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Abstract: Major Depressive Disorder (MDD) is a leading cause of disability worldwide, creating a
high medical and socioeconomic burden. There is a growing interest in the biological underpinnings
of depression, which are reflected by altered levels of biological markers. Among others, enhanced
inflammation has been reported in MDD, as reflected by increased concentrations of inflammatory
markers—C-reactive protein, interleukin-6, tumor necrosis factor-α and soluble interleukin-2 receptor.
Oxidative and nitrosative stress also plays a role in the pathophysiology of MDD. Notably, increased
levels of lipid peroxidation markers are characteristic of MDD. Dysregulation of the stress axis,
along with increased cortisol levels, have also been reported in MDD. Alterations in growth
factors, with a significant decrease in brain-derived neurotrophic factor and an increase in fibroblast
growth factor-2 and insulin-like growth factor-1 concentrations have also been found in MDD.
Finally, kynurenine metabolites, increased glutamate and decreased total cholesterol also hold
promise as reliable biomarkers for MDD. Research in the field of MDD biomarkers is hindered
by insufficient understanding of MDD etiopathogenesis, substantial heterogeneity of the disorder,
common co-morbidities and low specificity of biomarkers. The construction of biomarker panels
and their evaluation with use of new technologies may have the potential to overcome the above
mentioned obstacles.

Keywords: depression; biomarkers; inflammatory; interleukins; oxidative stress; brain-derived
neurotrophic factor (BDNF); panels; melancholic; atypical

1. Introduction

Depression, or Major Depressive Disorder (MDD) is the most prevalent psychiatric disorder
worldwide and a leading cause of disease burden [1]. It is mainly characterized by depressed mood,
anhedonia, sleep and appetite disturbances, loss of interest or pleasure in activities once enjoyed and
feelings of guilt or worthlessness. A high suicide rate among individuals suffering from the disorder is
the darkest side of depression. Currently affecting around 300 million people worldwide and with
5%–17% of the population suffering from the disorder at least once in their lifetime, depression is
a major clinical, emotional and socioeconomic burden for society. The World Health Organization
(WHO, Geneva, Switzerland) estimates that, by 2030, depression will have become the leading
cause of disability worldwide [2]. An important issue in depression is that of low remission rates.
Only approximately half of the patients achieve complete remission [3] and with each subsequent
treatment remission rates decrease [4]. The efficacy of classical antidepressant drugs, which target
the monoamine systems, is only marginally higher than that of a placebo [5]. An urgent need exists
to find biomarkers in order to better understand the pathogenesis of depression, monitor treatment
outcomes and identify new drug targets [6]. The aim of the study was to provide a comprehensive
review of potential depression markers. For some, currently available evidence is insufficient to allow
for regarding of them as biomarkers sensu stricto. However, alterations in their concentrations may
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provide relevant information concerning the pathophysiology of depression and be a starting point for
future, larger biomarker studies.

1.1. Concepts of Depression

The etiopathogenesis of depression is highly complex and therefore still not fully understood.
Although the monoaminergic theory of depression is now universally accepted, other pathologies
have also been found to be associated with the development of the condition. Research to date
has focused mainly on stress axis dysregulation (hypothalamus–pituitary–adrenal, HPA), oxidative
stress-induced damage [7–10], hippocampal and frontal lobes dysfunction (neurodegeneration) [11,12],
and neurotoxic, inflammatory and immunological processes [7,13–17]. In recent years, knowledge
of genetic and epigenetic factors which could contribute to depression has expanded. Furthermore,
many psychological hypotheses seek to explain the causes of depression (e.g., learned helplessness
hypothesis) [18]. Finally, the neurodevelopmental theory of depression attempts to combine previous
approaches with particular emphasis on the impact of the earliest stages of a person’s life on MDD
occurrence [19].

1.2. Heterogeneity of Depression

Depression is a heterogeneous disorder. To date, no universally accepted classification of depression
subtypes has been developed. Most authors acknowledge the existence of melancholic and atypical
subtypes [20], but others also mention the following subtypes: dopamine-related subset with anhedonia,
inflammatory subset [21], the existence of which is questioned by others [22], suicidal depression [23],
anxious depression, depression with functional and somatic traits (closely related to chronic fatigue
syndrome) [24], reactive depression, psychotic depression, dysthymia [11], depression with panic
attacks, depression in people with obsessive traits, depression accompanying a known physical
illness, and pseudo-demented depression [25]. According to some authors, MDD should not be
regarded as a single disease but rather a group of diseases with distinct causes, patho-physiologies and
symptomatologies [11,26].

1.3. Diagnosis of Depression

The diagnosis of depression is currently symptom-based. There are several psychometric
scales which help clinicians to assess different dimensions of depressive functioning, of which the
most commonly used are the Hamilton Depression Rating Scale (HDRS) [27], Montgomery-Asberg
Depression Rating Scale (MADRS) [28] and Beck Depression Inventory [29]. The International
Classification of Diseases (ICD) (from the 6th to the 11th edition) and the Diagnostic and Statistical
Manual (DSM) (from I to V edition) provide a set of criteria for diagnosing depression. However,
they are based on the patient’s self-reports and the clinician’s observations of patient behaviour [30].
Neither DSM nor ICD makes reference to any objective, measurable biological features that could assist in
diagnosing depression. This makes the entire diagnostic process subjective, to a certain degree, and leads
to a considerable risk of misdiagnosis and suboptimal treatment, which may last for many years. By way
of illustration, bipolar disorder (BPD) in its depressive phase is frequently misdiagnosed as MDD [31].
Furthermore, depressive symptomatology cannot be clearly understood and properly codified in
psychiatric classifications without a thorough knowledge of the neurobiological, pharmacological and
etiological mechanisms underlying the development of depression [9]. Another important issue is
the contradictory character of several symptoms of depression in DSM (e.g., increased or decreased
body mass or appetite, hyper- or hyposomnia, decreased or increased activity). A few distinct or even
opposite clinical pictures can be built based on these criteria. Hence, the use of ‘depression’ as an
umbrella term could lack biological validity [32,33]. Additionally, the discovery of objective, biological
markers of depression would not only be an invaluable help for clinicians but could also serve as a
springboard for improving our understanding of the biology of depression with its various subtypes.



J. Clin. Med. 2020, 9, 3793 3 of 54

1.4. Biomarker Subtypes

A biomarker is defined as a characteristic that can be objectively measured and evaluated as an
indicator of physiological processes, pathogenic processes or responses to a therapeutic intervention [34].
Markers should not be confounded with characteristics of a particular disease [35]. There are several
classifications of biomarkers described in the literature. For the purposes of this review, we adopted
(with modifications) a classification proposed by Lopresti et al. [23] presented in Figure 1. Biomarkers
can be divided into diagnostic biomarkers, which are used to confirm the presence or absence of
disease; treatment biomarkers, which could be helpful in selecting optimal treatment for a particular
patient from a range of available therapeutic options; treatment–response biomarkers (also called
mediators) to measure treatment progress; prognostic biomarkers to predict disease course; and, finally,
predictive biomarkers, whose role is to predict the future onset of disease [23]. Biomarkers can also be
classified as trait, state and endophenotype biomarkers [36]. Trait biomarkers are those which can be
observed continuously—not only in the acute phase of the disease, but also in remission or even before
disease onset. The last characteristic makes them similar, to a certain degree, to predictive biomarkers.
Trait biomarkers may help identify vulnerable individuals. State biomarkers reflect the current clinical
status of the patient. They are present during the acute phase of the disease or shortly before disease
onset, but they disappear in remission. Endophenotype biomarkers are useful in subtyping depression.
They are based on the relationship between depressive phenotypes and specific genetic factors [36].
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Figure 1. Biomarkers can be divided into several subtypes according to their function (top half of the
figure, solid lines) or based on when they can be observed (bottom half of the figure, dashed lines).

Biomarkers should be highly sensitive and disease-specific (>80%) to be clinically useful [37].
Receiver operating characteristic area under the curve (ROC AUC) is a measure of biomarker accuracy,
with ROC AUC < 0.5 suggesting poor accuracy, and ROC AUC close to 1 suggesting high accuracy [38].

