Z = 4

Mo $K\alpha$ radiation

 $0.24 \times 0.21 \times 0.18 \; \rm mm$

 $\mu = 0.37 \text{ mm}^{-1}$

T = 290 K

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

2-Chloro-6-methoxyquinoline-3carbaldehyde

R. Subashini,^a F. Nawaz Khan,^a Machhindra Gund,^a Venkatesha R. Hathwar^b and Seik Weng Ng^c*

^aChemistry Division, School of Science and Humanities, VIT University, Vellore 632 014, Tamil Nadu, India, ^bSolid State and Structural Chemistry Unit, Indian Institute of Science, Bangalore 560 012, Karnataka, India, and ^cDepartment of Chemistry, University of Malaya, 50603 Kuala Lumpur, Malaysia Correspondence e-mail: seikweng@um.edu.my

Received 6 October 2009; accepted 6 October 2009

Key indicators: single-crystal X-ray study; T = 290 K; mean σ (C–C) = 0.002 Å; R factor = 0.038; wR factor = 0.115; data-to-parameter ratio = 16.2.

The quinoline fused-ring system of the title compound, $C_{11}H_8CINO_2$, is planar (r.m.s. deviation = 0.0095 Å); the formyl group is slightly bent out of this plane [C-C-C-O torsion angles = -2.4 (3) and 175.9 (2)°].

Related literature

For a review of the synthesis of quinolines by the Vilsmeier– Haack reaction, see: Meth-Cohn (1993).

Experimental

Crystal data C₁₁H₈ClNO₂

 $M_r = 221.63$

Monoclinic, $P2_1/c$	
a = 7.7072 (9) Å	
b = 14.3474 (13) Å	
c = 9.3487 (10) Å	
$\beta = 109.415 \ (2)^{\circ}$	
V = 974.98 (18) Å ³	

Data collection

Bruker SMART area-detector	6533 measured reflections
diffractometer	2221 independent reflections
Absorption correction: multi-scan	1702 reflections with $I > 2\sigma(I)$
(SADABS; Sheldrick, 1996)	$R_{\rm int} = 0.030$
$T_{\min} = 0.917, \ T_{\max} = 0.937$	

Refinement

 $\begin{array}{ll} R[F^2 > 2\sigma(F^2)] = 0.038 & 137 \text{ parameters} \\ wR(F^2) = 0.115 & H\text{-atom parameters constrained} \\ S = 1.03 & \Delta\rho_{\max} = 0.21 \text{ e } \text{\AA}^{-3} \\ 2221 \text{ reflections} & \Delta\rho_{\min} = -0.24 \text{ e } \text{\AA}^{-3} \end{array}$

Data collection: *SMART* (Bruker, 2004); cell refinement: *SAINT* (Bruker, 2004); data reduction: *SAINT*; program(s) used to solve structure: *SHELXS97* (Sheldrick, 2008); program(s) used to refine structure: *SHELXL97* (Sheldrick, 2008); molecular graphics: *X*-*SEED* (Barbour, 2001); software used to prepare material for publication: *publCIF* (Westrip, 2009).

We thank the Department of Science and Technology, India, for use of the diffraction facility at IISc under the IRHPA–DST program; FNK thanks the DST for Fast Track Proposal funding. We also thank VIT University and the University of Malaya for supporting this study.

Supplementary data and figures for this paper are available from the IUCr electronic archives (Reference: BT5087).

References

Barbour, L. J. (2001). J. Supramol. Chem. 1, 189-191.

Bruker (2004). SAINT and SMART. Bruker AXS Inc., Madison, Wisconsin, USA.

Meth-Cohn, O. (1993). Heterocycles, 35, 539-557.

Sheldrick, G. M. (1996). SADABS. University of Göttingen, Germany.

Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Westrip, S. P. (2009). publCIF. In preparation.

supplementary materials

Acta Cryst. (2009). E65, o2723 [doi:10.1107/S1600536809040847]

2-Chloro-6-methoxyquinoline-3-carbaldehyde

R. Subashini, F. N. Khan, M. Gund, V. R. Hathwar and S. W. Ng

Experimental

A Vilsmeier-Haack adduct prepared from phosphorus oxytrichloride (6.5 ml, 70 mmol) and *N*,*N*-dimethylformamide (2.3 ml, 30 mmol) at 273 K was added to *N*-(4-anisyl)acetamide (1.65 g, 10 mmol). The mixture was heated at 353 K for 15 h. The mixture was poured onto ice; the white product was collected and dried. The compound was purified by recrystallization from a petroleum ether/ethyl acetate mixture.

Refinement

H-atoms were placed in calculated positions (C–H 0.93–0.96 Å) and were included in the refinement in the riding model approximation, with U(H) set to 1.2-1.5U(C).

Figures

Fig. 1. Anisotropic displacement ellipsoid plot (Barbour, 2001) of the title compound at the 50% probability level; hydrogen atoms are drawn as spheres of arbitrary radius.

