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Abstract

Increasing evidence has indicated that microRNAs(miRNAs) play vital roles in various path-

ological processes and thus are closely related with many complex human diseases. The

identification of potential disease-related miRNAs offers new opportunities to understand

disease etiology and pathogenesis. Although there have been numerous computational

methods proposed to predict reliable miRNA-disease associations, they suffer from various

limitations that affect the prediction accuracy and their applicability. In this study, we develop

a novel method to discover disease-related candidate miRNAs based on Adaptive Multi-

View Multi-Label learning(AMVML). Specifically, considering the inherent noise existed in

the current dataset, we propose to learn a new affinity graph adaptively for both diseases

and miRNAs from multiple similarity profiles. We then simultaneously update the miRNA-

disease association predicted from both spaces based on multi-label learning. In particular,

we prove the convergence of AMVML theoretically and the corresponding analysis indicates

that it has a fast convergence rate. To comprehensively illustrate the prediction performance

of our method, we compared AMVML with four state-of-the-art methods under different vali-

dation frameworks. As a result, our method achieved comparable performance under vari-

ous evaluation metrics, which suggests that our method is capable of discovering greater

number of true miRNA-disease associations. The case study conducted on thyroid neo-

plasms further identified a potential diagnostic biomarker. Together, the experimental

results confirms the utility of our method and we anticipate that our method could serve as a

reliable and efficient tool for uncovering novel disease-related miRNAs.

Author summary

MiRNAs are a class of small non-coding RNAs that are associated with a variety of com-

plex biological processes. Increasing studies have shown that miRNAs have close relation-

ships with many human diseases. The prediction of the associations between miRNAs and

diseases has thus become a hot topic. Although traditional experimental methods are reli-

able, they could only identify a limited number of associations as they are in general time-
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consuming and expensive. Consequently, great efforts have been made to effectively pre-

dict reliable disease-related miRNAs based on computational methods. In this study, we

develop a novel method to discover potential miRNA-disease associations based on Adap-

tive Multi-View Multi-Label learning. Considering the inherent noise existed in the cur-

rent dataset, we propose to learn a new affinity graph adaptively for both diseases and

miRNAs from multiple biological data source, including miRNA sequence similarity,

miRNA functional similarity and Gaussian interaction profile kernel similarity. Notably,

our method is applicable to diseases without any known associated miRNAs and also

obtains satisfactory results. The case study conducted on thyroid neoplasms further con-

firms the prediction reliability of the proposed method. Overall, results show that our

method can predict the potential associations between miRNAs and diseases effectively.

Introduction

MiRNAs are a group of short non-coding RNAs that mediate post-transcriptional gene silenc-

ing[1]. Accumulating evidence has proved that miRNAs play crucial roles in a variety of can-

cer-related pathways. Therefore, the identification of miRNA-disease associations can shed

new light on understanding possible pathogenesis of diseases.

To compensate for the limitations of experiment-based approaches, a great number of

computational models have been proposed to identify potential disease-related miRNAs in

recent years[2]. Under the assumption that functionally similar miRNAs tend to be associated

with phenotypically similar diseases, Jiang et al. prioritized the entire microRNAome for over

a thousand diseases by constructing an integrated phenome-microRNAome network[3]. Chen

et al. measured the global network similarity and inferred potential miRNA-disease interac-

tions based on random walk with restart[4]. Shi et al. adopted a similar idea and further inte-

grated the protein-protein interactions into the prediction process[5]. Chen et al. proposed a

novel heterogeneous graph inference method by iteratively updating the association probabil-

ity[6, 7]. Liu et al. constructed a heterogeneous network in which they integrated the miRNA-

target gene and miRNA-lncRNA associations[8]. Specifically, the methods introduced above

mainly predicted disease-related miRNAs by applying random walk algorithms to the recon-

structed similarity networks[9]. Another family of prediction methods was generally based on

network topological characteristics and also achieved remarkable performance. For instance,

Zou et al. computed the similarity score based on walks of different lengths between the

miRNA and disease nodes[10]. Sun et al. exploited the potential disease-related miRNAs based

on known miRNA-disease network topological similarity[11]. You et al. proposed to measure

the association score for a miRNA-disease pair by calculating the accumulative contributions

from all paths between them[12]. Li et al. used DeepWalk to enhance the existing associations

through a topology-based similarity measure[13]. Chen et al. computed the association possi-

bility between a disease node and a miRNA node in the corresponding graphlet interaction

isomers[14]. Although effective, these methods are sensitive to the change of the network topo-

logical structures, which might affect the prediction accuracy. Alternatively, prediction meth-

ods that were based on semi-supervised learning as well as supervised learning have been well

developed. Xiao et al. introduced a graph regularized non-negative matrix factorization to

effectively discover sparse miRNA-disease associations[15]. Both Chen et al. and Yu et al.
adopted matrix completion to recover the potential missing miRNA-disease associations[16,

