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Abstract: As the most common gene mutation found in cancers, p53 mutations are detected in up
to 96% of high-grade serous ovarian carcinoma (HGSOC). Meanwhile, mutant p53 overexpression
is known to drive oncogenic phenotypes in cancer patients and to sustain the activation of EGFR
signaling. Previously, we have demonstrated that the combined inhibition of EGFR and MDM2-p53
pathways, by gefitinib and JNJ-26854165, exerts a strong synergistic lethal effect on HGSOC cells. In
this study, we investigated whether the gain-of-function p53 mutation (p53R248Q) overexpression
could affect EGFR-related signaling and the corresponding drug inhibition outcome in HGSOC.
The targeted inhibition responses of gefitinib and JNJ-26854165, in p53R248Q-overexpressing cells,
were extensively evaluated. We found that the phosphorylation of AKT increased when p53R248Q

was transiently overexpressed. Immunocytochemistry analysis further showed that upon p53R248Q

overexpression, several AKT-related regulatory proteins translocated in unique intracellular patterns.
Subsequent analysis revealed that, under the combined inhibition of gefitinib and JNJ-26854165,
the cytonuclear trafficking of EGFR and MDM2 was disrupted. Next, we analyzed the gefitinib
and JNJ-26854165 responses and found differential sensitivity to the single- or combined-drug
inhibitions in p53R248Q-overexpressing cells. Our findings suggested that the R248Q mutation
of p53 in HGSOC caused significant changes in signaling protein function and trafficking, under
EGFR/MDM2-targeted inhibition. Such knowledge could help to advance our understanding of
the role of mutant p53 in ovarian carcinoma and to improve the prognosis of patients receiving
EGFR/MDM2-targeted therapies.

Keywords: p53R248Q overexpression; epidermal growth factor receptor (EGFR); AKT;
mouse double minute 2 homolog (MDM2); combination therapy

1. Introduction

Epithelial ovarian cancer is the most prevalent (~90%) type of ovarian carcinoma [1]
and could be further divided into subtypes, based on histopathology, gene alterations,
and prognosis [2]. Among the five main subtypes, high-grade serous ovarian carcinoma
(HGSOC) accounts for the highest proportion (~70%) [3]. HGSOC is known to have a
high risk of recurrence and platinum-based chemotherapy drug resistance, due to genetic
changes in tumor suppressor p53, encoded by TP53 [4]. As one would expect, ovarian
cancer has the highest rate of somatic TP53 mutation among all cancers [5]. In fact, TP53
is mutated in up to 96% of HGSOC, with arginine 248 (R248) being the most common
mutated amino acid (p.Arg248Gln and p.Arg248Trp) [6].
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Also, p53 acts as a transcription factor, with most mutations being located in its
DNA-binding domain (DBD) [7,8]. In addition, it has been demonstrated that mutant p53
not only loses its activities, but also displays oncogenic gain-of-function (GOF), such as
accelerating tumor progression and acquiring drug resistance [9]. Since mutant p53 is
known to amplify receptor tyrosine kinase (RTK) signaling [10–15], the association between
gain-of-function p53R248Q and RTK-regulated signaling in HGSOC could be important
for cancer progression. Among the RTK downstream signaling pathways, several studies
have revealed that p53R248Q promotes cell migration and proliferation, through AKT
signaling [16,17]. However, how the R248Q mutation of p53 affects AKT-dependent
carcinogenesis has not been elucidated. Excessive activation of AKT signaling can mediate
a variety of cellular processes, including cell cycle dysregulation, proliferation, and drug
resistance, all of which are considered to be hallmarks of cancer [18]. In addition, it
has been elucidated that activated AKT translocates to various organelles, where AKT
phosphorylates substrates or interacts with other factors, to regulate a complex network of
processes [19]. For instance, AKT phosphorylates MDM2 on serine 166 and serine 186, to
initiate MDM2′s nuclear translocation. MDM2 then acts to promote p53 ubiquitination for
degradation and reduce p53 transcriptional activities [20]. Similarly, the phosphorylation
of EGFR’s serine 229, by AKT, also promotes the nuclear translocation of EGFR [21], which
acts as a co-transcription factor of multiple genes, regulating cell proliferation and tumor
angiogenesis, resulting in enhanced drug resistance and poor patient outcomes [22]. It
should be noted that whether the R248Q mutation of p53 affects AKT-dependent molecular
trafficking has not been determined.