2-Chloro-6-methoxyquinoline-3-carbaldehyde

Crystal data	
C ₁₁ H ₈ ClNO ₂	$F_{000} = 456$
$M_r = 221.63$	$D_{\rm x} = 1.510 {\rm ~Mg~m}^{-3}$
Monoclinic, $P2_1/c$	Mo <i>K</i> α radiation, $\lambda = 0.71073$ Å
Hall symbol: -P 2ybc	Cell parameters from 842 reflections
a = 7.7072 (9) Å	$\theta = 2.0-24.7^{\circ}$
<i>b</i> = 14.3474 (13) Å	$\mu = 0.37 \text{ mm}^{-1}$
c = 9.3487 (10) Å	T = 290 K
$\beta = 109.415 \ (2)^{\circ}$	Block, colorless
$V = 974.98 (18) \text{ Å}^3$	$0.24\times0.21\times0.18~mm$
Z = 4	

Data collection

Bruker SMART area-detector diffractometer	2221 independent reflections
Radiation source: fine-focus sealed tube	1702 reflections with $I > 2\sigma(I)$

supplementary materials

$R_{\rm int} = 0.030$
$\theta_{max} = 27.5^{\circ}$
$\theta_{\min} = 2.7^{\circ}$
$h = -10 \rightarrow 9$
$k = -18 \rightarrow 10$
$l = -12 \rightarrow 12$

Refinement

Refinement on F^2	Secondary atom site location: difference Fourier map
Least-squares matrix: full	Hydrogen site location: inferred from neighbouring sites
$R[F^2 > 2\sigma(F^2)] = 0.038$	H-atom parameters constrained
$wR(F^2) = 0.115$	$w = 1/[\sigma^2(F_0^2) + (0.068P)^2 + 0.0419P]$ where $P = (F_0^2 + 2F_c^2)/3$
<i>S</i> = 1.03	$(\Delta/\sigma)_{\text{max}} = 0.001$
2221 reflections	$\Delta \rho_{max} = 0.21 \text{ e } \text{\AA}^{-3}$
137 parameters	$\Delta \rho_{min} = -0.24 \text{ e } \text{\AA}^{-3}$
Primary atom site location: structure-invariant direct methods	Extinction correction: none

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^2)

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
Cl1	0.12213 (7)	0.04921 (3)	0.68956 (6)	0.05816 (19)
O1	0.02629 (18)	0.34429 (9)	0.71932 (16)	0.0563 (4)
02	0.77125 (17)	0.34949 (8)	0.35759 (14)	0.0480 (3)
N1	0.35512 (19)	0.10458 (9)	0.56310 (15)	0.0399 (3)
C1	0.2333 (2)	0.13533 (11)	0.62026 (18)	0.0386 (4)
C2	0.1913 (2)	0.23022 (11)	0.63341 (17)	0.0365 (4)
C3	0.2892 (2)	0.29435 (11)	0.58240 (18)	0.0366 (3)
Н3	0.2659	0.3576	0.5885	0.044*
C4	0.4244 (2)	0.26584 (10)	0.52104 (16)	0.0340 (3)
C5	0.5323 (2)	0.32923 (11)	0.47029 (18)	0.0372 (4)
Н5	0.5165	0.3931	0.4772	0.045*
C6	0.6601 (2)	0.29554 (11)	0.41088 (18)	0.0375 (4)
C7	0.6864 (2)	0.19874 (12)	0.40126 (18)	0.0406 (4)
H7	0.7733	0.1771	0.3600	0.049*
C8	0.5865 (2)	0.13662 (11)	0.45142 (18)	0.0403 (4)
H8	0.6067	0.0730	0.4456	0.048*
C9	0.4520 (2)	0.16836 (10)	0.51239 (17)	0.0342 (3)
C10	0.0534 (2)	0.26334 (14)	0.70166 (19)	0.0446 (4)
H10	-0.0153	0.2191	0.7322	0.054*
C11	0.7544 (3)	0.44805 (12)	0.3677 (2)	0.0542 (5)
H11A	0.8378	0.4783	0.3259	0.081*
H11B	0.7835	0.4657	0.4721	0.081*
H11C	0.6306	0.4665	0.3120	0.081*

