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Summary
Diverse host factors drive microbial variation in plant-associated environments, whereas their

genetic mechanisms remain largely unexplored. To address this, we coupled the analyses of

plant genetics and microbiomes in this study. Using 100 tea plant (Camellia sinensis) cultivars,

the microbiomes of rhizosphere, root endosphere and phyllosphere showed clear

compartment-specific assembly, whereas the subpopulation differentiation of tea cultivars

exhibited small effects on microbial variation in each compartment. Through microbiome

genome-wide association studies, we examined the interactions between tea genetic loci and

microbial variation. Notably, genes related to the cell wall and carbon catabolism were heavily

linked to root endosphere microbial composition, whereas genes related to the metabolism of

metal ions and small organic molecules were overrepresented in association with rhizosphere

microbial composition. Moreover, a set of tea genetic variants, including the cytoskeleton-

related formin homology interacting protein 1 gene, were strongly associated with the b-
diversity of phyllosphere microbiomes, implying their interactions with the overall structure of

microbial communities. Our results create a catalogue of tea genetic determinants interacting

with microbiomes and reveal the compartment-specific microbiome assembly driven by host

genetics.

Introduction

Harnessing plant microbiomes is of growing appreciation in

sustainable agriculture (Arif et al., 2020; Dessaux et al., 2016;

Lawson et al., 2019). Despite the increasing identifications of

beneficial and pathogenic plant–microbe interactions (Bulgarelli

et al., 2013; Pieterse and Dicke, 2007), our understanding of the

host-driven microbiome assembly is still limited. Crop domestica-

tion and cultivation narrow down the ranges of plant genotypes

and phenotypes to pursue yield and product quality (Cordovez

et al., 2019; Doebley et al., 2006). Meanwhile, these artificial

selections may also alter the ecological niches for microorganisms

residing in plant-associated environments (P�erez-Jaramillo

et al., 2017; Xiong et al., 2021). Studies have shown that micro-

bial communities differentiated between plant genotypes (Chen

et al., 2019; Kim et al., 2020; Zhang et al., 2021),which in return

alter plant performance in nutrition, health and fitness (Boden-

hausen et al., 2014; Peiffer et al., 2013; P�erez-Jaramillo

et al., 2017). For these reasons, in the plant holobiont comprised

of plant and microbiome, it is of both ecological and agricultural

interest to tackle the mechanisms of microbiome assembly driven

by host plants (Jones et al., 2019; Vandenkoornhuyse

et al., 2015).

Compartment-specific microbiome assembly in plant-

associated environments is shaped by diverse host factors (Jones

et al., 2019). The plant maintains interactions with countless

microbes simultaneously, which has a genetic basis (Beilsmith

et al., 2019). In rhizosphere environments, root exudates

dominate the selection of rhizosphere microbes (Harbort

et al., 2020; Liu et al., 2021), whereas cell wall and immune

systems are argued to play the major roles in filtering

endosphere microbes (Malinovsky et al., 2014; van der Burgh

and Joosten, 2019). Compared with root-associated environ-

ments, plant aerial parts are confronted with distinct abiotic and

biotic environments and thus interact with microorganisms in

different mechanisms (Vorholt, 2012). Both polygenic (Chen

et al., 2020b) and monogenic (Zhang et al., 2019b) host effects

exist in plant–microbe interactions, whereas a genome-wide

perspective is still needed to reveal the contributions of different

genes and functional pathways on compartment-specific micro-

biome assembly.

Towards a systemic view of host–microbiome interactions, it is

necessary to integrate multi-omic approaches from both host and

microbiome, termed holo-omics (Nyholm et al., 2020). Notably, a

few studies successfully identify plant genetic loci that are

associated with microbial variation through microbiome

genome-wide association study (mGWAS) in Arabidopsis thaliana

and Picea abies (Elfstrand et al., 2020; Horton et al., 2014). In

another recent study, rhizosphere microbiomes are significantly

associated with a genomic dataset of Sorghum bicolor (Deng

et al., 2021). Moreover, transcriptomic and metabolomic

approaches also enable untangling the biological pathways in

host–microbiome interplays (Nyholm et al., 2020; Xu

et al., 2021a), although still limited by the robustness of sampling

and analytical methods. However, these studies almost exclusively

lack functional comparisons between plant compartments.
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Tea is a perennial woody crop and has been domesticated and

cultivated as a beverage plant for a long history (Xia

et al., 2020b). Tea plants are featured by diverse secondary

metabolites and maintain beneficial or pathogenic relationships

with diverse microorganisms (Bag et al., 2022; Tang et al., 2021;

Xie et al., 2020). Until recently, the high-quality reference

genome of tea (Camellia sinensis) has been reported (Wang

et al., 2020; Wei et al., 2018; Xia et al., 2020a; Zhang

et al., 2020), which opens up new possibilities for tea studies

from a genome-wide view. Tea species forms a wide range of

diversity panel during domestication and cultivation. C. sinensis

var. sinensis and C. sinensis var. assamica are two major varieties.