1.5. Biological Systems Affected in Depression

In depression, as evidence to date suggests, five biological systems are mainly affected. Therefore,
they constitute natural sources of potential biomarkers. These are the inflammatory, neurotransmitter,
neuroendocrine, neurotrophic and metabolic systems (Figure 2) Each system can be assessed at
different biological levels (this is called the ‘omics’ approach)—from genomic and epigenomic,
through transcriptomic and proteomic to metabolomic (Figure 3). It is worth emphasizing that not
every technique is equally efficient in the evaluation of a particular system. Apart from the ‘omics’
mentioned above, there is a growing understanding of the human microbiome and its impact on
mental health. Therefore, its assessment might help establish a more accurate diagnosis and provide
more appropriate treatment for depression [39].
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Figure 2. The summary of the most important depression markers. In bold—those confirmed by a
recent umbrella meta-analysis [40]. Abbreviations: 3-HK—3-hydroxykynurenine; 5-HT—serotonin;
8-OHdG—8-hydroxy-2-deoxiguanosine; BDNF—brain-derived neurotrophic factor; CAT—catalase;
CRP—C-reactive protein; DA—dopamine; DST—dexamethasone suppression test; FGF-2—fibroblast
growth factor-2; GABA—gamma-aminobutyric acid; GDNF—glial cell line derived neurotrophic
factor; GH—growth hormone; HDL—high-density lipoprotein; IGF-1—insulin-like growth factor-1;
IL-1—interleukin-1; IL-2—interleukin-2; IL-4—interleukin-4; IL-6—interleukin-6; IL-8—interleukin-8;
IL-10—interleukin-10; IL-1RA—interleukin-1 receptor antagonist; INF-γ—interferon-γ; KYNA—kynurenic
acid; LDL—low-density lipoprotein; MDA—malonylo-dialdehyde; MPO—myeloperoxidase;
NA—noradrenaline; NGF—nerve growth factor (NGF); O&NS—oxidative and nitrosative stress;
PUFAs—polyunsaturated fatty acids; QA—quinolinic acid; ROS/RNS—reactive oxygen/nitrogen species;
sIL-2R—soluble interleukin-2 receptor; SOD—superoxide dismutase; TAC—total antioxidant capacity;
TNF-α—tumor necrosis factor-α; VEGF—vascular endothelial growth factor; VGF—VGF nerve
growth factor.
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2. Methods

A literature search was conducted in PubMed, Scopus and Web of Science databases
using keywords: ‘depression’, ‘biomarker’, ‘marker’, ‘proteomic’, ‘metabolomic’, ‘inflammatory’,
‘growth factors’, ‘cytokines’, ‘kynurenine’, ‘oxidative stress’, ‘genetic’, ‘subtypes’, ‘melancholic’,
‘biosignature’ as well as combinations of these terms. Relevant articles were then included with the
intention to cover the widest possible spectrum of different markers for depression.

3. Inflammatory Findings in Depression

The link between inflammation and depression has been conclusively proven and widely
reviewed [13,41,42]. In approximately 30% of patients with MDD, the inflammatory response is
disturbed [43] and patients with inflammatory disorders have higher depression rates. The distribution
of inflammatory markers elevation in a depressive population is continuous and does not allow for
distinguishing a distinct inflammatory subtype of depression [22].

Chronic, low grade inflammation is the way through which behavioral and social variables impact
health [44]. Depression is associated with chronic low-grade inflammation and is compared to a
chronic cold [15]. Patients suffering from autoimmune and atopic disorders, metabolic syndrome,
obesity, tobacco dependence, dental caries, atherosclerosis—all of which are associated with increased
inflammation—are at a higher risk of depression (Berk et al., 2013). Inflammation is described as a
major mediator in the development of MDD and the metabolic syndrome [45]. However, mild chronic
inflammation is only a general concept which does not adequately explain the pathophysiology of
depression [46].

While it is unlikely that depression is simply an inflammatory disorder, enhanced activation of
the immune system in individuals with depression is not merely coincidental. There is substantial
evidence confirming the involvement of inflammatory factors in the pathogenesis of depression [47–52].
Inflammation is present not only during depressive episodes—elevated levels of inflammatory factors
significantly contribute to the occurrence of the first depressive episode [53–55]. Physiological and
psychological stress, the most important risk factor for depression, has been proven to cause an immune
challenge for the body and provoke an inflammatory response [56,57]. Smoking and obesity are
common in depression [58,59] and can influence the concentration of inflammatory markers [60,61].
Continuous elevation of cytokines leads directly to increased levels of cortisol by stimulating the HPA
axis and increasing corticotropin-releasing hormone (CRH) production [48] and, indirectly, by inducing
glucocorticoid resistance, to neurotransmitter concentration changes which are interpreted by the
brain as stressors [62,63]. Additionally, elevated cytokine levels cause an increase in the expression
of serotonin transporter and induce indoleamine 2,3-dioxygenase (IDO) activity, thus enhancing the
kynurenine pathway in the brain. All these factors contribute to the development of depression [64].
Increased inflammation leads to cognitive decline and is likely to be responsible for the impairment of
cognitive function observed in depression [65].

The pro-inflammatory state, reflected by elevated levels of pro-inflammatory cytokines, manifests itself
externally in what is termed ‘sickness behaviour’, characterized by anhedonia, weight loss, anorexia,
memory dysfunction and impaired social interaction—symptoms that occur in MDD [66]. Central or
peripheral administration of pro-inflammatory cytokines, such as interleukin-1 (IL-1), interleukin-2
(IL-2), interleukin-6 (IL-6), interleukin-8 (IL-8), interferon-γ (INF-γ) or tumor necrosis factor-α (TNF-α),
may produce sickness behaviour [67–71].

The presence of inflammation, however, is not specific to MDD and could be an indicator
of two other major psychiatric disorders: schizophrenia and BPD, indicating the possibility of
common underlying pathogenetic pathways in disorders involved in immune dysfunction [72,73].
Dubois et al. [72] found that levels of inflammatory biomarkers are similarly elevated in all three
disorders and are more closely related to their stage and severity than to a particular disease. Variations
in cytokine concentrations could also predict the risk of disease occurrence and treatment resistance in
the above mentioned conditions.
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Danese et al. [73,74] revealed that people who were subjected to maltreatment or abuse in their
childhood were more prone to developing depression in adult life, which may be associated with
a predisposition to prolonged stress reactions (HPA axis dysregulation) and stronger inflammatory
responses in these individuals. Interestingly, a similar effect—a higher risk of depression—was observed
in adults who suffered from a serious illness in their childhood [75].

Since 1980s, with new discoveries emerging in the field of biological psychiatry, there has been a
controversy over whether depression is characterized by immune activation or immune suppression.
Both hypotheses were supported by convincing evidence. The lowered lymphocyte transformation
test (LTT) [76] and blunted natural killer cell activity (NKCA) [77] in depressive patients indicate
immunosuppression. At the same time, a large body of evidence supported the role of immune
activation in depression—enhanced levels of pro-inflammatory cytokines and acute phase proteins
were observed, together with immune cells activation [7,13–17].

To cut the Gordian knot, Maes and Carvalho [78] proposed a concept of two opposite systems
which act simultaneously in depression and counter-regulate each other: the immune-inflammatory
response system (IRS) and the compensatory immune-regulatory reflex system (CIRS). Both of them
are closely interrelated—the activation of IRS inevitably entails the activation of CIRS and the activated
CIRS opposes the inflammatory action of IRS. This interplay ultimately leads to the extinction of
the inflammatory response, which could be responsible for the self-limiting character of depression.
However, following the first depressive episode, once IRS and CIRS have been activated for the first
time, there is no return to the homeostatic status quo, and subsequent episodes are characterized by a
sensitized immune response, which could explain why successive depressive episodes frequently occur
without a tangible cause and are more severe. Greater severity of MDD has been linked to increased
activation of both IRS (neopterin, sIL-6R) and CIRS (sTNF-α, sIL-1RA, IL-10) [78]. The pro-inflammatory
cytokine IL-6 (IRS) enhances the production of anti-inflammatory sIL-1RA, IL-10 and glucocorticoids
(CIRS) [79,80]. Haptoglobin—an acute phase protein—has anti-inflammatory effects and acts as an
antioxidant [81]. An increase in IL-1β in depression (M1 activation) is accompanied by an increase in
soluble IL-1 receptor antagonist (sIL-1RA) (reflex inhibition). A precise description of IRS and CIRS
is beyond the scope of this review and can be found in a publication by Maes and Carvalho [78].
The main conclusions from this paper are presented in Table 1 [78].

Table 1. The main compounds of immune–inflammatory response system and compensatory
immune–regulatory reflex system. Abbreviations: IL-1β—interleukin-1β; IL-2—interleukin-2;
IL-4—interleukin-4; IL-6—interleukin-6; IL-10—interleukin-10; IL-1RA—interleukin-1 receptor
antagonist; sIL-2R—soluble interleukin-2 receptor; sTNF-R1—soluble tumor necrosis factor receptor 1;
sTNF-R2—soluble tumor necrosis factor receptor 1; TNF-α—tumor necrosis factor-α.