The taxane- and platinum-based chemoresistance in ovarian cancer is known to be
associated with its high mortality rates [23]. Moreover, numerous studies have indicated
that up to 60% of epithelial ovarian cancer displays EGFR overexpression. However, the
treatment of ovarian cancers with the anti-EGFR agent gefitinib alone generates a limited
response [24]. When gefitinib is used together with platinum-based chemotherapy drugs,
the combination therapy would increase the overall response rate in patients with relapsed
ovarian cancer [25]. However, such combination therapy has exhibited limited efficacy in
other clinical trials [26]. Such finding suggests a need to modify the treatment scheme.

Previous studies have shown that up to 80% of ovarian serous borderline tumors
exhibit MDM2 overexpression [27], while the expression of MDM2 is notably low in
benign ovarian tumors or normal ovaries [28]. Biomarker analysis has found that the
co-expression of p53 and MDM2 is associated with poor outcomes in epithelial ovarian
cancer patients [29]. Furthermore, our previous study demonstrated that the combined
inhibition of EGFR and MDM2-p53 pathways in HGSOC could generate a strong synergistic
anti-cancer effect [30]. These findings led us to explore whether the R248Q mutation of
p53 would affect the drug efficacy and the underlying mechanisms by which EGFR and
MDM2-p53 interact, to produce a synergistic effect.

In this study, we first investigated how p53R248Q overexpression altered the character-
istics of HGSOC. We then explored how the R248Q mutation of p53 regulated the drug
responses and synergistic effect, under the combined inhibition of EGFR and MDM2.

2. Materials and Methods
2.1. Cell Culture

The serous ovarian cancer cell line OVCAR3 (p53R248Q mutation) was obtained from
Dr. Chih-Long Chang (MacKay Memorial Hospital). The TP53 status was annotated
according to the International Agency for Research on Cancer (IARC) TP53 database
(http://p53.iarc.fr/; accessed date: 30 September 2019). The cells were cultured at 37 ◦C
with 5% CO2 in RPMI-1640 medium (Gibco) supplemented with 10% fetal bovine serum,
100 units/mL penicillin, 100 µg/mL streptomycin, 2.5 µg/mL amphotericin B, 2 mg/mL
sodium bicarbonate, 3.57 mg/mL HEPES and 0.11 mg/mL sodium pyruvate.

http://p53.iarc.fr/
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2.2. Drugs and Reagents

Gefitinib (LC Laboratories, Woburn, MA, USA) and JNJ-26854165 (AdooQ BioScience,
Irvine, CA, USA) were dissolved in DMSO and stored at −20 ◦C. EGF (Sigma-Aldrich, St.
Louis, MO, USA) was dissolved in 0.2-µm-filtered 10 mM acetic acid and stored at −20 ◦C.

2.3. Plasmids Construction and Overexpression

The wild-type p53 (wtp53) and p53R248Q mutation (p53R248Q) plasmids were
constructed in house. The full-length wtp53 and p53R248Q sequences were made
from A2780 and OVCAR3 cells. Total cDNA was amplified by using KAPA HiFi
DNA polymerase (KAPABIOSYSTEMS). The primer sequences were the following:
5′-CTCGAGGCCTGAGGTTGGCTCTGACT-3′ and5′-GAATTCGGCACAAACACGCACCTCAA-3′.
The PCR products were constructed into pJET1.2/blunt cloning vector (Fermentas) and
sub-cloned into pEGFP-N1 vector (Addgene). The final plasmids were sequence verified.
Cells were transfected with plasmids at a final concentration of 1 µg/mL using jetPRIME
(Polyplus) following the manufacturer’s protocols.

2.4. Western Blot Analysis

The detailed experimental procedure was performed as previously described [31].
The anti-p-EGFR (#2220), p-AKT (#4060), AKT (#4691), p-MAPK (#4370), MAPK (#4695),
and p21 (#2947) antibodies were obtained from Cell Signaling Technology. The anti-EGFR
(GTX628888), p53 (GTX102965) and GAPDH (GTX627408) antibodies were obtained from
GeneTex. Each experiment was performed in triplicate and repeated at least three times.