However, due to immense hybridization between cultivars as well

as between varieties, widespread gene flow exists between tea

accessions (Wang et al., 2020; Xia et al., 2020a), which leads to

great challenges for tea genetic studies. Considering the heavy

interplay between tea plants and microbes, whether and how tea

genetic diversity interacts with microbial variation remain to be

elucidated. In previous studies, through investigating the micro-

biome networks of tea plants across China, we have demon-

strated that the core phyllosphere microbiota contributes to the

resilience to foliar bacterial pathogens in tea plants (Xu

et al., 2022). Moreover, we also uncovered that two metabolites

in tea leaves, theophylline and epigallocatechin gallate, can

regulate the dynamics of phyllosphere microbiota and promote

fungal disease suppression (Xu et al., 2021b). However, consid-

ering the complexity of plant–microbiome interactions, the

genetic determinants of tea plants driving microbial variation

are rarely studied. To address this, we collectively analysed the

genetics of 100 tea cultivars and their associated microbiomes

residing in the rhizosphere, root endosphere (hereafter root) and

phyllosphere environments. We observed clear compartment-

specific microbiome assembly in plant-associated environments

and uncovered multiple plant genetic determinants of microbial

diversity and composition.

Results

Compartment-specific microbiome assembly in plant-
associated environments

The microbiomes of 100 tea cultivars (Table S1) were profiled

from bulk soil, rhizosphere soil, root and phyllosphere by

targeting the V5–V7 regions of 16S rRNA gene. Principal

coordination analysis (PCoA) significantly separated the micro-

biomes inhabiting the four compartments by the analysis of

similarity (ANOSIM, R = 0.46, P = 0.001; Figure 1a). The b-
diversity of phyllosphere microbiomes was distinct from that of

the other three compartments (ANOSIM, R = 0.91, P = 0.001;

Figure 1b). Alpha diversity (Shannon index) of microbiomes

decreased significantly in the order of bulk soil, rhizosphere, root

and phyllosphere (one-way ANOVA and Tukey’s test,

P < 2 9 10�16; Figure 1c).

Microbial composition at the phylum level significantly differed

between compartments (PERMANOVA, R = 0.48, P = 1 9 10�4;

Figure 1d–g). Phyllosphere microbiomes were featured by the

highest relative abundanceofBacteroidetes and the lowest levels of

Acidobacteria and Actinobacteria compared to that of other

compartments (P < 2 9 10�16; Figures 1d and S1). Proteobacteria

and Actinobacteria dominated root microbiomes and accounted

for 93.6% relative abundance (Figure 1e). Rhizosphere micro-

biomes showed a significantly higher abundance of Firmicutes than

that of other compartments (One-way ANOVA and Tukey’s test,

P < 2 9 10�16; Figures 1f and S1). Bulk soil microbiomes har-

boured the highest abundance of Acidobacteria (15.3%)

(P < 2 9 10�16) and Chloroflexi (3.6%) (P < 2 9 10�16; Fig-

ures 1g and S1).

Enrichment of microbial genera in plant-associated
environments

To further reveal the compartment-specific compositions of

microbiomes, the enrichment of microbial taxa at the genus level

was compared between different compartments. Phyllosphere

microbiomes were featured by the enrichment of 17 genera

belonging to phylum Bacteroidetes versus rhizosphere and root

microbiomes (Figures 2a and S2), of which Capnocytophaga

(relative abundance = 4.32%) and Chryseobacterium (6.94%)

are the most abundant (Figure 2b). Besides, Sphingomonas

(22.56%) of phylum Proteobacteria was the most abundant

phyllosphere-enriched taxa (Figure 2b). Most of the genera

enriched in root microbiomes belonged to the phyla Actinobac-

teria and Proteobacteria (Figures 2a and S2), of which the genus

Pseudomonas (15.02%) of phylum Proteobacteria showed the

greatest relative abundance (Figure 2b,c). Moreover, rhizosphere

microbiomes enriched the greatest number of genera belonging

to phylum Firmicutes compared to other compartments (Fig-

ures 2a and S2), which was highlighted by the genus Bacillus

(5.99%; Figure 2b,c).

Small effects of tea subpopulation differentiation on
microbiomes

We asked whether tea plant genetic variation contributed to the

compartment-specific microbiome assembly. The resequencing of

the 100 tea cultivars yielded >13 million high-quality single

nucleotide polymorphisms (SNPs), which formed a dense genetic

dataset considering the ~3 Gb genome size of the tea plant (Xia

et al., 2020a). According to the ancestry analysis, 100 tea

cultivars were divided into three subpopulations, POP1, POP2

and POP3 (Figures 3a and S3). The genetic dissimilarity was

significantly differentiated between tea subpopulations (ANOSIM,

R = 0.67, P = 0.001; Figure 3b). Forty-eight cultivars of the POP1

(n = 61) originated from Zhejiang and Fujian provinces of China

(Table S1), suggesting the geographical origins contributed to

their genetic similarity. In comparison, the cultivars of POP2

(n = 28) originated from diverse regions, including Jiangxi, Hunan

and Sichuan provinces of China (Table S1). Interestingly, the

POP3 (n = 11) was highlighted by ‘Fuding Dabaicha’ and several

cultivars derived from the cross between ‘Fuding Dabaicha’ and

‘Yunnan Dayecha’, including ‘Yingshuang’, ‘Zhenong113’ and

‘Jinfeng’, suggesting their genetic relatedness during tea breed-

ing (Table S1).