IRS CIRS

IL-1β sIL-1RA
TNF-α sTNF-R1, sTNF-R2

IL-2 signaling IL-2, sIL-2R
IL-6 trans-signaling IL-6 classical signaling

Th1 and Th17 lymphocyte activation Th2 lymphocyte activation with IL-4 production, Treg
lymphocyte activation with IL-10 production

M1 macrophagic activation

Many antidepressant drugs have anti-inflammatory properties which could partly explain their
efficacy in the treatment of depression [82]. Antidepressants reduce the production of pro-inflammatory
cytokines and increase concentrations of anti-inflammatory cytokines. In a recent meta-analysis,
antidepressant treatment was found to attenuate IL-1B, IL-6 and IL-10 levels as well as M1 polarization
of macrophages [83]. Interestingly, an inverse relationship was also observed: anti-inflammatory drugs
such as celecoxib, ibuprofen or TNF-α blocker infliximab were described as having antidepressant
properties [84–86].
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Among inflammatory markers, IL-6, C-reactive protein (CRP), TNF-α and soluble interleukin-2
receptor (sIL-2R) appear to have the greatest potential to serve as markers for depression.

3.1. Interleukin-6

3.1.1. As a Diagnostic Biomarker

Among all inflammatory cytokines, an increased concentration of IL-6 is probably the most
widely and consistently reported in depression. This relationship has been confirmed by several
meta-analyses [40,42,47,53,83,87–90]. Increased IL-6 could be an early marker for cognitive decline
in depression. It also corresponds to depression severity and increased HPA axis activity [91–93].
Kunugi et al. [21] proposed the use of cerebro-spinal fluid (CSF) IL-6 levels as a bio-marker for the
neuro-inflammatory subtype of MDD.

3.1.2. As a Treatment–Response Biomarker

Apart from being a potential diagnostic (state) biomarker, IL-6 has potential to serve as
a treatment-response biomarker. Levels of IL-6 decrease along with successful antidepressant
treatment [83], which could suggest that antidepressants have anti-inflammatory properties. Decreased
levels of leukocytic mRNA for IL-6 have been correlated with effective treatment [94] while persistently
elevated serum IL-6 concentrations seem to be characteristic of treatment-resistant depression (TRD) [79].
Interestingly, electroconvulsive therapy (ECT) is reported to increase IL-6 levels [95]. In a meta-analysis
by Hiles et al. [88], higher baseline IL-6 levels were correlated with a more significant decrease in
depressive symptoms following antidepressant treatment. Furthermore, a meta-analysis by Strawbridge
et al. [96] demonstrated that IL-6 levels decrease along with antidepressant treatment administration,
regardless of the outcome.

3.1.3. IL-6 Trans-Signaling

IL-6 can exert its biological activity via two separate signaling pathways—the classical pathway
and trans-signaling. In the classical pathway, IL-6 binds to membrane-bound IL-6 receptor (IL-6R),
present on a few cell types in the body. Elevated levels of pro-inflammatory cytokines may cause
cleavage of IL-6R from the cell surface into the bloodstream. The activation of soluble IL-6 receptors
(sIL-6R) is responsible for IL-6 trans-signaling [44], which is characteristic of inflammation, while
IL-6 classic signaling contributes to anti-inflammatory effects [97]. To assess the impact of IL-6
on the body, it is crucial to measure both IL-6 and sIL-6R concentrations. Elevated sIL-6R levels
combined with higher IL-6 concentrations indicate enhanced IL-6 trans-signaling, and thus enhanced
inflammation [83,98–100]. A study by Maes et al. reported elevated sIL-6R levels in depression [80].
Further studies specified that enhanced IL-6 trans-signaling is characteristic of an acute (current)
depressive episode (melancholic or atypical) compared to a remitted state and is a distinctive feature
of TRD and melancholia [80,99,100].

3.2. C-Reactive Protein

3.2.1. As a Diagnostic Biomarker

CRP is the most frequently used marker of inflammation. CRP is produced in the liver and its
secretion is stimulated by IL-6 [44]. The majority of studies have demonstrated that CRP levels are
elevated in depression [22,40,42,47,89,96], although no causal relationship has been established between
an enhanced CRP concentration and depression [101]. A subgroup analysis revealed that higher CRP
levels may be characteristic of depressed men [102–104], atypical depression [105], depression with
somatic symptoms [106], depressed patients with a history of childhood trauma [107] and cumulative
depressive episodes [108]. Elevated CRP levels have also been suggested to be more specific for female
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than for male patients with MDD [109]. However, it should be noted that enhanced CRP levels are not
specific to depression—they are also present in euthymic BPD and manic episodes [110].

3.2.2. As a Predictive Biomarker

CRP also shows potential as a predictive biomarker. Pasco et al. [54] reported that high sensitivity
CRP (hsCRP)—a more sensitive measure of inflammation—is an independent risk factor of depression
and its elevated levels can predict de novo MDD occurrence. These findings were confirmed in a
meta-analysis by Valkanova [89]. Higher CRP concentrations have been linked to an increased risk of
hospitalization due to depression [111].

3.2.3. As a Prognostic Biomarker

In the majority of studies, low baseline CRP levels were found to be associated with a better
and faster response to selective serotonin reuptake inhibitor (SSRI) treatment [109,112,113]. However,
the results are inconsistent. According to some studies, higher baseline CRP levels could predict a
better response to treatment [88,114], whereas in other studies they are reported to have no impact on
treatment results [115].

3.2.4. As a Treatment Biomarker

Altered CRP levels may help clinicians select an optimal treatment strategy for a particular
patient since high baseline CRP levels predict a better response to pharmacotherapy in comparison to
psychological therapy [116]. When it comes to drug selection, altered CRP levels might predict the
outcome of treatment with escitalopram and nortriptyline (with opposite effects) [112]. Antidepressant
treatment reduces CRP concentration marginally [88].

The production of CRP in the liver is induced by TNF-α. Depressive patients with higher baseline
CRP levels show a more significant improvement following the injection of an anti-TNF-α drug,
infliximab [117].

Most studies investigating inflammatory markers of depression have focused on CRP and IL-6.
This approach, however, is too narrow and does not address the complexity of immune-inflammatory
processes involved in the pathophysiology of MDD. It would be desirable to simultaneously evaluate as
many inflammatory markers as possible and correlate them with a comprehensive clinical assessment in
order to understand the complex network of interactions between them (interactomic approach) [118,119].

It is noteworthy that some depressive patients may have elevated CRP and IL-6 levels, even in the
absence of inflammation [44].

3.3. Tumor Necrosis Factor-α

3.3.1. As a Diagnostic Biomarker

Tumor Necrosis Factor-α is another inflammatory cytokine, constantly and repeatedly reported
to be increased in depression as compared to healthy controls [22,40,53,87,90,96,98]; however certain
meta-analyses found this to be inconclusive [42,120]. Moreover, number of depressive episodes is
associated with increased TNF-α concentrations [121].

3.3.2. As a Diagnostic Biomarker

Baseline levels of TNF-α are not associated with a subsequent response to treatment [115].
Antidepressant treatment significantly decreases TNF-α concentrations, but only in responders.
Persistently elevated levels of TNF-α during the course of treatment are associated with poorer
outcomes, thus identifying patients with TRD [96,122]. Similar effects have been reported for
electroconvulsive therapy (ECT)—clinical improvement following electroconvulsive therapy (ECT)
correlated with a decline in TNF-α concentrations [123]. Hence, TNF-α could be a valuable marker
of treatment resistance (a treatment-response marker) and a potential new biological target for the
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pharmacotherapy of depression. Anti-TNF-α drugs (infliximab, etanercept) have previously been
reported to attenuate depressive symptoms [117].

3.3.3. TNF Receptors

The inflammatory effect of TNF-α is mediated by its receptors—TNF-R1 and TNF-R2, both of
which are expressed on cell surfaces. However, under certain conditions, they can be released into
plasma. Once released, they are no longer active and act as ‘decoy’ receptors, binding circulating
TNF-α molecules and thus regulating TNF-α signaling [124]. Depression is characterized by elevated
serum TNF receptor levels, which are regarded as state [78] or trait [125] biomarkers.

Interestingly, Jannelidze et al. [126] demonstrated that IL-6 and TNF-α are elevated in patients at
an increased risk of suicide, indicating that they may be regarded as state biomarkers. It has also been
proven that the two cytokines directly inhibit adult hippocampal neurogenesis [127].

3.4. Interleukin-1

IL-1β is one of the major pro-inflammatory cytokines and together with TNF-α and a few
other cytokines is thought to be responsible for the occurrence of sickness behaviour. A central or
peripheral injection of IL-1β produces such a behaviour in mice. Interestingly, a similar effect has
been described for lipopolysaccharide (LPS, endotoxin)—an injection of endotoxin leads to ventral
striatum deactivation, diminished reward processing and anhedonia [128–130]. An increase in IL-1β
in depression remains controversial. Certain meta-analyses support it [46,120] while others do not
indicate such an association, including a recent umbrella review conducted by Carvalho et al. [89,90].
Such discrepancies may be caused by increased body mass index (BMI), which contributes to an increase
in IL-1β [89], or the fact that IL-1 concentrations increase with the number of depressive episodes [121].
Conversely, Talarowska et al. [131] did not find significant differences in IL-1 concentrations between
patients suffering from their first or successive depressive episodes. IL-1 also holds promise as a
potential prognostic biomarker since elevated levels of IL-1β mRNA in blood can predict a poorer
response to antidepressant treatment [132].