17]. Zeng et al. used a derivative algorithm structural perturbation method to estimate the link

predictability with structural consistency as the indicator[18]. Chen et al. used an ensemble

graph-based semi-supervised learning for miRNA-disease association prediction
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model where a sequence of weak learners were trained to collectively obtain a predicted associ-

ation score[19]. Recently, we reconstructed the miRNA and disease similarity matrices based

on global linear neighborhoods and then applied label propagation to predict potential associa-

tions between diseases and miRNAs[20, 21]. Chen et al. extracted novel feature vectors for

both miRNAs and diseases to train a random forest classifier for the prediction task[22].

Although great efforts have been made to efficiently uncover potential miRNA-disease asso-

ciations, most existing computational approaches still suffer from several limitations. Specifi-

cally, the inherent noise in the current datasets resulted in incomplete and sparse similarity

matrices and thus inevitably affected the prediction accuracies of these methods. Moreover,

the integration of multiple biological data sources in calculating the similarity matrices for

both miRNAs and diseases was generally performed by averaging the input similarity informa-

tion, which might lead to suboptimal results. Lastly, the predicted association scores from

miRNA space and disease space were often updated separately during the learning process. To

solve these problems, in this paper, we propose a novel Adaptive Multi-View Multi-Label

(AMVML) learning framework to infer disease-related miRNAs. In particular, our method

adaptively learns a new affinity graph for miRNAs and diseases respectively from multiple data

sources (i.e. miRNA sequence similarity, Gaussian interaction profile kernel similarity and so

on). In addition, we unify the optimization process for both disease space and miRNA space

based on multi-label learning. The experimental results under several different evaluation met-

rics clearly demonstrate the superior performance of our method over previous methods. We

further carry out a case study on thyroid cancer to identify potential prognostic biomarkers.

Materials and methods

Human miRNA-disease associations

The known human miRNA-disease associations were retrieved from HMDD v2.0 database

[23]. HMDD is a database for experimentally supported human miRNA and disease associa-

tions that were manually collected from all the miRNA-related publications in PubMed. Each

entry in HMDD contains four items, i.e. miRNA name, disease name, experimental evidence

for the miRNA-disease association and the publication PubMed ID. To keep consistent of data

from different sources, we also downloaded the annotation information of 4796 human miR-

NAs released on March 2018 from miRBase[24]. We then downloaded the latest MeSH

descriptors from the National Library of Medicine(https://www.nlm.nih.gov/) and only

retained items from Category C for diseases, which resulted in 11572 unique items. After map-

ping the miRNA names and disease names involved in each association with miRBase records

and MeSH descriptors, we finally obtained 6088 associations between 328 diseases and 550

miRNAs for subsequent analysis(S1 File). Specifically, we classified the 328 diseases based on

the Diseases Categories provided in MeSH. For diseases belonging to multiple categories, we

increased the count by one for each category accordingly. As a result (Fig 1, S2 File), we can

see that most diseases recorded in HMDD were cancers. For convenience, we used a binary

matrix Y 2 R328×550 to represent the miRNA-disease associations. For a given disease i and

miRNA j, Yij = 1 if i is related to j, and Yij = 0 otherwise.

Disease semantic similarity

As described in [25], the disease semantic similarity can be calculated based on Directed Acy-

clic Graphs (DAGs). Specifically, for a given disease d, its DAG is composed of three items, i.e.