2.5. Immunocytochemistry (ICC)

OVCAR3 cells were seeded on sterile glass coverslips prior to the experiments. The
detailed experimental procedure was performed as previously described [31]. The anti-
EGFR (green signal, #2232), AKT (#4691), and FOXO3a (#2497) antibodies were obtained
from Cell Signaling Technology. The anti-EGFR (purple signal, GTX628888) and MDM2
(GTX110608) antibodies were obtained from GeneTex. The anti-mutant p53 (OP29) antibody
was obtained from Merck. Phalloidin and Hoechst 33342 were obtained from Invitrogen.
Each experiment was performed in triplicate and repeated at least three times.

2.6. Cell Viability Assay

OVCAR3 cells were seeded in 96-well plates at a density of 5 × 103 cells/well. Cells
were transfected with empty plasmid only (1 µg/mL) or with the p53R248Q construct
(1 µg/mL) for 18 h and then treated with drugs of different concentrations for 48 h.
Following the manufacturer’s protocols, 10 µL cell counting kit-8 (CCK-8, Dojindo) cell
proliferation reagent was added to 96-well plates and incubated at 37 ◦C and 5% CO2
for 1 to 2 h. The optical densities to reflect cell viability were determined by absorbance
wavelength at 450 nm. The IC50 values were calculated by GraphPad Prism 6 (GraphPad
software, San Diego, CA, USA). Each experiment was performed in triplicate and repeated
at least three times.

2.7. Analysis of Combination Index

The combination index (CI) values were calculated by CompuSyn calculation software
as described by Chou and Talalay [32]. First, the cell viability assay data were converted
into the fraction affected (Fa) under specified drug treatment conditions. Next, the Fa
values of single agents or drug combinations were uploaded into CompuSyn and generated
the CI values, the Fa-CI plots and the isobolograms as instructed by the user manual.

2.8. Statistics

The data were processed by SigmaPlot v.10 (Systat Software) and expressed as the
means ± SEM (standard error of the mean). The statistical significance was determined by
p values < 0.05 using Student’s t-test.
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3. Results

3.1. Overexpression of p53R248Q was Associated with p-AKT Expression in OVCAR3 Cells

Since EGFR (a member of the RTK family) is aberrantly overexpressed and activated
in ovarian cancer [33,34], we first investigated whether p53R248Q overexpression affected
EGFR downstream signaling in OVCAR3 cells (HGSOC cell line with p53R248Q). In partic-
ular, AKT has been shown to be involved in p53R248Q-related cancer progression [16,17].
Therefore, we examined the EGFR downstream marker AKT, under the condition of
p53R248Q overexpression, by Western blot. We stimulated pre-starved OVCAR3 cells with
epidermal growth factor (EGF), to activate the EGFR signaling. As expected, we found that
the augmented expression of the p53R248Q groups in OVCAR3 cells had a higher expression
level of p-AKT (Figure 1A). Furthermore, we also observed the slight increasing trend of the
statistical results in the p53R248Q and p53R248Q + EGF groups compared to the wtp53 and
wtp53 + EGF groups (Figure 1B). Further, siRNA assay validated the association between
p53 mutation and p-AKT level (Figure S1). Taken together, these data suggested that the
R248Q mutation of p53 augmented p-AKT signaling in OVCAR3 cells.
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Figure 1. p53R248Q resulted in regulation of p-AKT. (A) The level of p-AKT was increased after p53R248Q overexpression in
OVCAR3 cells. It should be noted that OVCAR3 cells were transiently transfected with either empty plasmid (1 µg/mL),
wtp53 (1 µg/mL), or p53R248Q (1 µg/mL) for 24 h and then stimulated with EGF for 15 min. GAPDH expression was
measured to serve as a loading control. (B) The band intensity of the immunoblots was quantified using ImageJ software.
The relative intensities of p-AKT expression were normalized with the control group. (wtp53: wild-type p53 plasmid;
p53R248Q: p53R248Q mutation plasmid).