IL-1, TNF-α and IL-6 exert their pro-depressive effects by inhibiting neurogenesis [127,128],
inducing apoptosis [129,130], negatively affecting synaptogenesis, synaptic plasticity and connectivity
as well as the structure of synaptic membranes [131,132].

3.5. Interleukin-1 Receptor Antagonist

IL-1 receptor antagonist (IL-1RA) is a protein which competes with IL-1, binding to IL-1 receptor.
Its production is stimulated by pro-inflammatory agents (e.g., IL-6) and therefore, elevated levels of
IL-1RA indicate an enhanced inflammatory response. However, IL-1RA itself actually inhibits IL-1β
and IL-1α signaling and as such is part of CIRS [35,79]. Some studies have reported that IL-1RA is
elevated in depression [90,98], but no such association was found in a recent umbrella review by
Carvalho [40]. Soluble IL-1RA is elevated both in unipolar depression and BPD, which excludes it as a
marker for differentiating between these two disorders. It remains elevated even in affective remission
and therefore it may be perceived as a trait biomarker for depression [125]. Sowa-Kućma et al. [100]
demonstrated that sIL-1RA was positively correlated with a number of hospitalizations due to
depression within a year, before being tested in affected individuals.

3.6. Interleukin-2, Soluble Interleukin-2 Receptor

IL-2 is a key cytokine in T lymphocytes activity [133,134], the function of which is disturbed in
depression [135]. The effects of IL-2 are mediated by IL-2 receptor (IL-2R), present on cell membranes
of activated T cells. IL-2R may also be cleaved into the bloodstream. It has been reported by a
number of authors that soluble IL-2R (sIL-2R) is elevated in the blood of patients with depression and
BPD [40,87,90,98]. Plasma sIL-2R could serve as a surrogate marker of T lymphocyte activation and IL-2
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production [78]. sIL-2R may have immune-suppressant, immune-regulatory or immune-stimulatory
properties, although most studies describes it as immune-suppressant [136].

3.7. Interleukin-10

Interleukin-10 (IL-10) is one of the most important anti-inflammatory cytokines. Elevated IL-10
concentrations in blood, along with enhanced IL-4 levels, may play a role in regulating IRS. In a
meta-analysis performed by Kohler et al. [90], elevation of IL-10 was associated with depression.
Two other meta-analyses found that IL-10 concentrations decrease with antidepressant treatment,
making it a promising marker of treatment efficacy [83,88]. No differences in IL-10 concentrations
between the first and subsequent depressive episodes were noted [137].

3.8. Interleukin-8

Data regarding IL-8 concentrations in depression are inconsistent. It has been reported that
IL-8 is elevated in severe depression and positively correlated with depressive symptoms [138],
which could suggest its role as a state marker. However, a meta-analysis by Eyre et al. [139] did
not establish significant differences in IL-8 concentrations between patients with MDD and healthy
controls. Lower baseline IL-8 levels were associated with a better response to antidepressant treatment
in a recent meta-analysis [122], thus supporting its role as a prognostic biomarker.

3.9. Interleukin-4

Interleukin-4 (IL-4), one of the most important anti-inflammatory cytokines, was recently found to
be downregulated in depression in a meta-analysis by Osimo [22]. IL-4 is produced by Th2 lymphocytes.
IL-4 increases the production of anti-inflammatory sIL-1RA and inhibits M1 macrophage polarization,
thus decreasing the release of IL-1β, IL-6 and TNF-α, as such contributing to CIRS [78].

3.10. Interferon-γ

INF-γ is a pro-inflammatory cytokine produced by Th1 lymphocytes. It is indicated that it causes
microglial activation (shift) which contributes to depression [140]. Udina et al. [141] reported a higher
risk of depression in patients treated with interferon for hepatitis C. As many as 40% of cancer or
hepatitis C patients treated with INF-γ develop depressive symptoms and present with increased
IL-6 levels. In depressed patients undergoing INF-γ therapy, lower tryptophan (TRP) and serotonin
(5-HT) levels and higher kynurenine levels were noted in the peripheral blood [142–144]. Interestingly,
the Combining Medications to Enhance Depression Outcomes (CO-MED) trial demonstrated a decrease
in INF-γ after antidepressant treatment, which correlated with a lack of remission [145].

3.11. Macrophage Migration Inhibitory Factor

Macrophage migration inhibitory factor (MIF) is a pro-inflammatory cytokine that plays a role
in hippocampal neurogenesis in animal models [146]. Decreased or elevated MIF levels have been
reported in patients with MDD [147,148].

3.12. Transforming Growth Factor-β

Transforming growth factor-β (TGF-β) was analyzed in several studies as a potential marker
for depression. However, recent meta-analyses did not prove significant changes in TGF-β levels in
patients with MDD [40,90].

3.13. Other Cytokines

There are single reports in the available meta-analyses concerning increased concentrations of
other cytokines—interleukin-3 (IL-3), interleukin-12 (IL-12), interleukin 13 (IL-13) and interleukin
18 (IL-18) [22,90]. However, their exact role and importance remains to be elucidated.
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In a meta-analysis performed by Osimo et al. [22], three biomarkers, CRP, IL-12 and sIL-2R,
presented significantly lower variability in patients with MDD compared to healthy controls.

3.14. Chemokines

Monocyte Chemoattractant Protein-1/Chemokine ligand 2 (MCP-1/CCL2) is responsible for
the chemoattraction of monocytes, dendritic cells and memory T cells to the site of inflammation.
Higher concentrations of this chemokine were found in depressed patients in comparison to healthy
controls in a meta-analysis [139].

Furthermore, higher levels of eotaxin prior to antidepressant treatment, compared to its
concentration following treatment, correlated with clinical remission [145].

3.15. Complement Proteins C2 and C3

The activity of complement is disturbed in depression. Levels of acute phase protein complement
C3 are elevated in depression and are significantly higher in the atypical subtype compared to
melancholic depression [149–151].

3.16. Bone Inflammatory Markers

Depressive patients have decreased bone mineral density and thus altered levels of bone
inflammatory markers—osteo-protegerin (OPG)-RANK-RANKL system and osteo-pontin (OPN).
Ketamine—a recently discovered fast-acting antidepressant agent—corrects these abnormalities [152].

3.17. Acute Phase Proteins

Depression has been associated with disturbances in acute phase proteins (APP): ceruloplasmin,
inter-alpha-trypsin inhibitor heavy chain H4 and complement component—1qC [153]. Haptoglobin has
also been reported to be elevated in depression and to differentiate between depressive subtypes [14].
Depression has also been associated with increased plasma B2-microglobulin [154].

3.18. Erythrocyte Sedimentation Rate

Erythrocyte Sedimentation Rate (ESR) is a non-specific measure of inflammation. In rheumatoid
arthritis (RA) patients who were also diagnosed with depression, higher ESR levels were observed
compared to non-depressive RA patients [155].

There is substantial heterogeneity in results in depression–inflammation studies. Even meta-analyses
reveal contradictory results. Hiles et al. [156] searched for sources of inconsistency in depression–
inflammation studies. The main confounding issues identified were the following: accuracy of MDD
diagnosis, BMI and comorbid illnesses. A meta-analysis by Kohler et al. [90] added age and smoking status
to the list.

3.19. Neopterin

Neopterin, a marker of cellular immune system activation, was reported to be upregulated
in depression in some studies, particularly in the melancholic subtype. Neopterin also allows for
estimation of the extent of oxidative stress (its concentration rises along with an increase in ROS levels)
and the extent of Th1 lymphocytes activation [23]. A positive response to ECT is associated with a
decrease in neopterin levels in responders [157] and a reduction in the neopterin:biopterin ratio [158].
Every subsequent episode of depression is associated with a more substantial increase in the level of
neopterin, serving as an episode number marker [159].

The summary of the results of meta-analyses investigating inflammatory markers observed in
depression is presented in Table 2.
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Table 2. Summary of inflammatory markers in depression according to meta-analyses performed throughout the years (left to right). Abbreviations: D—downregulated;
U—upregulated;—-unchanged; CCL2—chemokine ligand 2; CRP—C-reactive protein; IL-1β—interleukin-1β; IL-3—interleukin-3; IL-4—interleukin-4;
IL-6—interleukin-6; IL-10—interleukin-10; IL-12—interleukin-12; IL-13—interleukin-13; IL-18—interleukin-18; IL-1RA—interleukin-1 receptor antagonist.