The microbiomes in phyllosphere, root and rhizosphere com-

partments exhibited homogeneous b-diversity compared

between tea subpopulations (Figure 3c), suggesting small effects

of tea subpopulation differentiation on microbiomes. In addition,

the geographic origins also showed no impact on the microbial b-
diversity in all compartments (ANOSIM, P > 0.05).

Genome-wide associations of microbial composition

We further examined the effects of individual genetic variants on

the relative abundance of microbial taxa through mGWAS. After

excluding the rare operational taxonomic units (OTUs), which

were present in less than 10% of samples and with the relative
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abundance lower than 0.01%, 954 rhizosphere OTUs, 596 root

OTUs and 403 phyllosphere OTUs were included in the analyses.

By gathering the significant associations from mGWAS results,

we observed that 39 OTUs were associated with 44 nonsynony-

mous exonic variants, lying within 41 genes (Table S2). The gene

ontology (GO) of candidate genes was annotated to show the

gene functions, and two terms of cellular component, ‘intrinsic

component of membrane’ (GO:0031224) and ‘integral

component of membrane’ (GO: 0016021, a child term of the

former) were over-represented.

In association with root microbial taxa, the strongest associa-

tion was observed between the Otu956 (genus Streptomyces)

and the SNP Chr1_91139090 in CSS0044082 gene (b-carotene
hydroxylase 2 gene, NR annotation; P = 2.98 9 10�23; Fig-

ures 4a and S4). Additionally, in association with rhizosphere

microbial taxa, the rhizosphere Otu4877 (genus Conexibacter)
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Figure 1 Diversity and composition of microbial communities in 100 tea (Camellia sinensis) cultivars. (a) Principal coordination analysis (PCoA) for the

microbiomes in bulk soil, rhizosphere soil, root and phyllosphere compartments (n = 100 for each compartment). Eigenvectors of the top two principal

coordinates (PCOs) were used to visualize the microbial b-diversity. The samples of bulk soil, rhizosphere and root were zoomed-in for clarity purposes. (b)

Comparison of microbial weighted UniFrac dissimilarity between phyllosphere and the other three compartments by the analysis of similarity (ANOSIM,

R = 0.91, P = 0.001). (c) Alpha diversity (Shannon index) of the microbiomes in different compartments. The letters above the boxes indicated Tukey’s test

after one-way ANOVA (n = 100 for each compartment). (d–g) Microbial composition of 100 tea cultivars in phyllosphere (d), root endosphere (e),

rhizosphere (f) and bulk soil (g). The seven most abundant microbial phyla for each compartment were shown and other phyla were aggregated into

‘others’.
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was significantly associated with the SNP Chr9_67484586 in

CSS0040599 gene (predicted cytochrome P450 81D11-like, NR

annotation; P = 3.09 9 10�17; Figures 4b and S4). In phyllo-

sphere microbiomes, only the Otu2029 (genus Mycoplasma) was

linked to the SNP Chr4_146209412 in CSS0043600 (C2H2-type

zinc finger, Pfam annotation; Figures 4c and S4).

The genotypes of the associated SNPs showed no effects on

the relative abundance of root Otu956 and rhizosphere Otu4877

(Figure 4d,e). In contrast, tea cultivars (29 of 100) with the

heterozygote of the SNP Chr4_146209412 showed a significantly

higher relative abundance of phyllosphere Otu2029 than other

cultivars (Figure 4f). Besides, the Otu956 and Otu4877 were only

present in root-associated environments and showed varied

relative abundance compared among bulk soil, rhizosphere and

root microbiomes (Figure 4g,h). In comparison, the Otu2029 was

uniquely present in phyllosphere microbiomes (Figure 4i).
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Figure 2 Enrichment of microbial genera in plant-associated environments. (a) Ternary plots comparing relative abundance of all genera (>0.01%) among

phyllosphere, root and rhizosphere microbiomes (left), and among root, rhizosphere and bulk soil microbiomes (right). A negative binomial generalized

linear model was performed followed by a likelihood ratio test for comparing the microbial relative abundance between compartments at the genus level.