3.2. p53R248Q Overexpression and EGF Stimulation Resulted in Similar Cytonuclear Trafficking of
AKT, EGFR, MDM2, and FOXO3a

AKT signaling is known to mediate the intracellular trafficking of various receptors
and regulatory proteins. We thus investigated how the R248Q mutation of p53 altered the
intracellular molecular trafficking of EGFR, MDM2, and FOXO3a, in association with AKT
(Figure 2).
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Figure 2. p53R248Q overexpression and EGF stimulation altered the intracellular localization patterns of AKT, EGFR, MDM2
and FOXO3a. In this experiment, we first transfected OVCAR3 cells with or without the p53R248Q expression plasmid
(1 µg/mL) for 24 h and then serum-starved the cells for another 24 h. Before confocal imaging, we stimulated the cells in
the presence or absence of EGF (50 ng/mL) for 15 min. That is, the following four conditions were analyzed: the “control”
group, in which the cells were serum-starved only; the “+EGF” group, in which the cells were treated with EGF after serum
starvation; the “p53R248Q overexpression” group, in which the cells were transfected with p53R248Q before serum starvation;
and the “p53R248Q overexpression + EGF” group, in which the cells were transfected with p53R248Q, serum-starved, and
then treated with EGF. Since the cells were only transiently transfected with p53R248Q, we immunostained the cells with an
anti-mutant p53 antibody to ensure that the transfected cells overexpressed p53R248Q. (A) Confocal image analysis revealed
that most AKT translocated into the nucleus completely after EGF stimulation or p53R248Q overexpression. However, when
the cells were overexpressed with p53R248Q and then stimulated with EGF, some AKT remained in the cytoplasm. (B) In
the control group, most EGFR accumulated on the cell membrane, while some EGFR distributed evenly in the cytoplasm.
After EGF stimulation or p53R248Q overexpression, EGFR appeared to converge and translocate towards the nucleus. When
overexpressed with p53R248Q and then stimulated with EGF, EGFR could not be detected on the cell membrane. (C) In the
control group, MDM2 could be detected in the cytoplasm. After EGF stimulation, MDM2 dynamically converged around the
nucleus. Such phenomena could also be observed after overexpression of p53R248Q. With both p53R248Q overexpression and
EGF stimulation, MDM2 translocated into the nucleus. (D) FOXO3a, which mostly accumulated in the nucleus in the control
group, was evenly distributed in the cytoplasm after treatment with either EGF stimulation, p53R248Q overexpression, or
both. The cells were immunostained with anti-AKT antibody, anti-EGFR antibody, anti-MDM2 antibody, anti-FOXO3a
antibody (shown in green), and anti-mutant p53 antibody (shown in purple); actin in red and DNA in blue were shown by
Phalloidin staining and Hoechst staining, respectively. The right images were enlarged view of the yellow boxed region.
The scale bar represented 10 µm.

We found that, after either EGF stimulation or p53R248Q overexpression, most of the
AKT translocated into the nucleus completely. However, when p53R248Q overexpression
was combined with EGF stimulation, some AKT remained in the cytoplasm (Figure 2A).
Consistent with past studies, our data implied that AKT entered the nucleus in response
to growth factors, to exert regulatory activities [35–37]. Thus, we continued to investigate
how AKT translocation correlated with the intracellular trafficking of EGFR and MDM2.
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Similar, but different, from the aforementioned findings, after EGF stimulation or
p53R248Q overexpression, both EGFR and MDM2 appeared to converge and translocate to
the periphery of the cell nucleus (Figure 2B,C). In comparison to the control group, we also
observed some EGFR still localized on the cell membrane, while most of the MDM2 translo-
cated to the periphery of the cell nucleus. Interestingly, when p53R248Q overexpression was
combined with EGF stimulation, the EGFR located on the cell membrane and the MDM2
clustering around the nucleus, were not detected, and most of the MDM2 translocated into
the cell nucleus.

On the other hand, it has been reported that FOXO3a, a member of the forkhead
box O (FoxO) transcription factor families and a tumor suppressor, accelerates its nuclear
export when it is phosphorylated by nuclear AKT [38]. Therefore, we speculated that
this tumorigenic marker was affected by p53R248Q. Based on our data, we found that
FOXO3a, which mostly localized in the nucleus in the control group, distributed uniformly
in the cytoplasm, under the following conditions: after EGF stimulation, with p53R248Q

overexpression, and p53R248Q overexpression combined with EGF stimulation (Figure 2D).
These findings suggested that the R248Q mutation of p53 promoted tumorigenesis-related
AKT signaling, by affecting molecular intracellular trafficking.