DAG = (d, T(d), E(d)), where T(d) represents d itself together with all its ancestor nodes, and E
(d) contains all direct links connecting the parent nodes to child nodes. The contribution Dd(t)

graph-based semi-supervised learning for miRNA-disease association prediction
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of a disease t in a DAGd to the semantics of disease d was defined as follows:

DdðDÞ ¼ 1

DdðtÞ ¼ maxf0:5 � Ddðt0Þjt0 2 children of tg if t 6¼ d

(

ð1Þ

The semantic similarity score between two diseases i and j can then be calculated by:

Sði; jÞ ¼

X

t2TðiÞ\TðjÞ
ðDiðtÞ þ DjðtÞÞ

X

t2TðiÞ
DiðtÞ þ

X

t2TðjÞ
DjðtÞ

ð2Þ

Fig 1. The type and distribution of the 328 diseases recorded in HMDD v2.0.

https://doi.org/10.1371/journal.pcbi.1006931.g001
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Moreover, the similarity between a given disease d and a group of diseases Dt = {dt1, dt2,. . .,

dtk} was defined by:

Sðd;DtÞ ¼ max1�i�kðSðd; dtiÞÞ ð3Þ

Finally, we obtained the semantic similarities for each disease pair according to (Eq 2). We

denoted the semantic similarity matrix as AD(1)2R328×328 where ADð1Þij represents the semantic

similarity between disease i and disease j(S3 File).

MiRNA similarity measures

In this subsection, to comprehensively characterize similarities between miRNAs, we adopt

three measures using different biological data sources for subsequent predictions[26].

MiRNA sequence similarity. The sequence information of all miRNAs were downloaded

from miRBase[24]. We then used the "pairwiseAlignment" function in R package Biostrings to

calculate a similarity score for each miRNA pair based on their entire mature sequences with a

gap opening penalty of 5 and a gap extension penalty of 2. Moreover, to generate a substitution

matrix for sequence alignment, we set the match score to 1 and the mismatch score to -1.

Finally, the sequence similarity score obtained for each miRNA pair was further normalized to

the range [0, 1] by the following equation:

Scoreði; jÞ ¼
Scoreði; jÞ � Scoremin

Scoremax � Scoremin
ð4Þ

where Scoremin and Scoremax represent the minimum and maximum similarity score of all

miRNA pairs. For simplicity, we use AM(1)2 R328×550 to denote the sequence similarity matrix

where AMð1Þij represents the sequence similarity between miRNA i and miRNA j(S4 File).

MiRNA functional similarity. To measure the functional similarity for each miRNA pair,

we followed the same pipeline presented in [25]. Let DTi and DTj denote the disease sets

related to miRNA i and j, respectively, the functional similarity is calculated as follows:

MFSði; jÞ ¼

X

1�p�jDTi j
Sðdtip;DTjÞþ

X

1�q�jDTj j
Sðdtjq;DTiÞ

jDTij þ jDTjj
ð5Þ

where S(dt, DT) is the same as that defined in (Eq 3). We use AM(2) 2 R550×550 to denote the

miRNA functional similarity matrix and AMð2Þij represents the functional similarity between

miRNA i and miRNA j(S5 File).

MiRNA semantic similarity. As stated in previous section, the miRNA functional simi-

larities could be obtained based on the overlap of miRNA-related diseases[15]. However, it is

not applicable to miRNAs without any known associated diseases. Therefore, we here propose

to use miRNA target information and the Gene Ontology (GO) annotations to better describe

the miRNA semantic similarities. To this end, we first downloaded the experimentally-verified

miRNA-gene interactions from mirTarBase[27], which contains 380639 interactions between

2599 miRNAs and 15064 genes. For each miRNA pair in our analysis, we maintained their tar-

get gene lists and then calculated the semantic similarity between the two corresponding gene

groups by using the "clusterSim" function in the R package GOSemSim[28]. Specifically, the

GO annotations were retrieved from the Bioconductor package "org.Hs.eg.db" and "BMA"

method was used for combining semantic similarity scores of multiple GO terms[29]. Simi-

larly, we used AM(3)2 R550×550 to denote the miRNA semantic similarity matrix where AMð3Þij
represents the semantic similarity between miRNA i and miRNA j(S6 File).

graph-based semi-supervised learning for miRNA-disease association prediction
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Gaussian interaction profile kernel similarity

Gaussian interaction profile kernel similarity has been widely used in previous studies and

proved effective in measuring both miRNA and disease similarities. For a given miRNA i or

disease j, its interaction profile IP(mi) or IP(dj) was a binary vector extracted from the i-th row

or the j-th column of the association matrix Y. The kernel similarity between two miRNAs or

two diseases could then be computed by:

KMðmi;mjÞ ¼ exp � bm IPðmiÞ � IPðmjÞ

�
�
�

�
�
�

2
� �

ð6Þ

KDðdi; djÞ ¼ exp � bd IPðdiÞ � IPðdjÞ
�
�
�

�
�
�

2
� �

ð7Þ

where βm and βd are defined as follows:

bm ¼ bm
0 1

550

X550

i¼1

�
�
�IPðmiÞ

�
�
�

2

 !,

ð8Þ

bd ¼ bd
0 1

328

X328

i¼1

�
�
�IPðdiÞ

�
�
�

2

 !,

ð9Þ

where β'm and β'd are two parameters controlling the kernel bandwidth. As a result, we used

AM(4)2 R550×550 and AD(2)2 R328×328 to represent the obtained Gaussian interaction profile

similarity matrices for miRNAs and diseases, respectively.