Points represented microbial genera and size represented the average relative abundance across all the three compared compartments. Microbial genera

were coloured by their belonged phyla. The seven most abundant microbial phyla for each compartment were shown and other phyla were aggregated

into ‘others’. Position of points represented its relative abundance with respect to each compartment. Points were separated by dashed lines, representing

their enriched compartment. (b) Heatmap of the 20 most abundant enriched genera compared among phyllosphere, root and rhizosphere microbiomes. (c)

Heatmap of the 20 most abundant enriched genera compared between root and rhizosphere and bulk soil microbiomes. Blocks in heatmap were filled with

different colour representing the relative abundance of microbial genera. Colour bars on the right of heatmap were labelled by the belonged microbial

phyla.
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Compartment-specific microbiome assembly driven by
plant genetics

To reveal the potential functional interactions between microbial

composition and tea genetics, we further searched for all genes

nearby the significant variants, except for ‘intergenic’ SNPs that

were distant from gene coding regions (>21.1 kb) and ‘intronic’

SNPs. The links between microbial taxa and the GO annotation of

candidate genes were used to build a bipartite function–taxon
network (Figure 5a). Rhizosphere and root microbial OTUs

showed heavy overlaps in association with plant biological

processes. Twenty-five GO biological processes were shared

between the three compartments, including several terms that

were related to cellular vesicle trafficking, plant response to

abiotic/biotic factors and signalling mechanisms (Figure 5a,

Table S3).

GO biological processes exhibited distinct enrichment in

association with the microbiomes of different compartments.

Associating with root microbial OTUs, cell wall metabolism (pectin

and galacturonan) and carbon catabolism (polysaccharide, car-

boxylic acid and organic acid) were the most enriched biological

processes (Figure 5b, Table S4). Associating with rhizosphere

microbial OTUs, GO terms related to the metabolism of metal ions

(transport and homeostasis) and small organic molecules

(oligosaccharide, disaccharide and monocarboxylic acid) were

overrepresented (Figure 5c, Table S5). In comparison, only one

biological process of ‘response to stimulus’ was enriched in

association with phyllosphere microbial OTUs.

Genome-wide associations of microbial b-diversity

Followed by the observations of multiple links between individual

microbial taxa and tea genetic variants, we also examined

whether tea genetics is associated with the overall microbial

community structure. Therefore, mGWAS analyses were per-

formed for the top five principal coordinates (PCOs) of rhizo-

sphere, root and phyllosphere microbiomes, which accounted for

83.9%, 50.5% and 47.3% microbial variation respectively

(Figure S5).

In association with phyllosphere microbiomes, 73 SNPs passed

the significant threshold of P < 3.81 9 10�9, consisting of 1

nonsynonymous exonic, two synonymous exonic, two down-

stream, one upstream, 59 intergenic and eight intronic variants

(Figure S6, Table S6). The genetic dissimilarity of these SNPs was

significantly correlated with phyllosphere microbial dissimilarity

A
nc

es
try

K = 3

K = 2

(a) (b)

Root RhizospherePhyllosphere
(c)

POP1 POP2 POP3

−0.2

−0.1

0.0

0.1

0.2

0.3

−0.2 −0.1 0.0 0.1 0.2
PC1 (15.07%)

P
C

2 
(1

0.
66

%
)

POP1 POP3POP2

−0.05

0.00

0.05

−0.3 −0.1 0.1
PCO1 (64.34%)

P
C

O
2 

(7
.4

3%
)

−0.02

0.00

0.02

−0.04 −0.02 0.00 0.02
PCO1 (47.41%)

P
C

O
2 

(1
1.

5%
)

−0.02

−0.01

0.00

0.01

0.02

−0.03 −0.01 0.01
PCO1 (24.35%)

P
C

O
2 

(1
2.

96
%

)
ANOSIM R = -0.01
P = 0.56

ANOSIM R = -0.01
P = 0.55

ANOSIM R = 0.02
P = 0.38
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Figure 4 Genome-wide associations between tea (Camellia sinensis) genetic variants and the abundance of individual microbes. (a–c) Manhattan plots for
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(Mantel test, R = 0.13, P = 0.01; Figure 6a). In contrast, no

significant hits were observed for rhizosphere microbial b-
diversity, and only one noncoding intergenic variant of

Chr12_18479397 showed significant association with root micro-

bial PCO2 (P = 2.07 9 10�9; Figure S6).

Phyllosphere microbial PCO1 contributed to the most signifi-

cant associations with tea genetic variants except for one variant

associating with PCO2 (Figure 6b). Among the variants, the only

nonsynonymous exonic variant Chr4_28730171

(P = 2.55 9 10�9) was located within CSS0046992 gene on

chromosome 4 (Figures 6b and S7), which was annotated as

formin homology interacting protein 1 (FIP1) against NR

database. Notably, the dissimilarities of phyllosphere microbial

communities significantly differed between the genotypes of

Chr4_28730171 (ANOSIM, R = 0.31, P = 0.001; Figure 6c).

Discussion

Plants provide diverse niches for microbes through physiological

and biochemical features (Reinhold-Hurek et al., 2015).

Although being frequently argued, it remains challenging to

identify host genetic factors interacting with microbiomes in

different compartments (Wagner et al., 2016). In this study, we

comprehensively explored the microbiomes residing in plant-

associated environments and their interactions with the genetics

of 100 tea cultivars. We uncovered multiple tea genes that hold
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the potential to modulate microbial diversity and composition.