3.3. Combined Blockade by Gefitinib and JNJ Attenuated EGFR and MDM2 Cytonuclear
Trafficking

The comparable translocation patterns of EGFR and MDM2 implied that the molecular
cytonuclear trafficking may relate to the synergistic effect of combined EGFR and MDM2
inhibition that has been reported in our previous study [30]. In this present study, we
again used gefitinib (EGFR tyrosine kinase inhibitor) and JNJ-26854165 (referred to as
JNJ; MDM2 E3 ubiquitin ligase domain inhibitor) to determine whether such combined
inhibition would alter the intracellular localization patterns of EGFR and MDM2.

By immunocytochemistry staining analysis, we first reconfirmed that both EGFR and
MDM2 would translocate from the cytoplasm to the nucleus, in accordance with each other
over time, after EGF stimulation (Figure S2). Next, we found that such nuclear convergence
of EGFR was attenuated under treatment with gefitinib, JNJ, or both. Interestingly, the
nuclear convergence of MDM2 was only disrupted under the combination treatment of
gefitinib and JNJ (Figure 3A,B).
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Figure 3. Cytonuclear trafficking of EGFR and MDM2 would be disrupted under combined inhibition of EGFR and MDM2
by gefitinib and JNJ. OVCAR3 cells were serum-starved while treated with or without the inhibitors under different
conditions (i.e., 14.4 µM gefitinib, 1.4 µM JNJ, or 1 µM gefitinib + 1 µM JNJ; the IC50 concentration was derived from our
previous study [30]) for 24 h. The cells were then stimulated with EGF (50 ng/mL) for 0 (control), 15 or 60 min. (A) Confocal
image analysis demonstrated that EGFR and MDM2, which were initially distributed in the cytoplasm, converged and
translocated in sync to the periphery of the nucleus after 15 min of EGF stimulation. However, the convergence pattern of
EGFR was disrupted after 24 h of treatment with gefitinib, JNJ, or their combination. In comparison, the convergence pattern
of MDM2 was disrupted only under the combined treatment of gefitinib and JNJ. (B) After 60 min of EGF stimulation, EGFR
and MDM2 translocated completely into the nucleus. With combined treatment of gefitinib and JNJ for 24 h, some MDM2
could be detected again in the cytoplasm. The cells were immunostained with anti-EGFR antibody (shown in purple) and
anti-MDM2 antibody (shown in green); actin in red and DNA in blue were shown by Phalloidin staining and Hoechst
staining, respectively. The right images were enlarged view of the yellow boxed region. The scale bar represented 10 µm.
(Gef: gefitinib; JNJ: JNJ-26854165).
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These results indicated that the combined inhibition of gefitinib and JNJ could prevent
the converging nuclear translocation of EGFR and MDM2, which might regulate further
signaling and oncogenic activity.

3.4. R248Q Mutation of p53 Increased the Sensitivity of EGFR and MDM2 Inhibitors

To further explore the impact of p53R248Q on the cellular response to combination
therapy for HGSOC, we evaluated the anti-cancer efficacy of gefitinib and JNJ in OV-
CAR3 cells with different p53 statuses. As shown in Table S1, the combined inhibition
of EGFR and MDM2 significantly reduced the IC50 values compared to the single agent
treatment. Interestingly, the IC50 values of gefitinib and JNJ alone reduced to 78% (from
33.74 to 26.47 µM) and 66% (from 21.83 to 14.35 µM), when the cells were overexpressing
p53R248Q. On the other hand, the combined inhibition resulted in a slight reduction (from
8.57 to 8.18 µM) in IC50.

For a more intuitive comparison, we summarized the data as in Figure 4, to highlight
the significant reduction in effective drug concentration, under combined inhibition. A
synergistic effect was observed, whether cells were pre-transfected with the p53R248Q