Adaptive multi-view multi-label learning for miRNA-disease association

prediction

We summarize the notations used throughout this paper. Given a matrixM,Mij andMi repre-

sent its ij-th element and i-th row, respectively. The transpose ofM is denoted byMT. Tr(M)

denotes the trace ofM and the Frobenius norm ofM is represented as ||M||F. For a similarity

matrix S, its Laplacian matrix LS is defined as LS ¼ DS � STþS
2

, where DS is a diagonal matrix

with its i-th diagonal element equal to ∑j(Sij + Sji)/2.

Graph-based multi-label learning. Multi-label learning refers to the problems where an

instance can be assigned to more than one category[30]. The graph-based multi-label learning

framework is characterized by simultaneously exploiting the inherent correlations among mul-

tiple labels and the label consistency over the graph[31]. As a matter of fact, since each miRNA

or disease could be associated with multiple diseases or miRNAs, this learning framework can

be directly applied to solve the miRNA-disease association prediction problem by defining its

objective function as follows:

min
F
TrððF � YÞTðF � YÞÞ þ mTrðFTLFÞ þ nTrðFCFTÞ ð10Þ

where L and C are the normalized Laplacian matrices corresponding to the similarity matrices

of miRNAs and diseases, respectively. μ and v are two non-negative trade-off parameters. By

differentiating the objective function with respect to F, (Eq 10) can be efficiently solved by a

Sylvester equation.

AMVML. The graph-based multi-label learning provides us a unified framework to col-

laboratively update the prediction results from miRNA space and disease space, which

graph-based semi-supervised learning for miRNA-disease association prediction
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successfully solves the last issue mentioned above. However, we still suffer from the inherent

noises in the existing datasets as well as the lack of appropriate methods to integrate datasets

from multiple biological data sources. To conquer these limitations, we propose a new objec-

tive function which can adaptively learns new affinity graphs for miRNAs and diseases given

similarity information obtained from multiple views, respectively(Fig 2). Moreover, instead of

explicitly assigning weights for each view, our method can also perform self-conducted weight

learning during the optimization process[32]. Specifically, let n be the number of views in

miRNA space and AM(1), AM(2),. . ., AM(n) be the corresponding miRNA similarity matrix of

each view, where AM(u) 2 Rp×p (1�u�n). Similarly, letm be the number of views in disease

Fig 2. The overall workflow of AMVML. Our method first learns two new affinity graphs for miRNAs and diseases from multiple sources of biological datasets,

respectively. It then updates the miRNA-disease association information simultaneously based on multi-label learning framework. It repeats this process until the

algorithm converges and finally outputs the prediction results.

https://doi.org/10.1371/journal.pcbi.1006931.g002

graph-based semi-supervised learning for miRNA-disease association prediction
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space and AD(1), AD(2),. . ., AD(m) be the corresponding disease similarity matrix of each view,

where AD(v) 2 Rq×q (1�v�m). p and q are the number of miRNAs and diseases, respectively.

Our objective is to obtain the predicted association matrix F as well as two optimal similarity

matrices SD and SM by considering multiple input views in both disease and miRNA spaces

simultaneously, which is formulated as follows:

min
SD;SM;F

Xm

v¼1

wðvÞD
�
�
�SD � ADðvÞ

�
�
�

2

F
þ 2aðFTLSDFÞþ

Xn

u¼1

wðuÞM
�
�
�SM � AMðuÞ

�
�
�

2

F
þ 2bðFLSMFTÞ þ

�
�
�F � Y

�
�
�

2

F

s:t: SDi1 ¼ 1; 0 � SDij � 1; SMi1 ¼ 1; 0 � SMij � 1; F 2 Rq�p

ð11Þ

where LSD and LSM are the corresponding Laplacian matrices for SD and SM, respectively. 1 is

a column vector with all elements equal to 1.wðvÞD and wðuÞM are weight parameters for the v-th

view of disease similarity and u-th view of miRNA similarity defined by:

wðvÞD ¼ 1 2

�
�
�SD � ADðvÞ

�
�
�
F

�. �
ð12Þ

wðuÞM ¼ 1 2

�
�
�SM � AMðuÞ

�
�
�
F

�. �
ð13Þ

As can be seen from Eqs (12) and (13), the two weight factors wðvÞD and wðuÞM are seamlessly

coupled with ||SD—AD(v)||F and ||SM—AM(u)||F, respectively. Intuitively, if the v-th or u-th

view is good, then ||SD—AD(v)||F or ||SM—AM(u)||F should be small and thus the learnt wðvÞD or

wðuÞM will be assigned a larger weight accordingly. As a result, wðvÞD and wðuÞM are updated adap-

tively in terms of the quality of the corresponding view during each iteration, which essentially

makes the optimization of our objective function a self-weighted learning process. In the next

part, we propose an efficient algorithm to solve (Eq 11).

Optimization. It is difficult to directly solve (Eq 11) as it involves three variables. There-

fore, we iteratively optimize one variable by fixing the others[33].

1. Solving SD. When SM and F are fixed, (Eq 11) becomes:

Xm

v¼1

wðvÞD
�
�
�SD � ADðvÞ

�
�
�

2

F
þ 2aðFTLSDFÞ; s:t: SDi1 ¼ 1; 0 � SDij � 1 ð14Þ

(Eq 14) can be further transformed into:

min
0<SDij<1;SDi1¼1

Xm

v¼1

wðvÞD
Xq

i;j¼1

ðSDij � AD
ðvÞ
ij Þ

2
þ a
Xq

i;j¼1

�
�
�fi � fj

�
�
�

2

2

SDij ð15Þ

Since (Eq 15) is independent for different i, we can optimize each row separately:

min
0<SDij<1;SDi1¼1

Xq

j¼1

Xm

v¼1

wðvÞD ðSDij � AD
ðvÞ
ij Þ

2
þ a
Xq

j¼1

�
�
�fi � fj

�
�
�

2

2

SDij ð16Þ

graph-based semi-supervised learning for miRNA-disease association prediction
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Denoting zi as a vector with its j-th element zij ¼ kfi � fjk
2

2
and similarly for SDi and ADðvÞi ,

(Eq 16) could be rewritten as:

min
SDi>0Tq ;SDi1¼1

SDi �
Xm

v¼1

wðvÞD AD
ðvÞ
i �

a

2
zi

 !�
�
�
�
�

,
Xm

v¼1

wðvÞD

�
�
�
�
�

2

2

ð17Þ

Problem (17) can be solved efficiently by an iterative algorithm[34].

2. Solving SM. Similarly, when SD and F are fixed, (Eq 11) becomes:

Xn

u¼1

wðuÞM
�
�
�SM � AMðuÞ

�
�
�

2

F
þ 2bðFLSMF

TÞ; s:t: SMi1 ¼ 1; 0 � SMij � 1 ð18Þ

By following the same optimization process for SD, we can derive the solution for problem

(18) as follows:

min
SMi>0Tp ;SMi1¼1

SMi �
Xn

u¼1

wðuÞM AM
ðuÞ
i �

b

2
zi

 !�
�
�
�
�

,
Xn

u¼1

wðuÞM

�
�
�
�
�

2

2

ð19Þ

3. Solving F. When SD and SM are fixed, (Eq 11) degenerates to:

min
F

2aðFTLSDFÞ þ 2bðFLSMF
TÞ þ

�
�
�F � Y

�
�
�

2

F
ð20Þ

Taking the derivative of (Eq 20) with respect to F and setting it to zero, we could obtain:

ðbLSM þ IÞF þ aFLSD ¼ Y ð21Þ

(Eq 21) is a Sylvester equation and could be solved directly. We summarized the overall

procedure in Algorithm 1. Besides, the datasets and source code of AMVML are freely

available at https://github.com/alcs417/AMVML.

Algorithm 1: AMVML
Input: miRNA similarity matrices of n views {AM(1), AM(2),. . ., AM(n)},
disease similarity matrices of m views {AD(1), AD(2),. . ., AD(m)}, known
association matrix Y 2 Rq×p, parameter α and β.
Output: Predicted association matrix F.
1. Initialize the weights of each view for both miRNAs and diseases by
wðvÞD ¼ 1

m ;w
ðuÞ
M ¼

1

n.
2. Repeat:
3. Repeat:
4. Update SD by solving problem (Eq 17).
5. Update SM by solving problem (Eq 19).
6. Update F with (Eq 21).
7. Until convergence
8. Update wðvÞD ;w

ðuÞ
M according to Eqs (12) and (13)

9. Until convergence
10. Return SD, SM and F

graph-based semi-supervised learning for miRNA-disease association prediction
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Theoretical convergence analysis. We prove the convergence of Algorithm 1 by the fol-

lowing theorem.