Notably, microbiomes in different compartments were linked to

divergent biological processes in tea plants, suggesting obvious

compartment-specific microbiome assembly driven by host

genetics. Our results emphasize that plant genetics interact with

microbiomes as an intricate genome-wide network. The associ-

ations identified in this study are worthwhile to be further

explored aiming at harnessing the roles of microbes in tea

breeding.

In our results, compartment-specific microbiome assembly was

observed in plant-associated environments. Specifically, tea

phyllosphere microbiomes were distinct from other compart-

ments in both community structure and composition. These

results corroborate our earlier large-scale study on tea-associated

microbiomes across the main plantation regions of China (Xu

et al., 2022). Microbes residing phyllosphere environment are

derived from complicated sources including soil, atmosphere and

others (Bulgarelli et al., 2013). Compared to root-associated

environments, the phyllosphere is poor in nutrients and heavily

affected by extreme abiotic factors of radiation and temperature

(Turner et al., 2013). Therefore, the adaption of microorganisms

in the phyllosphere includes the ability to scavenge different

nutrients at low concentrations (Vorholt, 2012). In our results,

the genus Sphingomonas was enriched in phyllosphere and

showed a high relative abundance, which is consistent with its

predominant roles in the leaf-associated environments of

A. thaliana and soybean (Delmotte et al., 2009; Vorholt, 2012).

Besides, the phylum Firmicutes showed a preference for the

rhizosphere environment and was nearly absent in the root

endosphere. Further examination showed that the Firmicutes

genus Bacillus was among the most abundant rhizosphere-

enriched taxa. Soil Bacillus positively responds to the increased

levels of epigallocatechin gallate, a bioactive compound from tea

plants (Tang et al., 2021). Moreover, the phylum Bacteroidetes

exhibited higher abundance in the phyllosphere than other

compartments, which was also reported in sugar maple (Acer

saccharum) and a seagrass species (Tarquinio et al., 2019;

Wallace et al., 2018). These results collectively pointed to the

compartment-specific assembly of microbiomes in plant-

associated environments. It has been well acknowledged that

plant factors play varied roles in the selection of microbes in

different compartments, including root exudates and immune

systems (Malinovsky et al., 2014; Sasse et al., 2018; van der

Burgh and Joosten, 2019). However, our understanding of how

plants create these selection mechanisms from genetics to

metabolism is still in infancy. Therefore, as discussed below, the

present study mainly explored the genetic determinants that were

associated with microbial diversity and composition.

Through mGWAS, rhizosphere and root microbial composi-

tions were associated with divergent plant biological processes.

These results reveal clear compartment-specific microbiome

assembly driven by plant genetics. Specifically, genes related to

the metabolism of ions and small organic compounds were

overrepresented interacting with rhizosphere microbial abun-

dance. This result points to the vital roles of root organic exudates

in filtering and cultivating rhizosphere microbes in exchange for

nutrients including mineral ions (Harbort et al., 2020; Sasse

et al., 2018; Vieira et al., 2020), which constitute a major

proportion of resource trade between plants and microbes in

the rhizosphere. In comparison, cell wall metabolism, carbon

catabolism and post-transcriptional regulation were highlighted

in plant–microbiome interactions in the root endosphere. Cell

walls form dispersion barriers for microbes and carbon catabolic

processes provide resources to endophytes (Malinovsky

et al., 2014). Additionally, post-transcriptional regulation is heav-

ily involved in recognizing and responding to microbes (Carpenter

et al., 2014). It is hypothesized that microbes experience a ‘two-

step’ selection mechanism when immigrating from the rhizo-

sphere to root endosphere (Bulgarelli et al., 2013). In this

hypothesis, rhizodeposition is mainly responsible for filtering

microbes from the surrounding soil, and the innate immune

system recognizes and responds to microbial endophytes (Bul-

garelli et al., 2013). In support of this hypothesis, our observation

that root endosphere microbiomes displayed a reduced microbial

a-diversity than that of rhizosphere and bulk soil microbiomes

exhibited a clear selection process. More importantly, our results

link the microbiomes in the rhizosphere and root endosphere to

differential plant biological processes, which reveal the plant

genetic basis for the ‘two-step’ selection hypothesis in root-

associated environments.

The candidate genes interacting with microbial composition

were involved in diverse plant biological processes. Notably, the

relative abundance of root endosphere Otu956 (genus Strepto-

myces) was strongly linked to the b-carotene hydroxylase 2 gene,

encoding a key enzyme in the transformation of carotenoids.

Besides, the Otu956 showed varied relative abundance in root-

associated environments, suggesting a selection effect from tea

plants. Plant carotenoids are involved in different plant primary
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and secondary metabolisms, including serving as antioxidants and

hormone precursors in plant defence (Howitt and Pogson, 2006;

Zilber-Rosenberg and Rosenberg, 2021). Both plants and many

Streptomyces species can synthesize carotenoids (Schmidt-

Dannert, 2000), and thus Streptomyces may promote the

homeostasis of tea roots via modulating carotenoid metabolism.