plasmid or not (Figure 4A,B). Interestingly, gefitinib and JNJ alone were more effective when
OVCAR3 cells were pre-transfected with the p53R248Q plasmid (Figure 4C,D). However,
the combined inhibition effect remained similar, regardless of whether the OVCAR3 cells
were pre-transfected with the p53R248Q plasmid or not (Figure 4E). Taken together, these
results suggested that the R248Q mutation of p53 increased the sensitivity of OVCAR3
cells to EGFR and MDM2 inhibition, to various degrees.
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Figure 4. Overexpression of p53R248Q in OVCAR3 cells increased sensitivity to gefitinib or JNJ. In this experiment, OVCAR3
cells were pre-transfected with either empty plasmid (1 µg/mL) or p53R248Q (1 µg/mL) for 18 h and then exposed to the
inhibitors alone or in combination for another 48 h. The doses of gefitinib and JNJ ranged from 5 to 40 µM and 1 to 36 µM,
respectively. The concentrations of gefitinib and JNJ in combination were prepared in a one-to-one ratio, with doses
ranging from 0.5 to 12 µM. The effects on cell proliferation were assessed by CCK-8 assay; the half maximal inhibitory
concentration (IC50) values (in log10) were calculated by GraphPad Prism 6. (A) In the absence or (B) in the presence of
p53R248Q overexpression, the combined treatment of gefitinib and JNJ significantly reduced the IC50 values for each agent in
OVCAR3 cells (*** p < 0.001 vs. gefitinib and JNJ). (C,D) The sensitivities to gefitinib or JNJ alone increased significantly in
p53R248Q-overexpressing cells (** p < 0.01; *** p < 0.001). (E) No significant difference was found when the combination
treatment of gefitinib and JNJ was applied to the plasmid-only transfected cells and the p53R248Q-overexpressing cells.
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3.5. R248Q Mutation of p53 Decreased the Synergistic Lethal Effect of Gefitinib and JNJ

To better evaluate the synergistic effects exerted by combined inhibition in different
p53 statuses, we adapted the well-known Chou and Talalay’s combination index (CI)
method, to perform in-depth analysis. It should be noted that a CI value less than one is
defined as drug synergism [32,39].

The CI analysis revealed that, in the absence of the overexpression of p53R248Q, the
area below the CI = 1 line was larger than that of the p53R248Q overexpression group
(Figure 5A,B). We also generated isobolograms, to quantify the drug synergism at different
effective doses (EDs). In comparison to the p53R248Q overexpression group, the symbols
(colored as specified) were farther from the corresponding colored lines, and the CI values
were also lower in the absence of the overexpression of p53R248Q (Table S2, Figure 5C,D).
The CI values and the synergism grading were summarized in Table S2.
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Figure 5. Synergistic effects of gefitinib and JNJ on OVCAR3 cells with different p53 statuses were shown in Fa-CI plots
and isobolograms. Based on the Chou and Talalay methods, the combination index (CI) values were calculated using
CompuSyn software to determine the degree of synergistic effectiveness of the drug combination. The analysis revealed that
overexpression of p53R248Q reduced the synergistic effect of gefitinib and JNJ. (A,B) In the Fa-CI plots, the fraction affected
(Fa; from zero to one) represented the ratio of dead cells-to-total cells in response to drug treatments. Circled symbols
indicated the CI values of each Fa. The CI values provided a quantitative definition of synergistic (CI < 1), additive (CI = 1),
and antagonistic (CI > 1) effects derived from the drug combination. (G + J: gefitinib + JNJ) (C,D) In the isobolograms, the
individual doses of JNJ (represented by x-axis) and gefitinib (represented by y-axis) that achieved 90% (Fa = 0.9), 75% (Fa =
0.75), and 50% (Fa = 0.5) inhibitory effects were indicated by green lines, red lines, and blue lines, respectively. Symbols
(ED90 was marked as green triangles; ED75 was marked as red squares; ED50 was marked as blue circles) above the lines, on
the lines, and below the lines represented antagonistic, additive, and synergistic effects, respectively. When the symbols
were located below and distant from the lines, it represented strong synergism.
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In OVCAR3 cells overexpressing p53R248Q, the drug combination displayed slight
synergism (CI = 0.87) at ED50, but changed to moderate (CI = 0.72) and enhanced synergism
(CI = 0.67) at ED75 and ED90. Interestingly, OVCAR3 cells without p53R248Q overexpression
showed enhanced synergism (CI = 0.65) at lower doses (ED50). This finding implied that a
higher dose of gefitinib and JNJ (ED90) was required to reach synergism in OVCAR3 cells
overexpressing p53R248Q. In contrast, a lower dose of drug combination (i.e., ED50) exerted
synergism in OVCAR3 cells without p53R248Q overexpression. Such data supported that
the overexpression of p53R248Q may attenuate the synergistic lethal effect of gefitinib and
JNJ.

3.6. MAPK and p21 Regulated the Effects of Single and Combined Treatment of Gefitinib and JNJ

To provide more clues about the regulatory effect of p53R248Q on the observed differ-
ential sensitivity to gefitinib and JNJ, we analyzed the expression profiles of MAPK and
p21 (a p53 target gene associated with cell cycle and apoptosis pathways), under different
conditions of gefitinib and JNJ concentration and combination.