Theorem 1. The iterative optimization process in Algorithm 1 can monotonically decrease

the objective function value of (Eq 11) until convergence.

Proof. By fixing SM and F, the optimization for SD in (Eq 17) is a quadratic programming

problem[35]. Specifically, the Hessian matrix of the Lagrange function of (Eq 17) is positive

definite, i.e. 2I 2 Rq×q. Therefore, we arrive at:

OðSM; SDt; FÞ > OðSM; SDtþ1; FÞ ð22Þ

Similarly, we could prove that the optimization for SM by fixing the other variables is also

convex and we could obtain that:

OðSMt; SD; FÞ > OðSMtþ1; SD; FÞ ð23Þ

By fixing SD and SM, the optimization function for updating F is also convex[36]. More-

over, since βLSM+I is positive definite and βLSD is positive semi-definite, the eigenvalues σ1,

σ2,. . .,σl of βLSM+I and ξ1, ξ2,. . .,ξk of βLSD satisfy the inequality σi+ξj> 0 (i = 1,. . .,l; j = 1,. . .,k),
which guarantees that there is a unique solution to (Eq 21). As a result, we could obtain:

OðSM; SD; FtÞ � OðSM; SD; Ftþ1Þ ð24Þ

As demonstrated in the above analysis, Algorithm 1 can monotonically decrease the objec-

tive function value of (Eq 11) in each iteration until it converges.

Results

Performance evaluation

To systematically evaluate the performance of our method and illustrate its superiority over

existing alternatives, we compared AMVML with fourstate-of-the-art methods, i.e. IMCMDA

[37], SPMMDA[38], PBMDA[12] and EGBMMDA[19] under several evaluation metrics. All

these methods have been proved effective in predicting reliable disease-associated miRNAs.

First of all, we adopted the global Leave-One-Out Cross-Validation(LOOCV) and five-fold

cross-validation to test the general prediction performance. Specifically, in the framework of

global LOOCV, each known miRNA-disease association was selected as a test sample while the

remaining associations were considered as training samples. For five-fold cross-validation, all

known miRNA-disease associations were randomly divided into five subsets and each subset

was chosen as the test samples. Besides, the five-fold cross-validation was repeated 10 times to

eliminate the potential bias caused by the sample division. The prediction performance was

illustrated by Receiver Operating Characteristic(ROC) curve and the accuracy was quantified

by the Area Under the ROC Curve(AUC). As shown in Fig 3, AMVML achieved the highest

accuracy among all methods in both global LOOCV and five-fold cross-validation.

Next, we employed another evaluation metric called Leave-One-Disease-Out Cross-Valida-

tion(LODOCV) to verify the prediction performance when no prior information is available.

Specifically, for each disease d, we removed all known miRNAs associated with d and carried

out predictions based on miRNA association information of the other diseases. Since there are

no known associations for each tested disease in advance, LODOCV is more difficult than

global LOOCV and five-fold cross-validation. We calculated an AUC value for each disease in

LODOCV and thus obtained a vector consisting of 328 AUC values for each method. We then

demonstrated the comparison results by density plots (Fig 4A). As a result, the AUC values

obtained by our method mainly concentrated over the interval [0.9, 1], indicating a better

graph-based semi-supervised learning for miRNA-disease association prediction
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performance than that of the other methods in terms of LODOCV. Wilcoxon signed-rank test

further confirmed the statistical significance of the comparison results (Table 1).

Lastly, we conducted experiments on real datasets to further demonstrate the prediction

ability of our method. To this end, we first downloaded the older version of HMDD (v1.0)

which contains 1474 known associations between 129 diseases and 280 miRNAs after filtering

(S7 File). Compared to HMDD v1.0, there were 4614 (i.e. 6088–1474) new miRNA-disease

Fig 3. The comparison results between our method and the other four methods in terms of (A) global LOOCV; (B) five-fold cross-validation.

https://doi.org/10.1371/journal.pcbi.1006931.g003

Fig 4. (A) The comparison results between our method and the other four methods in terms of LODOCV. As shown in the density plot, AMVML lies in the rightmost

position of the figure, indicating a superior performance over the other methods; (B) The number of identified true positives in the latest HMDD by all methods.