As shown in our previous study, several metabolites in tea plants,

including theophylline and epigallocatechin gallate, are associ-

ated with microbial variation (Xu et al., 2021b). Therefore,

carotenoid metabolism may also bridge the plant–microbiome

interactions in tea plants.

The associations between plant defence-related genes and the

microbial taxa of Mycoplasma and Conexibacter underly the

ubiquitous roles of plant defence interacting with microbes.

Mycoplasma species are nonculturable prokaryotes and poten-

tially pathogenic to plants (Razin and Hayflick, 2010), which can

colonize plants from environments or be transmitted from insects

(Hogenhout et al., 2008). Besides, the genus Conexibacter is

involved in soil carbon and phosphorus cycling (Ma et al., 2021),

and is induced by root-exuded L-theanine from tea plants (Xie

et al., 2022). Both pathogenic and nonpathogenic microbes can

induce plant defence responses (van der Burgh and

Joosten, 2019). It has been shown that a cytochrome P450

81D11-like homologue in A. thaliana is involved in the cis-

jasmone-induced plant defence against insects (Bruce

et al., 2008), and many C2H2-type zinc finger genes act as

transcription factors in plant stress response to pathogens

(Kiełbowicz-Matuk, 2012). Consistently in our results, the C2H2-

type zinc finger gene (CSS0043600) was linked to a potentially

pathogenic Mycoplasma OTU, pointing to the role of this gene in

response to tea pathogens. In tea plants, it has been reported that

several C2H2 transcription factors are involved in the biosynthesis

of catechins (Wei et al., 2018), which are important secondary

metabolites and are suppressive to tea foliar pathogens (Xu

et al., 2021b). However, considering the diverse functions of

C2H2 gene family members, the association between the C2H2-

type zinc finger gene (CSS0043600) and Mycoplasma Otu2029

needs further elucidation. Plant defence mechanisms form the

primary filters for microbes, including genes involved in the

recognition and responses of plants (van der Burgh and

Joosten, 2019). Similarly, mGWAS in A. thaliana also identified

the associations between microbiomes and plant defence-related

genetic loci (Horton et al., 2014), suggesting these mechanisms

are likely conserved across different plant species. It was also

noticeable that the SNP Chr_146209412 in association with the

Mycoplasma Otu2029 showed a high heterozygosity rate of

29%, reflecting the heavy hybridization between tea genotypes.

The self-incompatibility of tea plants results in high genome

heterozygosity (Xia et al., 2020a). Thus, our results linked the

hybridization history of tea cultivars to the variation in the

Mycoplasma in tea phyllosphere.

Our results also uncovered the genetic determinants of tea

plants in association with the phyllosphere b-diversity. These

results are congruent with previous reports of the impacts of

host genetic factors on the overall microbial communities

(Busby et al., 2017; Chen et al., 2020b; Zhang et al., 2019b).

Most interestingly, the predicted FIP1 gene (CSS0046992)

harbours the only nonsynonymous exonic SNP that was

associated with phyllosphere microbial b-diversity. This gene is

enriched during tea plant varietal improvement (Xia

et al., 2020a), indicating the effects of tea breeding on it. In

addition, our results also proved that the phyllosphere microbial

communities differentiated between the FIP1 genotypes, which

further confirmed the role of FIP1 in shaping the phyllosphere

microbiomes. FIP1 protein interacts with plant formins (formin

homology proteins) and affects the actin cytoskeleton (Banno

and Chua, 2000; Doerks et al., 2000). Thus, the interactions

between the FIP1 gene and phyllosphere microbial communities

may involve the modification of cell structures (Jones and

Dangl, 2006; Sassmann et al., 2018). Besides the FIP1 gene,

the dissimilarity of phyllosphere microbiomes was significantly

correlated with the genetic variation of the 73 associated SNPs.

Thus, except for the nonsynonymous variant, other genetic

variants may still be functionally interacting with the tea

phyllosphere microbiome.

Heavy hybridization between tea cultivars, as well as between

varieties, occurs during tea breeding, which raises great chal-

lenges for tea genetic studies (Wang et al., 2020). Meanwhile,

we identified three subpopulations for the 100 tea cultivars, and

considerable overlap of genetic similarity existed between the

POP1 and POP2 subpopulations, indicating the homogeneity of

these cultivars. The POP3 was relatively distinct from the other

two subpopulations, which included ‘Fuding Dabaicha’ and

several accessions with the hybridization records between ‘Fuding

Dabaicha’ and other tea accessions (Wang et al., 2021). Micro-

biomes showed no differentiation between the tea subpopula-

tions and between their geographic origins, which is, at least

partially, due to the relatedness between the examined tea

cultivars. It has been reported that the rhizosphere microbial

compositions varied between wild and domesticated common

beans (Phaseolus vulgaris; P�erez-Jaramillo et al., 2017). Thus, the

inclusion of wild (or ancient) and genetic distant populations in

the future may facilitate the comparisons of microbiomes

between tea subpopulations.