Howren
2009 [47]

Dowlati
2010 [53]

Liu 2012
[87]

Valkanova
2013 [89]

Haapakoski
2015 [42]

Strawbridge
2015 [96]

Goldsmith
2016 [98]

Kohler
2017 [90]

Ng 2018
[120]

Osimo
2020 [22]

Carvalho
2020 [40]

IL-6 U U U U U U U U U U U
CRP U U U U - U U

TNF-α U U - U U U - U U
sIL-2R U U U U U
IL-1β U - - - U
IL-1RA U U
IL-10 - U
IL-12 U U
IL-13 U
IL-18 U U
TNF-R2 U
CCL2 U
IL-3 U
IL-4 - - D

INF-γ - D
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4. Oxidative & Nitrosative Stress Findings in Depression

The brain is particularly vulnerable to oxidative and nitrosative stress (O&NS) [160]. The hippocampus,
cerebellar granule cells and amygdala are brain parts most susceptible to oxidative damage [161].
Psychological stressors induce cytokine production and an inflammatory response [162] which facilitates
the generation of reactive oxygen and nitrogen species (ROS/RNS), leading to a pro-oxidant state. Clinical
depression is accompanied by increased O&NS and impaired antioxidant status (e.g., lower TRP, tyrosine,
albumin, zinc) [163]. Oxidative and nitrosative stress manifests itself, inter alia, by higher levels of
mitochondrial reactive oxygen species, lipid peroxidation products, DNA and protein damage products [10].
Elevated levels of protein carbonyls reflect protein damage—8-hydroxy-2-deoxiguanosine (8-OHdG) and
8-oxo-7,8-dihydroguanosine (8-oxo-Gua) are markers of DNA and RNA damage, respectively while
malonylo-dialdehyde (MDA) and F2-isoprostanes emerge as the effect of lipid peroxidation [164].

Oxidative and nitrosative stress products have been detected in peripheral blood, red blood cells
(RBC), mononuclear cells, urine, CSF and postmortem brain tissue of depressed patients. It is not clear
if O&NS in depression originates from the peripheral or central nervous system. There are, however,
some indicators which could suggest its peripheral origin [163]. In rats with genetic susceptibility to
depression, higher depression rates were observed after exposure to oxidative stress [165].

Antidepressant drugs have antioxidant properties which are thought to account for, at least
partially, their antidepressant efficacy [166]. Interestingly, antioxidants are also described as having
antidepressant properties [167].

Reactive oxygen species (ROS) are mainly generated in mitochondria as a side product of the
respiratory chain. They destroy defense systems when overproduced, creating a vicious circle and
enabling further ROS generation [168]. It is not clear how exactly ROS exert their detrimental
impact on the brain. ROS overproduction is known to trigger pathological cascades, eventually
leading to increased permeability of the blood-brain barrier, morphological changes in the brain
and neuroinflammation [169]. Under pathological conditions, oxidative stress could also induce
neurodegeneration via different mechanisms such as apoptosis, axonal damage and excitotoxicity [170].

Oxidative stress activates inflammatory pathways, as extensively reviewed by Moylan et al. [163],
whereas inflammation increases oxidative stress (e.g., an increase in the levels of cytokines IL-1
and IL-6 leads to decreased levels of albumin, zinc and high-density lipoprotein—HDL) [171–174].
Among oxidative stress markers, lipid peroxidation markers appear to have the greatest potential
in depression.

4.1. Total Antioxidant Capacity

Total antioxidant capacity (TAC) was found to be decreased in patients with MDD [164] and
inversely correlated with severity of depression [175]. TAC did not increase in response to treatment
or in remission [176], which suggests that TAC could be a trait biomarker for depression.

4.2. Peroxide

Elevated peroxide levels were confirmed in the sera of patients with MDD in a meta-analysis [164].
Maes et al. [177] found that peroxide levels are higher in the acute phase of MDD, but normalize if
depression is long-lasting, which makes them potential state markers for MDD.

4.3. Nitric Oxide

L-arginine–NO pathways play a role in the pathophysiology of MDD and are altered by
antidepressants [178,179]. The NO-producing enzyme, nitric oxide synthase (NOS), has two isoforms:
neuronal NOS (nNOS), mainly involved in neurotransmission, and cytokine-inducible NOS (iNOS),
which plays an important role in inflammation [180]. NO levels are higher in patients with MDD [181]
and were reported to characterize depressive patients after suicide attempt [182], which could make
them state markers and enable early identification of patients at risk of suicide. NO is also reported to be
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involved in the pathogenesis of INF-γ-induced depression [183]. The disease is associated with lower
NO metabolite levels and decreased platelet-endothelial NO activity [184]. However, a meta-analysis
performed by Jimenez-Fernandez et al. [185] did not confirm significant differences in total nitrites in
patients with MDD as compared to healthy controls. Nevertheless, another meta-analysis published
by Liu et al. [164] documented decreased serum nitrate following antidepressant therapy.

4.4. Superoxide Dismutase

Superoxide dismutase (SOD) is one of the most important antioxidant enzymes. A number
of investigators have reported that SOD is altered in depression, but the results are inconsistent.
The majority of studies have found that SOD activity is increased in depression [186–190], but opposite
results have also been reported [191–193]. A meta-analysis by Jimenes-Fernandes et al. [185] revealed
higher SOD levels in patients with MDD in comparison to healthy controls. Increased SOD in
depression probably reflects activated defense against ROS and RNS [168]. Plausible explanations for
inconsistencies in the published results are severity, stage and duration of illness as well as a possible
biphasic response in ROS production [177,191,194]. It is worth noting that greater reductions in SOD
activity were observed in recurrent depression [191].

As for the effect of antidepressant treatment on SOD activity, the results are also inconsistent [23].
This may be due to methodological differences such as different drugs used, heterogeneity of the
disease, differences in severity and the number of episodes.

4.5. Other Enzymes

Catalase (CAT) and myeloperoxidase (MPO) are antioxidant enzymes, the activity of which
increases during depressive episodes [176,195,196]. An increase in antioxidant enzyme activity during
acute depressive episode is possibly due to the activation of compensatory mechanisms in response to
increased oxidative stress. Antioxidant enzyme activity normalizes following treatment and therefore
they could serve as state markers of depression [181]. Nevertheless, in a meta-analysis performed
by Jimenez-Fernandez [185], differences in CAT appeared nonsignificant. Lower paraoxonase (PON)
activity, a potent antioxidant linked to HDL activity, was found in the sera of patients with MDD [164].
At the same time, significantly increased activity of pro-oxidative xanthine oxidase was observed in
patients with MDD [192].

4.6. Lipid Peroxidation Markers

Lipid peroxidation is caused by the action of ROS/RNS on lipids (e.g., cell membrane lipids).
Early-stage lipid peroxidation is reflected by higher lipid hydroperoxide levels, whereas late-stage lipid
peroxidation is characterized by an increase in malonylo-dialdehyde (MDA), 4-hydroxy-2-nonenal
(4-HNE) and F2-isoprostanes levels [197]. Lipid peroxidation is more pronounced in patients with
MDD than in controls [181]. In a meta-analysis by Mazereeuw et al. [198], lipid peroxidation was
correlated with depression severity. Peripheral lipid peroxidation markers are good surrogate markers
for their central concentrations [199].

4.6.1. F2-Isoprostanes

F2-isoprostanes are products of arachidonic acid peroxidation. They are chemically stable,
which makes them good and reliable markers of lipid peroxidation [200,201]. Higher concentrations
of F2-isoprostanes have been found in urine [202,203] and blood [204,205] of patients with MDD.
Meta-analyses confirmed that F2-isprostanes are upregulated in MDD [164,206] and correlated with
severity of depression. Lindqvist et al. [115] demonstrated that higher baseline levels of F2-isoprostanes
correlate with poorer treatment outcomes.
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4.6.2. Malonylo-Dialdehyde, Thiobarbituric Acid Reactive Substances

MDA upregulation in MDD is widely documented [164,185–189,194]. Interestingly, MDA
concentrations are higher in subsequent depressive episodes compared to the first episode of MDD [191,193].

Thiobarbituric acid reactive substances (TBARS) are a measure of oxidative tissue damage which
could be used instead of MDA, albeit with low sensitivity and specificity. Elevated TBARS levels are
reported to be trait markers of depression [125].

4.6.3. Lipid Peroxidation Markers Following Treatment

According to a meta-analysis, antidepressant treatment leads to a decrease in lipid peroxidation
markers [198]. The majority of studies and meta-analyses report decreased MDA concentrations following
antidepressant treatment [164,185,187,188] which correlates with clinical improvement [186,194]. However,
some studies did not establish a direct association between lipid peroxidation marker concentrations and
clinical remission during antidepressant treatment, suggesting that these two parameters may be causally
related but desynchronized [55,207]. By contrast, Chung et al. [202] found that F2-isoprostane levels increase
after antidepressant treatment and this increase is correlated with alleviation of depressive symptoms.