https://doi.org/10.1371/journal.pcbi.1006931.g004
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associations, 199 (i.e. 328–129) new diseases and 270 (i.e. 550–280) new miRNAs involved in

HMDD v2.0. In particular, among the 4614 newly recorded associations in HMDD v2.0, 2445

associations were related with miRNAs and diseases already existed in HMDD v1.0, while

2169 associations were related with either new miRNAs or new diseases only contained in

HMDD v2.0. Moreover, the degree distribution of miRNAs as well as that of diseases for the

4614 associations indicating that only a minority of these associations were related with highly

connected miRNAs and diseases (S1 Fig). We then applied each method on HMDD v1.0 and

validated the prediction results by the 4614 associations newly added in HMDD v2.0. There-

fore, for each method, the greater the number of true positives predicted, the better the perfor-

mance. Specifically, we compared the number of true positives in the top-NmiRNAs predicted

by each method with N ranging from 10 to 50 and an interval of 10. As exhibited in Fig 4B,

AMVML obtained greater number of validated disease-associated miRNAs than the other

methods. Similar results were also obtained with increased N and larger intervals (S2 Fig).

Taken together, the experimental results under various evaluation metrics proved the effective-

ness of our method.

Parameter analysis

There were two trade-off parameters α and β in our method which balance the learned similar-

ity matrices and the predicted association matrix. Generally, since our objective function is a

minimization problem, setting a large value to α or β indicates a large impact of the label con-

sistency between diseases or miRNAs on the learned disease or miRNA similarity matrix. To

show a reasonable searching range of these two parameters as well as a general trend of the pre-

diction performance affected by varying their values, in this subsection, we analyzed their

influences on the prediction accuracy in terms of five-fold cross-validation (Fig 5A). Similar

trends were also observed in global LOOCV. In particular, when β was fixed, the smaller the α,

the better the performance. In contrast, when α was fixed, the performance varied in a "U"

shape with the change of β. We can see that the proposed method reached the best perfor-

mance when both α and β were equal to 1e-4.

Convergence speed in practice

As described in previous section, we have theoretically proved the convergence of our algo-

rithm. Here we investigated the convergence rate of our method by analyzing the variations of

the objective function value in (Eq 11) with respect to the number of iterations. As demon-

strated in Fig 5B, the objective function value reached a steady state within 5 iterations, indicat-

ing a fast convergence rate of our method.

Case study

In this section, we conducted a case study on thyroid neoplasms to identify potential miRNA

biomarkers for this disease. The overall prediction results and the differential expression analy-

sis for several other diseases were also provided on Github (https://github.com/alcs417/

AMVML). Thyroid cancer is the most common endocrine cancer and its incidence rate has

increased rapidly over recent years[39]. We first downloaded the miRNA expression profiles

Table 1. Statistical significance of differences in performance between AMVML and the other four methods in terms of LODOCV. P-values were calculated by Wil-

coxon signed rank test.

IMCMDA SPM PBMDA EGBMMDA

p-value 2.67e-10 1.36e-41 2.86e-13 2.18e-21

https://doi.org/10.1371/journal.pcbi.1006931.t001
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together with the clinical information of thyroid carcinoma from GDC data portal (https://

portal.gdc.cancer.gov/projects/TCGA-THCA). Concretely, the downloaded data contained

506 tumors samples and 59 normal samples and each sample measured the expression level of

1881 miRNAs. We then applied our method on the given disease to obtain the top-10 pre-

dicted miRNAs(Table 2). Specifically, we evaluated the classification power of these miRNAs

in differentiating tumor samples from normal samples according to their expression profile

and the results of five-fold cross-validation illustrated that they could achieve a mean classifica-

tion accuracy of 0.983(S3 Fig). Next, we calculated for each miRNA the fold-change as well as

the statistical significance of differential expression using the R package edgeR (Table 2)[40].

Besides, we searched in another two databases dbDEMC and miR2Disease to see if the pre-

dicted miRNAs were also recorded in them[41, 42]. dbDEMC is an integrated database that

designed to store and display differentially expressed miRNAs in human cancers detected by

high-throughout methods while miR2Disease is a manually curated database providing

Fig 5. (A) The influence of the two parameters alpha and beta on the prediction accuracy of five-foldcross-validation; (B) The convergence rate of

AMVML.

https://doi.org/10.1371/journal.pcbi.1006931.g005

Table 2. Top-10 miRNAs predicted to be associated with thyroid neoplasms by AMVML.

