatric 18.5 (3519/19 015) 31.2 (182.4/584) 1.33×10−9 20.3 (3863/19 015) 25.2 (147/584) 0.022

All 18.5 (3519/19 015) 27.4 (988.25/3607) 1.54×10−22 20.3 (3863/19 015) 28.3 (1019.56/3607) 5.47×10−17

PANC1: 5123 genes HeLa exons (1–3): 6451 genes

Endocrine 26.9 (5123/19 015) 34.5 (306.16/888) 0.00 029 33.9 (6451/19 015) 42.0 (372.76/888) 0.00 073

T2D 26.9 (5123/19 015) 44.5 (36.5/82) 0.0087 33.9 (6451/19 015) 47.4 (38.83/82) 0.082

Cancer 26.9 (5123/19 015) 36.5 (122.21/335) 0.0047 33.9 (6451/19 015) 47.9 (160.32/335) 0.00 041

Cardiovascular 26.9 (5123/19 015) 35.1 (162.48/463) 0.0037 33.9 (6451/19 015) 49.9 (230.9/463) 2.13×10−6

Inflammation 26.9 (5123/19 015) 31.1 (161.98/521) 0.12 33.9 (6451/19 015) 38.8 (202.03/521) 0.11

Neuropsychiatric 26.9 (5123/19 015) 29.0 (169.5/584) 0.38 33.9 (6451/19 015) 37.7 (220.2/584) 0.19

All 26.9 (5123/19 015) 30.3 (1094.66/3607) 0.0016 33.9 (6451/19 015) 38.0 (1369.44/3607) 0.0013

We based our analysis on all GWAS genes summarized in the NHGRI GWAS catalog (http://www.genome.gov/gwastudies) from 19 February 2013. Enrichment was investigated using a χ2

analysis. Our method of scoring the GWAS ChIP-seq gene overlap was to assign 1 point to a GWAS region where all the genes in the region were found in our list, and a fraction of a point
determined by how many genes were found in our gene list divided by the total genes in the GWAS region. This analysis model would equally weight a GWAS region with 1 gene the same as a
region with 8 genes as a single region.
ChIP, chromatin immunoprecipitation; GWAS, genome-wide association studies; T2D , type 2 diabetes; TCF7L2, transcription factor 7-like 2.
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be functional) in the shortest gene list in order to minim-
ize multiple testing, derived from HCT116, apart from
the known TCF7L2 locus itself (rs7901695), the coronary
artery disease-associated variant, the T allele of rs46522
within the UBE2Z-GIP-ATP5G1-SNF8 locus, yielded signifi-
cant and novel DIAGRAM-derived association with T2D
risk (OR=1.07; p=3.20×10−4) (table 2); indeed, the occu-
pancy site was ∼4 kb from the transcription start site for
GIP in an intergenic region known to be a hub for
binding proteins, H3K27Ac histone marks and open
chromatin via a DNase I hypersensitive site. Furthermore,
when we analyzed Illumina Human Hap 550 tag-SNPs
within genes not previously implicated by GWAS but
bound within 5 kb by TCF7L2 in HCT116, again due to
the fact that it was the shortest gene list, we observed
significant association within the DIAGRAM data set of
the A allele of rs4780476 within the gene encoding
calcineurin-like phosphoesterase domain-containing
protein 1 (CPPED1) with T2D risk (OR=1.1, p=4.10×10−5;
table 2). Furthermore, the TCF7L2 occupancy site was in
the immediate CPPED1 promoter region.

DISCUSSION
Given that only a minority of the predicted genetic com-
ponent to most complex traits has been identified to
date, plus the fact that this GWAS-implicated transcrip-
tion factor shows preferential binding to genes genetic-
ally associated with complex traits, we investigated if
restricting association analyses to the genes yielded from
our ChIP-seq approach in order to reduce multiple
testing could yield novel loci associated with T2D.
Indeed, we found that of the known GWAS loci for any
trait bound by TCF7L2 within 5 kb in HCT116, the cor-
onary artery disease-associated variant, rs46522, within
the UBE2Z-GIP-ATP5G1-SNF8 locus22 yielded association
that survived correction for multiple testing. Interestingly,
rs46522 is in strong LD with two potential functional var-
iants in the biologically plausible gene encoding gastric
inhibitory polypeptide (GIP): p.Ser103Gly (rs2291725)
and variant influencing the splice site of intron 3
(rs2291726) leading to a truncated transcript.22 This is
particularly notable as this observation implicates a
variant playing a role in T2D after being found originally
in another GWAS category, i.e. cardiovascular. It has long
been thought that TCF7L2 may confer its T2D effect via
incretins,1 of which GIP is one, thus furthering the case
for this line of investigation; indeed, the locus encoding
the receptor for GIP (GIPR) has already been reported
in relevant GWAS settings to be associated with body mass
index23–25 and to influence the glucose and insulin
responses to an oral glucose challenge.26

Furthermore, when considering the non-GWAS-
implicated loci bound by TCF7L2 within 5 kb in
HCT116, we observed significant association with
rs4780476 within CPPED1. This is an equally interesting
observation, as only two papers have been published to
date on this gene product, with one showing that
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downregulation of CPPED1 expression improves glucose
metabolism in vitro in adipocytes27 and another impli-
cating it in syndromic obesity using array comparative
genomic hybridization.28

The challenge of the increasing level of genetic data
being generated in population-based cohorts, such as
imputed genome-wide genotypes, exome and whole-
genome data, is how one can derive true positive signals
from the large amount of data, where the required strin-
gent corrections for multiple testing at the genome level
can easily miss true signals. Indeed, there have been
great efforts to rationalize restricted testing to plausible
regions of the genome to address a particular complex
trait, most typically by leveraging previously reported
linkage signals. However, linkage regions are often
broad in terms of genomic regions covered and are
therefore fraught with imprecision. Our limitation of
multiple testing is based on biological plausibility, where
a GWAS-implicated transcription factor is clearly point-
ing us to genes that are genetically associated with
complex disease more often than expected by chance
and thus may also be pointing us to novel genes where
their strength of the association was at the level of noise
at the genome-wide scale.
We carried out the meshing of GWAS-derived data

with a ChIP-seq-derived gene list for a GWAS-implicated
transcription factor in one of our cell lines. The ration-
ale was that as all cell lines exhibited the same GWAS
category enrichment characteristic, we would aim to
carry out this investigation by narrowing the field as
much as possible. As such, we elected to only leverage
the gene names derived from the cell line that yielded
the shortest gene list, namely HCT116. We also added
the extra constraint of the site being within 5 kb of the
nearest gene, as this made them the most biologically
plausible, and thus limiting our testing further. We also
limited our testing by only considering tag-SNPs used on
a conventional genotyping array. Of course, we recog-
nize that these cut-offs are completely arbitrary and that
further testing with additional genotype and phenotype
(we only considered T2D due to the obvious TCF7L2
connection) data sets should be the subject of subse-
quent studies to refine this data-mining approach.
In conclusion, our study has further characterized loci

bound by TCF7L2, which has in turn reinforced our pre-
vious observation that TCF7L2 has a statistically signifi-
cant preference to occupy loci previously implicated by
GWAS. By cross-referencing the loci at these occupancy
sites with GWAS results in order to restrict correction for
multiple testing, UBE2Z-GIP-ATP5G1-SNF8 and CPPED1
have been uncovered as T2D-associated loci. This
approach has potential utility for the discovery process
of novel therapeutic targets for diabetes and related
traits in the future.
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