The exact mechanism of how antidepressant treatment impacts inflammatory processes and
oxidative stress is not fully understood. Following recovery, depressive patients often start looking
after themselves, live healthier lives, eat more nutritious food, and exercise, and it cannot be ruled out
that the observed reductions in oxidative stress and inflammatory parameters are epiphenomena of
such lifestyle changes [23].

4.7. Neoepitopes

Oxidative and nitrosative stress causes brain, muscle and nerve injury, which eventually leads
to the formation of new epitopes (neo-epitopes) that can induce immunological IgM/IgG response
against them [208]. Antibodies against neo-epitopes have been detected in depression [177,209,210].
Higher concentrations of IgM against conjugated oleic, palmitic, myristic and azelaic acids, MDA,
phosphatidyl inositol (Pi), NO-modified neo-epitopes, such as NO-tyrosine, NO-arginine, NO-TRP,
NO-bovine serum antigen as well as IgG against oxidized low-density lipoprotein (oxLDL) have
been described [177,209–212]. Interestingly, elevated levels of oxLDL antibodies are also found
in cardiovascular diseases (e.g., atherosclerosis), autoimmunological diseases (e.g., lupus) and in
diabetes [177], which could partly explain the high comorbidity between these diseases and could
suggest their common pathophysiological background.

4.8. Nucleic Acids Damage

Oxidative stress can also cause DNA damage, which, combined with less efficient DNA repair,
leads to increased DNA damage in depressed patients and contributes to mitochondrial dysfunction [9].
8-OHdG is a reliable marker of DNA damage [200,213]. Increased blood and urine levels of 8-OHdG
have been found in depressive patients [115,213–215]. A meta-analysis confirmed the upregulation
of 8-OHdG in patients with MDD [206]. Elevated 8-OHdG levels correlate with MDD severity [215,
216], and are higher in recurrent depression as compared to the first episode of the disease [215].
Enhanced 8-OHdG levels have been reported after SSRI treatment, but only in non-responders [115].
Jorgensen et al. [216] found that the RNA analogue of 8-OHdG—8-oxo-Gua—was elevated in the urine
of depressive patients. However, they also reported significant increases in 8-oxo-Gua after ECT.

4.9. Glutathione

Findings relating to glutathione in depression are inconsistent. Its levels are lower in patients
with MDD in most studies [181,190]. However, glutathione peroxidase (GPx) activity is reported to be
increased [186], decreased [190,193] or not altered [187] in depressed patients compared to healthy
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control groups. Differences in GPx between depressed patients and healthy controls are nonsignificant
according to the findings of a meta-analysis [185].

Plasma glutathione peroxidase activity decreased after antidepressant treatment [186].
Interestingly, an antioxidant agent—N-acetylo-cysteine (N-ACC)—could be useful in the treatment of
depression [217,218]. N-ACC mimics GPx activity, which could exert an antidepressant effect [168].
The effectiveness of N-ACC may suggest the contribution of oxidative stress to treatment resistance
in depression.

4.10. Uric Acid

Decreased levels of antioxidant uric acid have been reported in MDD in a meta-analysis.
The concentrations of uric acid increased after antidepressant treatment [164,185].

4.11. Albumin

Hypoalbuminemia has been described in depression [13,164]. An increase in albumin levels
following antidepressant therapy has been confirmed in a meta-analysis [164].

4.12. Coenzyme Q

Decreased levels of antioxidant coenzyme Q (CoQ) which induce impaired antioxidant protection
and enhanced production of damaging TNF-α have been reported in depression [219]. Decreased
CoQ is associated with chronic fatigue syndrome which is closely related to fatigue and somatic (F&S)
symptoms of depression, described by Maes [219].

4.13. Zinc

Zinc levels have been reported to be reduced in depression and to increase after antidepressant
therapy in meta-analyses [164,185]. The role of zinc in MDD was reviewed by Styczeń et al. [220].
Decreased concentrations of CoQ and zinc are both hallmarks of TRD [173].

4.14. Vitamin C

Vitamin C is known to have antioxidant properties. Antidepressant therapy increases vitamin
C levels in patients with MDD [164]. That is why, vitamin C could potentially be considered as
treatment-response biomarker of depression.

5. Neuroendocrine Findings in Depression

5.1. The Role of the Hypothalamus–Pituitary–Adrenal Axis

The influence of stress and the hypothalamus–pituitary–adrenals axis (HPA axis) activity on the
pathophysiology of depression has been extensively studied since the 1960s. Stress axis disturbances
are present in approximately 50%–70% of depressive patients [15]. Elevated concentrations of
corticotropin-releasing hormone (CRH), adrenocorticotropic hormone (ACTH), antidiuretic hormone
(ADH) and decreased dehydroepiandrosterone (DHEA) levels have been reported in MDD.

5.1.1. Cortisol

Chronic stress cause hypercortisolemia. Elevated cortisol levels have been repeatedly reported in
depression [221,222]. Cortisol can be measured in different specimens such as blood, urine, saliva and
even hair (Figure 4). By way of illustration, elevated cortisol in saliva after waking can serve as a
biomarker for depression in adolescents [223] and an elevated cortisol concentration in hair could be a
new measure of chronic stress exposure. An enhanced hair cortisol concentration could help differentiate
between depression and other psychiatric disorders (Herane et al., 2015). Hypercortisolemia has been
linked to severe cases of MDD, melancholic and psychotic depressive subtypes [21,224], psychogenic
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depression [225] and depression with ruminations [226]. A higher cortisol concentration predicts
poorer outcomes of both psychological [227] and pharmacological treatment [228], and an elevated
cortisol/DHEA ratio has been described as a marker for TRD, persisting after remission [229].
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On the other hand, decreased cortisol concentrations are characteristics of atypical depression [224]
and could be useful in differentiating between melancholic and atypical subtypes of the disease [230].
Hypo-cortisolism could also partly explain higher reward dependence and rejection sensitivity in
patients with atypical depression [21].

Hypercortisolemia exerts a detrimental effect on the limbic system (particularly on CA3 neurons
in the hippocampus). Under physiological conditions, the hippocampus and amygdala participate in
feedback inhibition of the HPA axis through glucocorticoid receptors which are present in hippocampus
cells [26]. The hippocampus damaged by elevated levels of cortisol is less efficient in HPA inhibition,
which further enhances HPA hyperactivity, creating a vicious circle [11,221]. Cortisol-mediated
decreased hippocampal cells proliferation and reduced neurogenesis lead to atrophic changes and
volume reductions of the hippocampus which are observed in depressive patients [224,231–233].

It is not clear if the dysregulated HPA axis actually causes depression or if some other feature of
depression is responsible for HPA malfunction. However, some depressive symptoms are undoubtedly
produced by the dysfunctional HPA axis [11].

5.1.2. Dexamethasone Suppression Test

In early studies, the dexamethasone suppression test (DST) was reported to identify melancholic
depression [234,235]. However, later studies dampened enthusiasm and revealed its insufficient
sensitivity [236] and specificity [237] to be a diagnostic biomarker. Nevertheless, DST could still
potentially be used as a subtyping biomarker or state-dependent biomarker (as conversion from
non-suppression to suppression in DST is correlated with a clinical response to antidepressant
therapy) [238]. Moreover, an excessive cortisol response to the dexamethasone-suppressed CRH test
(Dex-CRH test) after antidepressant treatment could predict a higher risk of recurrence [239].

5.1.3. Corticotropin-Releasing Factor

The levels of corticotropin-releasing factor (CRF) are higher in some depressive patients [240].
However, in a quantitative summary, no significant increases in CRF in depressive patients compared
to healthy controls were observed [222]. Interestingly, there are significant parallels between stress
response, severe depression and central administration of CRF [240], which supports the involvement
of CRF in the pathophysiology of depression. Higher levels of CRF mRNA and CRF have also been
observed in the brain of depressive patients who committed suicide [241,242].
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5.1.4. Adrenocorticotropic Hormone

Elevated ACTH levels have been reported in patients with MDD [222]. Additionally, higher baseline
ACTH levels in patients with BclI polymorphism in the glucocorticoid receptor gene predicted a poorer
response to SSRI [243].

5.2. Thyroid Hormones

A significantly higher prevalence of thyroid dysfunctions is observed in patients with MDD/BPD [244].
Hypothyroidism may play a role in depressed mood [245], but the use of thyroid hormones as potential
markers requires further investigation [180].

5.3. Nocturnal Melatonin Secretion

Melatonin, a derivate of serotonin, is a major hormone regulating the sleep-wake cycle.
Diurnal melatonin secretion changes throughout the day. Nocturnal melatonin secretion has been
reported to be higher [246] or lower [247] in patients with MDD in comparison to healthy controls.
The phase angle between the cortisol acro-phase and dim-light melatonin onset has been proposed as a
potential marker to distinguish individuals with MDD from healthy controls [248].

Interestingly, central administration of IL-1β decreased nocturnal melatonin secretion in sheep,
which could suggest a link between inflammation, depression and sleep disturbances [249].