Ranking miRNA logFC FDR Evidence

1 hsa-mir-181a-2 1.47 1.55e-41 dbDEMC; miR2Disease

2 hsa-mir-205 2.01 2.76e-06 dbDEMC

3 hsa-mir-143 -0.26 1.51e-01 dbDEMC

4 hsa-mir-145 -0.4 1.52e-03 dbDEMC

5 hsa-mir-101-2 -0.044 1.00 unconfirmed

6 hsa-mir-34a 2.23 1.86e-59 dbDEMC;miR2Disease

7 hsa-mir-133a-1 -0.62 2.37e-03 dbDEMC

8 hsa-mir-99a -0.42 2.24e-06 dbDEMC

9 hsa-mir-218-1 -0.61 2.43e-08 dbDEMC

10 hsa-mir-34c -0.14 7.20e-01 unconfirmed

https://doi.org/10.1371/journal.pcbi.1006931.t002
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information about miRNA deregulation in various human diseases. As a result, the expression

level of the top predicted miRNA hsa-mir-181a-2 was significantly altered between tumor

samples and normal samples (log2 fold-change > 1 and adjusted p-value< 0.05), which is con-

sistent with the records in both db2DEMC and miR2Disease. Therefore, we further checked

whether this miRNA could serve as a potential biomarker for thyroid cancer. Specifically, we

carried out one-way ANOVA test to validate whether its expression level at different tumor

stages also significantly altered. The tumor stages of all patients were retrieved from the clinical

information and there were six pathologic stages after filtering. As expected, the expression

level of hsa-mir-181a-2 varied significantly among different stages (Fig 6A). Furthermore, the

Kaplan-Meier survival analysis confirmed that the survival rates of patients were also signifi-

cantly related with its expression level (Fig 6B)[43]. Taken together, our results provided new

evidence for the functional role of hsa-mir-181a-2 in the development of thyroid cancer.

Discussion

Identification of disease-associated miRNAs has drawn much attention during the past decade

and it still remains a challenging task. In this study, we proposed a novel computational frame-

work to effectively uncover the potential links between miRNAs and diseases. Our method

integrated datasets from multiple sources and adaptively learned two new similarity graphs.

Specifically, instead of assigning predetermined weight values to each input similarity matrix,

the proposed method automatically updated the view weights according to the reliability of

each view. It is also worth mentioning that our method could be easily extended if there are

new data sources available. Besides, our method could simultaneously update the prediction

Fig 6. (A) The expression profiles of hsa-mir-181a-2 at different tumor stages. P-value was calculated by one-way ANOVA test; (B) Kaplan-Meier survival analysis

using hsa-mir-181a-2 in thyroid cancer. The patients were divided into two groups ’High’ and ’Low’ according to their expression level of hsa-mir-181a-2 against the

sample mean. As observed, patients with lower expression levels were at lower risk level.

https://doi.org/10.1371/journal.pcbi.1006931.g006
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results from both disease space and miRNA space. The convergence of our method has been

proved both theoretically and experimentally. To demonstrate the utility of our method, we

compared AMVML with five state-of-the-art methods and the experimental results confirmed

the superiority of our method. We then applied our method on thyroid cancer and found that

hsa-mir-181a-2 could be a potential prognostic biomarker. Notably, our method is not limited

to discover miRNAs for which an association is already known between its paralogous miRNA

and the same disease. In essence, as a semi-supervised learning model, our method could fully

take advantage of the limited number of known miRNA-disease associations together with

multiple sources of biological datasets to reliably predict novel associations. Therefore, we

anticipate that our method could serve as an effective tool for miRNA-disease association

prediction.

The superior performance of our model can be largely attributed to the following two rea-

sons. First, the consensus similarity matrices obtained from multiple biological datasets based

on multi-view learning for both miRNAs and diseases are more robust to outliers and noises

compared to existing methods. Second, the graph-based multi-label learning unified the two

prediction spaces into one optimization framework, which enhances the inherent correlations

between miRNAs and diseases from the label-consistency point of view. Nevertheless, our

method still has some limitations. Specifically, there are two parameters α and β in the objec-

tive function that need to be tuned in advance, and it is a non-trivial task to find the best com-

bination of the two parameters. In addition, although our method can adaptively learn a new

affinity graph from different data sources, the integration of unreliable similarity matrices

might weaken the overall prediction accuracy.
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