As expected, the enhanced expression of p53 was detected, which served to vali-
date the overexpression of p53R248Q after transfection. Next, the results revealed that
p-MAPK was significantly reduced by gefitinib, in a dose-dependent manner (Figure 6A).
Moreover, at a dose of 10 µM, gefitinib exerted a slight MAPK-reduction effect in p53R248Q-
overexpressing cells compared to the cells without overexpression (Figure S3A). We also
found that the expression level of p21 was significantly increased by JNJ, in a dosage-
dependent manner. Upon examination and comparison of the two DMSO control groups,
we found that the expression level of p21 was lower in p53R248Q-overexpressing cells
(Figure 6B). However, with increasing JNJ dose, p21 increased significantly (approximately
25-fold) in p53R248Q-overexpressing cells, compared to the cells without overexpression
(approximately 3.5-fold) (Figure S3B). Strikingly, the effects were reversed when JNJ was
combined with gefitinib (Figure 6C, Figure S3C,D).

These results implied that in the presence of p53R248Q overexpression, the augmented
sensitivity to gefitinib or JNJ, and the weakened synergistic effect of the combined treatment,
might be associated with the alternating expression of MAPK and p21.
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Figure 6. MAPK and p21 regulated the effects of single and combined treatment of gefitinib and JNJ. OVCAR3 cells were
pre-transfected with either empty plasmid or p53R248Q plasmid before treatment with various doses of gefitinib (10, 20 or 30
µM), JNJ (5, 10, or 15 µM), or gefitinib + JNJ (2 + 2, 4 + 4, or 8 + 8 µM) for 24 h. (A) The level of p-MAPK was significantly
reduced with increasing doses of gefitinib. The dosage-dependent inhibition of p-MAPK displayed an even more profound
effect in the p53R248Q-overexpression group. The level of p21 was upregulated in both groups with increasing doses of
gefitinib. The dosage-dependent upregulation of p21 was not significantly different between the two groups. (B) With
increasing doses of JNJ, the level of p-MAPK decreased slightly in the plasmid-only group, while sustained level of p-MAPK
was detected in the p53R248Q-overexpression group. The level of p21 was upregulated significantly with increasing doses
of JNJ. Despite the lower level of p21 in the DMSO control of the p53R248Q-overexpression group, the dosage-dependent
upregulation of p21 was greater in the p53R248Q-overexpression group than in the plasmid-only group. (C) With increasing
doses of the gefitinib–JNJ combination, the level of p-MAPK significantly decreased in the plasmid-only group, but not in
the p53R248Q-overexpression group. Moreover, the level of p21 increased with a profound effect in the plasmid-only group,
but not in the p53R248Q-overexpression group. GAPDH expression was measured to serve as a loading control.

4. Discussion

In this study, we provided new evidences to highlight the effects of the R248Q mutation
of p53 on intercellular trafficking and the cellular responses to EGFR/MDM2-targeted
inhibition in HGSOC.

Mutant p53 is generally considered to accelerate carcinogenesis, by carrying out a
dominant-negative effect on wild-type p53 and by manifesting gain-of-function activi-
ties [40]. In this study, our findings implied that the phosphorylation of AKT would be
affected in OVCAR3 cells via p53R248Q overexpression (Figure 1). For the effects of en-
hanced p-AKT signaling in HGSOC, we first speculated that the subcellular localization
of AKT, as well as AKT-related molecular trafficking, may be altered under the influence
of p53R248Q. This hypothesis was supported by the evidences that nuclear AKT, induced
by various growth factors and stimuli, has been shown to promote tumorigenesis, by
controlling cell cycle progression, promoting cell survival and DNA repair, and counter-
acting apoptosis [19]. In this study, we had further examined the trafficking patterns of
AKT, EGFR, MDM2, and FOXO3a, upon EGF stimulation and p53R248Q overexpression
(Figure 2). Our data revealed that these molecules’ trafficking patterns, under p53R248Q
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overexpression, exert a comparable effect to that of EGF stimulation. Based on our findings,
we proposed a hypothetical model of molecular trafficking in response to EGF stimulation
and p53R248Q overexpression (Figure 7A).
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In this model scheme, the R248Q mutation of p53 could amplify the phosphorylation
of AKT, similarly to the stimulation of EGF. The resulting p-AKT would further phospho-
rylate EGFR and MDM2, to facilitate their converging nuclear translocation. Furthermore,
nuclear AKT would further phosphorylate FOXO3a, to dispel it from the nucleus. Sur-
prisingly, the combined p53R248Q overexpression and EGF stimulation did not lead to the
augmentation of nuclear AKT. In contrast, such combined treatment could promote more
EGFR and MDM2 to translocate towards or into the nucleus. To the best of our knowl-
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edge, such phenomena have not been reported previously. We speculated that the AKT
phosphorylation, induced by EGFR activation and p53R248Q overexpression, resulted in
antagonism, while the dual phosphorylation, induced by nuclear AKT and EGF on EGFR,
led to synergism. The difference in the translocation pattern of MDM2 may arise from the
differential signaling of nuclear AKT and cytoplasmic AKT. The underlying mechanisms
shall be further explored in future studies.