6. Growth Factor Findings in Depression

Growth factors are very promising markers for depression. Brain-derived neurotrophic factor
(BDNF), vascular endothelial growth factor (VEGF), fibroblast growth factors (FGF) and VGF
nerve growth factor are all involved in the pathophysiology of depression and are modulated
by antidepressants. Moreover, they are present in the brain and in the periphery, which makes them
suitable as biomarkers for psychiatric disorders [250–253]. Chronic stress impacts on the concentrations
of growth factors. Reduced neurotrophic support inhibits neurogenesis (notably in the hippocampus
and neocortex), which is likely to cause depression [11,254].

6.1. Brain-Derived Neurotrophic Factor

Brain-derived neurotrophic factor (BDNF) is by far the most extensively investigated growth
factor in psychiatric research. Plasma BDNF can reflect central BDNF [255], which makes it a reliable
peripheral biomarker of brain processes.

6.1.1. Physiological Role

Under physiological conditions, BDNF plays a critical role in cellular resilience and neuroplasticity,
enhances long-term potentiation (LTP) [11] and modulates the monoamine system. It also activates
intracellular pathways such as mitogen-activated protein kinase/extracellular signal-regulated kinases
(MAPK/ERK) pathways. Diminished MAPK/ERK pathway activity together with decreased cyclic
adenosine monophosphate (cAMP) levels are known to be involved in the pathophysiology of
depression [256].

6.1.2. BDNF in Depression

Baseline BDNF levels are decreased in patients with MDD compared to healthy controls and the
magnitude of a decrease in BDNF is negatively correlated with depression severity, as confirmed by
meta-analyses [35,40,257–260]. Smoking [261] and diabetes [262] are accompanied by a decreased BDNF
concentration in blood and both are independent risk factors for depression. Lower concentrations
of peripheral BDNF mRNA in patients with MDD have also been found [94,263]. However,
differences in BDNF mRNA expression were not related to symptom severity [263]. Two micro-RNA
molecules—miR-132 and miR-182—regulate the expression of BDNF. Serum levels of these micro
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RNAs were significantly higher in unmedicated patients with MDD versus healthy controls, which was
correlated with a decrease in serum BDNF levels [264].

Alterations in BDNF are not specific to MDD and can serve as a state biomarker in MDD,
BPD and schizophrenia [265]. BDNF mediates the detrimental effect of HPA axis abnormalities on
the brain [266]. Peripheral BDNF is neither a sufficient measure of MDD severity [260], nor does it
discriminate between MB, BPD and schizophrenia. However, BDNF differentiates between mood states
in BPD [267], and between acute and remitted states in MDD [265]. BDNF levels are also decreased in
Alzheimer’s disease, which could support the hypothesis that depression belongs to the spectrum of
neurodegenerative diseases [268].

The BDNF gene is induced by the cAMP response element binding protein (CREB) which binds
to DNA sequences called CRE (cAMP response elements) and regulates BDNF gene transcription.
The functions of CREB and BDNF are region-specific and vastly different in different brain parts. In the
hippocampus they have an antidepressant effect, whereas in the ventral tegmental area and nucleus
accumbens, BDNF produces a depression-like effect [11,224].

6.1.3. BDNF as a Predictive Biomarker

Serum BDNF may act as a marker of predisposition to depression [269,270]. Decreased serum
BDNF with normal cortisol levels may represent a relevant biomarker for individuals more likely to
develop depression [180].

6.1.4. Changes in BDNF Following Treatment

Decreased BDNF concentrations in depression normalize in response to pharmacological
treatment [35,260,271–273] and ECT [274]. An increase in serum BDNF in response to antidepressant
treatment successfully differentiates responders from non-responders [275]. However, antidepressant
treatment causes an increase in BDNF levels even in the absence of clinical remission [260]. Therefore,
BDNF has potential to be both a trait and a state biomarker [36].

The most widely used antidepressant drugs—SSRIs—produce an immediate increase in
monoamine transmission but their mood-enhancing properties appear after weeks of treatment
(Krishnan and Nestler, 2008a). The effect of antidepressant drugs is presumably mediated via changes
in downstream events such as alterations in gene expression [276]. Apart from normalizing monoamine
levels, antidepressants activate CREB which upregulates the expression of growth factors: BDNF, VEGF,
VGF in the hippocampus. Growth factors promote hippocampal function, protect vulnerable neurons
and, over time, lead to neurogenesis which eventually produces an antidepressant effect [224,232,277].

6.2. Insulin-Like Growth Factor-1, Growth Hormone

According to a recent umbrella meta-analysis, insulin-like growth factor-1 (IGF-1) is another
growth factor which is significantly elevated in depression [40]. However, alterations in IGF-1 are not
specific to MDD since IGF-1 is also enhanced in the manic phase of BPD [278]. There are promising
preclinical studies in which the central or peripheral administration of IGF-1 increases hippocampal
neurogenesis and decreases depressive symptomatology [279–282].

Decreased growth hormone (GH) levels have also been reported in patients with MDD [148,154].

6.3. Vascular Endothelial Growth Factor

VEGF is the main growth factor responsible for angiogenesis. Providing vascularization and
blood support, it enhances neuron proliferation in the hippocampus [283]. VEGF may play a role in
the pathogenesis of depression [250], although its exact role is not yet known. Data relating to VEGF
levels in the blood of patients with MDD are not uniform, which may be due to the heterogeneity
of depression and may reflect differences between its subtypes. However, the majority of studies
indicate that VEGF is elevated in depression and normalizes under antidepressant treatment [284–286].
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Higher VEGF concentrations have been observed in remitted MDD and in patients with a family
history of depression [180].

6.4. Fibroblast Growth Factor-2

Significantly elevated FGF-2 levels have been reported in depressive patients [40,287]. Together
with BDNF, FGF-2 is a second important growth factor marker in depression. Preclinical observations
suggest that FGF-2 could mediate antidepressant effects [288]. Some connective tissue growth factors
are co-activated in the inflammatory state and therefore their increase in depression may be the result
of neuroinflammation [289].

6.5. VGF Nerve Growth Factor

VGF nerve growth factor concentrations have been found to be altered in depression, normalizing
after antidepressant therapy, but only in clinical responders [94,290]. Additionally, it has potential as a
treatment-response biomarker.

6.6. Nerve Growth Factor, Glial Cell Line Derived Neurotrophic Factor

The levels of nerve growth factor (NGF) and glial cell line derived neurotrophic factor (GDNF) are
decreased in depression and the magnitude of dysregulation of these factors correlates with depressive
symptoms severity. However, they do not change in response to antidepressant treatment [260].

7. Neurotransmitter Findings in Depression

Alterations in brain neurotransmitter levels—serotonin (5-HT), dopamine (DA) and norepinephrine
(NA)—are considered a direct cause of depression. Even if this hypothesis is now thought to explain
the pathogenesis of depression only partly, monoamine alterations in depression have been proven
and the vast majority of antidepressant drugs currently used target monoamine systems. A search
for monoamine-derived markers of depression is hindered by the fact that it is rarely possible to
measure monoamine concentrations themselves. Scientists have to rely on peripheral monoamine
metabolites, which do not necessarily reflect monoamine levels in the brain. Cerebrospinal fluid (CSF)
content appears to reflect brain metabolites more accurately, but its acquisition is difficult and invasive.
New imaging technologies are an invaluable tool for measuring brain neurotransmitters. However,
a precise description of imaging biomarkers is beyond the scope of this review.

7.1. Serotonin

Serotonin is commonly known as a ‘happiness hormone’. Surprisingly, a decrease in 5-HT in the
brain, measured by concentrations of serotonin metabolite 5-hydroxyindoleacetic acid (5-HIAA) in
CSF, have not been found characteristic of depression itself, but rather of impulsivity [291], suicidality
and a tendency to violence [292]. Serotonin exerts its action via the 5-HT1A receptor which has been
reported to play a role in both prognosis and diagnosis of depression [293] as reduced 5-HT1A receptor
binding is associated with depression [294]. Additionally, increased autoimmune responses to 5-HT
were found to correlate with successive depressive episodes [295].

5-HT2A receptor can be found at blood platelets. The density of platelet 5-HT2A receptor tends
to increase in patients with depression. However, it has been found to correlate more closely with
suicidality than depression per se [296]. Increased 5-HT2A receptor density could potentially serve as
a marker of suicide risk (state marker of depression).

7.2. Dopamine

Decreased dopamine levels in the striatum and cortex have been reported in depression [180].
Abnormalities in dopaminergic transmission have also been found in the nucleus accumbens and
ventral tegmental, which are core parts of the brain reward circuit [297].
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7.3. Noradrenaline

Noradrenaline is of major importance in MDD [298] and is perhaps the most promising source
of neurotransmitter markers. There is a correlation between urine NA levels, and depression and
anxiety symptoms [299]. Low urinary excretion of NA metabolite—3-methoxy-4-hydroxyphenylglycol
(MHPG)—predicts a positive response to NA-selective drugs (e.g., imipramine) [300]. NA concentration
in urine is a promising biomarker for guiding treatment selection and predicting its efficacy.
MHPG together with a DA metabolite—homo-vanillic acid (HVA)—increase in line with a decrease in
depressive symptoms. Lower levels of these metabolites predict a better response to SSRI.