	U^{11}	U^{22}	U ³³	U^{12}	U^{13}	U^{23}
C11	0.0724 (4)	0.0424 (3)	0.0754 (4)	-0.0099 (2)	0.0455 (3)	0.0028 (2)
01	0.0572 (8)	0.0491 (9)	0.0728 (9)	0.0069 (6)	0.0355 (7)	-0.0077 (6)
O2	0.0529 (7)	0.0395 (7)	0.0631 (8)	-0.0047 (5)	0.0347 (6)	-0.0021 (5)
N1	0.0497 (8)	0.0302 (8)	0.0442 (7)	0.0003 (6)	0.0216 (6)	-0.0002 (5)
C1	0.0455 (9)	0.0337 (8)	0.0394 (8)	-0.0033 (7)	0.0176 (7)	0.0014 (6)
C2	0.0376 (8)	0.0358 (8)	0.0369 (8)	0.0018 (6)	0.0136 (7)	-0.0017 (6)
C3	0.0423 (8)	0.0285 (8)	0.0411 (8)	0.0043 (6)	0.0168 (7)	-0.0013 (6)
C4	0.0379 (8)	0.0307 (8)	0.0346 (8)	0.0030 (6)	0.0135 (6)	0.0001 (6)
C5	0.0425 (8)	0.0278 (8)	0.0435 (8)	0.0003 (6)	0.0174 (7)	-0.0018 (6)
C6	0.0393 (8)	0.0353 (9)	0.0397 (8)	-0.0029 (6)	0.0157 (7)	-0.0001 (6)
C7	0.0437 (9)	0.0385 (9)	0.0442 (9)	0.0056 (7)	0.0209 (7)	-0.0032 (7)
C8	0.0493 (9)	0.0303 (9)	0.0448 (9)	0.0069 (7)	0.0205 (7)	-0.0013 (6)
C9	0.0406 (8)	0.0278 (8)	0.0350 (8)	0.0019 (6)	0.0138 (6)	-0.0001 (6)
C10	0.0431 (9)	0.0510 (11)	0.0445 (9)	0.0002 (8)	0.0208 (7)	-0.0024 (8)
C11	0.0605 (12)	0.0381 (10)	0.0751 (13)	-0.0109 (8)	0.0373 (10)	-0.0039 (8)

Atomic displacement parameters $(Å^2)$

Geometric parameters (Å, °)

Cl1—C1	1.7461 (16)	C4—C9	1.421 (2)
O1—C10	1.201 (2)	C5—C6	1.370 (2)
O2—C6	1.3654 (18)	С5—Н5	0.9300
O2—C11	1.426 (2)	C6—C7	1.411 (2)
N1—C1	1.302 (2)	C7—C8	1.359 (2)
N1—C9	1.362 (2)	С7—Н7	0.9300
C1—C2	1.414 (2)	C8—C9	1.414 (2)
C2—C3	1.372 (2)	С8—Н8	0.9300
C2-C10	1.487 (2)	C10—H10	0.9300
C3—C4	1.407 (2)	C11—H11A	0.9600
С3—Н3	0.9300	C11—H11B	0.9600
C4—C5	1.416 (2)	C11—H11C	0.9600
C6—O2—C11	117.12 (13)	C5—C6—C7	120.73 (14)
C1—N1—C9	117.96 (13)	C8—C7—C6	120.92 (14)
N1—C1—C2	125.38 (14)	С8—С7—Н7	119.5
N1—C1—Cl1	114.97 (12)	С6—С7—Н7	119.5
C2—C1—Cl1	119.62 (12)	С7—С8—С9	120.21 (14)
C3—C2—C1	116.56 (14)	С7—С8—Н8	119.9
C3—C2—C10	119.25 (15)	С9—С8—Н8	119.9
C1-C2-C10	124.17 (15)	N1—C9—C8	118.96 (14)
C2—C3—C4	120.94 (14)	N1—C9—C4	122.11 (13)
С2—С3—Н3	119.5	C8—C9—C4	118.93 (14)
С4—С3—Н3	119.5	O1—C10—C2	123.35 (17)
C3—C4—C5	123.14 (14)	O1-C10-H10	118.3
C3—C4—C9	117.05 (14)	C2-C10-H10	118.3
C5—C4—C9	119.81 (13)	O2—C11—H11A	109.5

supplementary materials

C6—C5—C4	119.40 (15)	O2-C11-H11B	109.5
С6—С5—Н5	120.3	H11A—C11—H11B	109.5
С4—С5—Н5	120.3	O2-C11-H11C	109.5
O2—C6—C5	124.81 (15)	H11A—C11—H11C	109.5
O2—C6—C7	114.46 (13)	H11B—C11—H11C	109.5
C9—N1—C1—C2	0.5 (2)	C4—C5—C6—C7	-0.6 (2)
C9—N1—C1—Cl1	-177.49 (11)	O2—C6—C7—C8	179.38 (15)
N1—C1—C2—C3	-0.6 (2)	С5—С6—С7—С8	-0.4 (2)
Cl1—C1—C2—C3	177.35 (12)	C6—C7—C8—C9	0.9 (2)
N1—C1—C2—C10	-178.93 (16)	C1—N1—C9—C8	179.30 (15)
Cl1—C1—C2—C10	-1.0 (2)	C1—N1—C9—C4	0.3 (2)
C1—C2—C3—C4	-0.2 (2)	C7—C8—C9—N1	-179.39 (15)
C10—C2—C3—C4	178.22 (15)	C7—C8—C9—C4	-0.4 (2)
C2—C3—C4—C5	-178.40 (15)	C3-C4-C9-N1	-1.1 (2)
C2—C3—C4—C9	1.0 (2)	C5-C4-C9-N1	178.34 (14)
C3—C4—C5—C6	-179.51 (15)	C3—C4—C9—C8	179.98 (14)
C9—C4—C5—C6	1.1 (2)	C5—C4—C9—C8	-0.6 (2)
C11—O2—C6—C5	1.3 (2)	C3-C2-C10-O1	-2.4 (3)
C11—O2—C6—C7	-178.48 (16)	C1-C2-C10-O1	175.9 (2)
C4—C5—C6—O2	179.62 (15)		