To view this study in a broader context, evidences accumulated over the past 20 years
have helped to characterize the function of nuclear AKT, which phosphorylates various
transcription factors, including members of the FOXO transcription factor families [41].
The phosphorylated FOXO3a would be expelled from the nucleus and weaken its tran-
scriptional capacity. As a result, the expression level of its target gene, such as p21, was
reduced [42] (Figure 6). Nuclear EGFR has been shown to act as a co-transcription factor,
alongside STAT3, E2F1, and STAT5, to initiate the transcription of several cell cycle regula-
tory genes, such as Cyclin D1, Aurora A, and Myc [22]. Nuclear MDM2 mainly diminishes
the cellular level of p53 and inhibits its transcriptional activity [20,43,44]. Therefore, the
nuclear localization of AKT, EGFR, and MDM2, and the exclusion of nuclear FOXO3a,
have been linked with enhanced drug resistance, poor prognosis, and unfavorable overall
survival in various cancers [22,45–48].

To date, the combination of paclitaxel- and platinum-based drugs is a standard first-
line treatment for ovarian cancer. However, chemoresistance to these drugs may lead to an
unfavorable 5-year survival rate in advanced patients [49]. To overcome drug resistance,
we suggested a novel combination therapy strategy, with EGFR and MDM2 inhibition, in
our previous study [30]. In the present study, we further identified that the disruption
of cytonuclear trafficking, by the dual inhibition of EGFR and MDM2, might contribute
to the synergistic effect of gefitinib and JNJ (Figure 3). In addition, we demonstrated
that the R248Q mutation of p53 enhanced the efficacy of gefitinib and JNJ alone, but
reduced the synergistic effect of their combination (Figures 4 and 5). Our data further
validated this observation, by showing the differential effect of p-MAPK inhibition and the
differential effect of p21 induction, under different gefitinib and JNJ treatment conditions
(Figure 6). These findings suggested that the degree of synergism of gefitinib and JNJ
depended not only on the cytonuclear trafficking of the signaling mediators, but also on
the mutation of p53.

Based on our findings, the proposed model (Figure 7B) underlined the mechanistic
roles of p-MAPK and p21 under the treatment of gefitinib and JNJ, in the presence of
p53R248Q overexpression. It should be noted that MDM2 is known to ubiquitinate the
pro-apoptotic transcription factor FOXO3a via activated MAPK signaling [50]. As expected,
with p53R248Q overexpression, gefitinib may cooperate with p53R248Q, to reduce p-MAPK.
Our model further explained how the reduction in p-MAPK was primarily influenced
by p53R248Q, and secondarily influenced by MDM2. Hence, the relevant cell signaling
would be disrupted by JNJ, while gefitinib, in the presence of p53R248Q overexpression,
could not exert its expected effects on p-MAPK and p21 (Figure 7B). This model has the
potential to revise the therapeutic approach for cancer treatment, which suggests the use
of gefitinib or JNJ alone if the R248Q mutation of p53 is detected in HGSOC patients; if
the R248Q mutation of p53 is not detected, the combination of gefitinib and JNJ should be
recommended. While additional work is needed to confirm these predictions, we foresee
that further understanding the relationship between the p53 mutation and the altered
regulatory mechanisms, could enhance our knowledge of ovarian carcinogenesis and the
implementation of precision cancer medicine.
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