Overall, our study reveals clear compartment-specific micro-

biome assembly driven by tea plant genetics by incorporating

plant genetics and microbiome. We uncovered a set of genetic

variants interacting with microbiomes inhabiting different plant-

associated environments. Importantly, the microbial diversity and

composition were linked to diverse plant genetic factors, which

increased the complexity of plant–microbiome associations. Thus,

considering the infancy of holo-omic studies, further develop-

ment of suitable methodologies is eagerly needed to reveal the

interacting mechanisms in plant holobionts (Goodrich

et al., 2016; Nyholm et al., 2020). We used 16S amplicon

sequencing to reconstruct the microbial communities in this

study, which was effective to capture the microbial taxonomic

composition but was limited by the lack of functional informa-

tion. Therefore, with the increased applications of multi-omic

approaches and the continuously decreased costs, it is worthy to

expect more advances in holo-omic studies incorporating the

metabolic and transcriptomic attributes from both host and

microbiome (Xu et al., 2021a). Moreover, we note that the

causality of mGWAS results needs to be further improved.

Promisingly, a few pioneering studies have employed mendelian

randomization analysis to estimate the causal links between host

genetic loci and microbial taxa (Liu et al., 2022; Xu et al., 2020),

whereas the interpretation of results requires caution because of

the complexity of mechanisms in host–microbe interactions

(Kurilshikov et al., 2021).
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Experimental procedures

Plant materials and sampling

The tea cultivars were grown in a common garden of Hangzhou

Agriculture Academy (Hangzhou, China, 30.19°N, 120.07°E).
Leaves, root tissues, rhizosphere soil and bulk soil (unplanted) of a

total of 100 cultivars were sampled for 16S amplicon sequencing

(Table S1). The geographic origins of the cultivars include

Zhejiang (n = 41), Fujian (n = 24), Jiangxi (n = 8), Hunan

(n = 7), Guangxi (n = 6) and other provinces (Table S1), which

are main tea production regions in China.

For each tea cultivar, three replicates of healthy plants were

randomly sampled. Nine leaves were sampled from the top of

three branches and pooled together as one replicate for each

plant. Root and soil samples were collected from the four

ordinated directions of tea plants and pooled together as one

replicate (Xu et al., 2018). The top ~5 cm of soil was removed,

and 5–8 g of fine roots from a depth <15 cm were collected.

Roots were removed from the soil with a shovel and were

manually shaken to remove loosely attached soil. Roots and soil

samples were then stored in zipper plastic bags and transferred to

the lab on ice on the same day. In the lab, fine roots were washed

three times with 25 mL PBS in 50 mL centrifuge tubes. The

washed-off soil was centrifuged at 3000 g for 10 min and used

as rhizosphere soil (Xu et al., 2018). After that, roots were placed

in centrifuge tubes with 15 mL PBS and sonicated at 50 Hz for

30 s. Three times sonication were performed, which had been

proved to effectively remove root surface microbes (Edwards

et al., 2015; Lundberg et al., 2012). Three unplanted soil sam-

ples (bulk soil) were also collected 1 m away from each tea

cultivar with ~20 g for each of the samples. Roots and soil

samples were stored at �80 °C for ~2 months until DNA

extraction. In total, the 100 tea cultivars yielded 300 bulk soil,

300 rhizosphere soil, 300 root and 300 leaf samples.

Microbial amplicon sequencing and data processing

DNA was extracted by the PowerSoil DNA Isolation kit (MoBio

Laboratories, CA) from ~0.5 g sample following the manufac-

turer’s instructions. Leaves and roots were shearedwith a scissor to

fit the DNA extraction kit. The primers of 799F and 1193R were

used in the amplification of the variable regions V5–V7 of bacterial

16S rRNA genes (Horton et al., 2014). An Illumina NovaSeq

platform was used for amplicons sequencing and generated 250-

bp paired-end reads at Personalbio (Shanghai, China). UPARSE

pipeline was employed for controlling read quality and clustering

OTUs (Edgar, 2013). The OTUs were clustered based on a

threshold of 97% similarity. Bacterial taxonomy was classified

with the 16S rRNA reference database RDP Version 16 (Cole

et al., 2014). Reads counts of OTUs were normalized in the

DESeq2 R package (Love et al., 2014). The weighted UniFrac

dissimilarities of microbiomeswere visualizedwith PCoA analysis in

the phyloseq R package (McMurdie and Holmes, 2013). Enrich-

ment of microbial taxa at genus level was analysed in edgeR and

ggtern R packages by fitting the relative abundance of each genus

(>0.01%) to a negative binomial generalized linear model (glmFit)

followed by a likelihood ratio test (glmLRT; Bonferroni correction,

P < 0.05; Zgadzaj et al., 2016).

Genotyping

A short-size (350 bp) DNA library was constructed and sequenced

using an Illumina Novaseq PE150 platform (Illumina, San Diego,

CA). Low-quality bases were removed using Trimmomatic v0.39.

The high-quality reads were aligned to the genome assembly of

C. sinensis var. sinensis (cultivar Shuchazao; Xia et al., 2020a)

using BWA v0.7.17-r1188 with default parameters (Li and

Durbin, 2009), and sorted with SAMtools v1.9 subsequently (Li

et al., 2009). The MarkDuplicates command in GATK v4.1.4.0

(Depristo et al., 2011) was used for the removal of duplicated

reads. Genotypes were called using FreeBayes v1.3.1 with the

parameters of --min-repeat-entropy 1 --min-coverage 10 --limit-

coverage 100 000 (Garrison and Marth, 2012). The yielded VCF

files were finally filtered using the vcffilter command of vcflib

software (Garrison et al., 2021) to get high-quality SNPs.

Principal component analysis was done using PLINK 1.9

(Chang et al., 2015). The genetic similarity of tea cultivars was

measured as identity-by-sequence (IBS) values using PLINK, and

the genetic dissimilarity matrix was constructed with 1–IBS
values (Zhao et al., 2011). The population structure of tea

cultivars was estimated using ADMIXTURE 1.3.0 (Alexander

et al., 2009). The maximum likelihood estimation of ancestries

(K) was estimated and fivefold cross-validations were performed

with K values ranging from 2 to 10. The most probable number

of subpopulations was estimated by the lowest cross-validation

error, which was K = 3 in this study (Figure S2). The tea

cultivars were subsequently classified into three groups by

clustering the genetic dissimilarity matrix with hclust and cutree

function in R.

Single nucleotide polymorphisms were annotated to the

reference genome (Xia et al., 2020a) mentioned above by

ANNOVAR (Wang et al., 2010). The files of coding sequences

and gene function of the tea reference genome were down-

loaded from the Tea Plant Information Archive (http://tpdb.

shengxin.ren/). The gene function file contained GO terms and

the annotations against KEGG, KOG, Pfam, TrEMBL and NCBI NR

databases (Xia et al., 2020a). Linkage disequilibrium was esti-

mated by calculating the squared correlation coefficient (r2)

between SNPs and was visualized in PopLDdecay and LDBlock-

Show (Zhang et al., 2019a).

Microbiome genome-wide association analysis

The mGWAS was conducted using GEMMA 0.98.1 software

(Zhou and Stephens, 2012). A kinship matrix was firstly con-

structed in GEMMA to control the effects of genetic relatedness

between tea cultivars. Wald test using a univariate linear mixed

model was performed for each SNP variant and ‘phenotype’ to

yield an estimation of the P value (Zhou and Stephens, 2012).

For mGWAS with microbial b-diversity, the eigenvectors of top

five PCOs from PCoA analyses were associated with tea genetic

variants separately. Bonferroni correction was performed by

dividing the a (=0.05) by the number of SNPs (13 124 663) after

quality control in GEMMA, which is a = 3.81 9 10�9. For

mGWAS with microbial composition, microbial OTUs present in

more than 10% of samples and with a minimum relative

abundance of 0.01% in each compartment were included in

the analyses, which resulted in 954 rhizosphere OTUs, 596 root

OTUs and 403 phyllosphere OTUs. The relative abundance of

each OTU was employed as a phenotypic trait in mGWAS and

was fitted to a univariate linear mixed model in GEMMA

software. Since these analyses yielded a large amount of results,

a stricter significance level was set by dividing the a (=0.05) by the
total number of OTUs (1953) and the number of SNPs

(13 124 663) after quality control in GEMMA, which was

a = 1.95 9 10�12.
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Quantile–quantile (Q-Q) plot and Manhattan plot were gener-

ated with the rMVP R package to show the distribution of

observed and expected P values (�log10 transformed; Yin

et al., 2021).

The significant SNPs of mGWAS were annotated to candidate

genes and GO functions as stated in genotyping methods. The

searches for candidate genes were performed within 21.1 kb

distance around SNPs at which linkage disequilibrium dropped to

a baseline of 0.02. ‘Intergenic’ SNPs that were distant from gene

coding regions (distance > 21.1 kb) and ‘intronic’ SNPs were

excluded from the analyses. To build the bipartite network of

function–taxon (Ma et al., 2021), the associations between GO

terms and OTUs were gathered and the network was constructed

in the igraph R package by graph_from_edgelist function (Csardi

and Nepusz, 2006) and visualized in Cytoscape 3.7.2 (Shannon

et al., 2003). GO enrichment analysis was performed in TBtools

(Chen et al., 2020a) to find the over-represented GO categories

for sets of genes.

Statistical analyses

Means were compared by one-way ANOVA and Tukey’s post hoc

test in the agricolae R package (De Mendiburu, 2020). In the

vegan R package (Oksanen et al., 2020), Shannon index was

calculated with diversity function, Mantel test was performed

using mantel function with ‘spearman’ method and 9999 times

of permutation, ANOSIM was performed to compare dissimilarity

matrices using anosim function with 999 times of permutation

and PERMANOVA was performed with adonis function with a

‘bray’ method and 9999 times of permutations. For the ANOSIM

comparing the microbial dissimilarity between tea geographic

origins, only the regions with more than two cultivars were

included to control the effects of unbalanced group size on the

results (Anderson and Walsh, 2013).
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