7.4. Monoamine Oxidase Activity

Monoamine oxidases (MAO) are a family of monoamine-catabolizing enzymes. MAO-B is the
most important of them. A reduction in MAO-B activity could be an early marker of response to
antidepressant treatment [301].

7.5. Glutamate, GABA

Apart from the contribution of monoamines to the pathophysiology of MDD, dysfunction of
glutamatergic transmission is also involved in the disorder [302]. Glutamate is a major excitatory
neurotransmitter in the brain. Its upregulation causes excessive extra-synaptic N-methyl-D-aspartate
receptor (NMDAR) activation leading to the influx of calcium ions (Ca2+) into neurons and accumulation
of ROS in the neuron body [303]. As a consequence, it enhances the production of NO, which contributes
to the occurrence of MDD [179,304].

Depression is associated with cortical hyper-glutamatergia and increased peripheral glutamate
concentration [40,305,306]. Increased glutamate in MDD is closely related to decreased 5-HT and
NA. Elevated levels of glutamate cause excitotoxicity, which contributes to the development of
depression [180].

Gamma-aminobutyric acid (GABA) is known to be a major inhibitory neurotransmitter in the
brain. Changes in glutamate and GABA increase the risk of oxidative stress and cell death [307].
Increased GABA enables the kindling action of glutamate and excessive glutamatergic activity leads to
synaptic remodeling and neurodegeneration [180]. According to certain studies, an imbalance in the
glutamate/GABA ratio could be a feature of depression [308]. GABA itself has been reported to be a
trait biomarker for depression [309,310]. However, later studies revealed that it increases in response
to antidepressant treatment [311].

8. Metabolic Findings in Depression, Lipidomics

To date, most studies of depression have focused on proteins. Phospholipids, however, account for
60% of dry mass of the brain [312] and play important biological roles, and hence particular emphasis
should be placed on them in psychiatric research [313]. The lipid profile is disturbed in depression,
but the exact character of the changes has not been fully elucidated [314]. Many lipid species have
been linked to depression: glycerolipids, glycerophospholipids, sphingolipids, and triglycerides [315],
and therefore it could be more effective to assess the entire lipid profile rather than particular types
of lipid molecules separately. A higher BMI, which is frequently due to an excess of adipose tissue,
is associated with a heightened risk of depression [316] and individuals suffering from depression are
more likely to develop obesity [317]. It remains an open question as to whether lipid disturbances
are a cause or consequence of depression. Among metabolic markers, polyunsaturated fatty acid
(PUFA) disturbances and total cholesterol alterations appear to have the greatest potential as markers
for depression.
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8.1. Polyunsaturated Fatty Acids

A large number of lipidomic depression studies have investigated PUFAs. There are two main
types of PUFA: omega-3 and omega-6. Both of them are present in the brain, but each one has a different
mode of action. While omega-6-PUFAs (e.g., arachidonic acid) are pro-inflammatory, omega-3-PUFAs
(e.g., eicosapentaenoic acid, EPA) possess anti-inflammatory properties [312,318]. Omega-3 acids
increase the fluidity of cell membranes and exert a positive impact on neuronal development
and neuronal transmission. In depression, blood levels of PUFAs are abnormal, with decreased
eicosapentaenoic acid and other omega-3-PUFAs, and increased omega-6-PUFAs, including arachidonic
acid concentrations, as reported in a number of studies [312,319–321]. Common depression
comorbidities, such as cardiovascular diseases (CVD), diabetes, immunological and inflammatory
activation, osteoporosis and cancer are also correlated with decreased omega-3-PUFAs [312]. A more
significant decrease in omega-3-PUFAs is correlated with more severe depression [321]. Maes et al. [322]
reported an elevated omega6/omega3 ratio in MDD. Elevated HDL and omega-3-PUFAs may have a
protective effect on depression-mediated inflammation. Omega-3 supplementation (particularly EPA)
improves treatment outcomes [323].

8.2. Cholesterol

Cholesterol also plays a role in depression. It does not cross the blood-brain barrier, but it is
synthetized and recycled locally in the brain, mainly by oligodendrocytes [313]. A recent umbrella
meta-analysis demonstrated that a decreased total cholesterol level is a highly suggestive marker for
MDD [40,324]. As for cholesterol fractions, patients with MDD present with lower HDL and higher
LDL concentrations, and a higher LDL/HDL ratio [164,325], which leads to immunological activation.
Lower HDL may predict new-onset MDD in the older population [326].

8.3. Sphingomyelin

Sphingomyelin is a type of lipid found in the myelin sheath surrounding neural cell axons.
The sphingomyelin 23:1 to sphingomyelin 16:0 ratio has been found to be inversely related to the
severity of depression [327].

8.4. Adipokines

Patients with MDD have altered levels of adipokines [328]. Lower adiponectin levels have been
reported solely in atypical depression [151].

8.5. Leptin and Ghrelin

Metabolic peptides—leptin and ghrelin—appear to be altered in depression, revealing a potential
link between obesity and mood disturbances. However, the results of available studies are
inconsistent—decreased, elevated or unchanged levels of leptin and ghrelin have been reported
in depressive patients in comparison to healthy controls [329–333].

9. Proteomic Biomarkers

9.1. Insulin

Depression is frequently associated with impaired glucose tolerance, insulin resistance and
diabetes [334–336]. Hyperglycemia contributes to inflammation in the brain which could cause depression.

According to certain studies, higher insulin levels in CSF might be the best biomarker to
differentiate between patients with MDD and healthy controls [154].
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9.2. p11 Protein

Another protein reported to be altered in depression is p11 protein. It is involved in serotonin
signaling. Downregulation of p11 protein in NK cells and monocytes during antidepressant treatment
correlates with a subsequent reduction in depression severity [337].

10. Transcriptomic Biomarkers

Transcriptomic biomarkers such as micro-RNA (mi-RNA) and long non-coding RNA (lncRNA)
have also been investigated in depression. Pajer et al. [338] found a panel of 11 transcripts which
were able to differentiate between the presence or absence of depression in animals and a panel of
18 transcripts common to depression and anxiety. Some of them may be more useful in diagnosing
depression and some in predicting response to treatment [338,339]. Bocchio-Chiavetto et al. [340]
demonstrated that 28 mi-RNAs are upregulated and 2 mi-RNAs are downregulated following
antidepressant therapy.

It is worth noting that the increased expression of mRNA for pro-inflammatory cytokines IL-6,
IL-1a, IL-1β, IL-8, IL-10, TNF-α, MIF, INF-γ) has been found in the peripheral blood of depressed
patients [94,341–343].

More information on transcriptomic factors related to depression can be found elsewhere [36].

11. Kynurenine Pathway, Tryptophan

Tryptophan (TRP) is an amino-acid which is probably most directly implicated in the
etiopathogenesis of depression. Under physiological conditions, it is transformed firstly into serotonin
and then into melatonin. Serotonin is thought to regulate mood whereas melatonin is responsible
for regulating sleep, both of which are disturbed in depression. Tryptophan depletion reduces 5-HT
synthesis. The intensity of depressive symptoms correlates with the level of TRP depletion during
antidepressant treatment [344].

Tryptophan is essential for T cell proliferation and cytotoxicity. Depletion of TRP (as is the case in
depression) leads to T cell anergy [345] and subsequently to immunosuppression. A meta-analysis
performed by Ogawa et al. [346] demonstrated reduced TRP levels in the plasma of patients with MDD.
Decreased TRP could be a specific marker for MDD and BPD [180], and may play a central role in the
pathophysiology of depression. It has been proven that injection of L-TRP modifies brain serotonin
levels in rats [347]. On the other hand, injection of branched-chain amino-acids (valine, leucine,
isoleucine), which compete with TRP, causes TRP and 5-HT depletion, and eventually, lowered
mood [348]. A decrease in branched chain amino-acids following antidepressant treatment correlates
with clinical improvement [349].

Apart from TRP depletion, an alternative pathway of TRP metabolism is activated in
depression [350]. Systemic inflammation, with high levels of pro-inflammatory cytokines (e.g., INF-γ,
TNF-α) along with elevated cortisol, produces sickness behaviour and facilitates the activation of
IDO in the brain [345,351–353]. This enzyme transforms TRP into kynurenine [354] in the so-called
TRYCATs pathway (tryptophan catabolites along the IDO pathway). Interestingly, the blockage of IDO
reduces depressive symptoms without reducing sickness behaviour [352,353], which suggests that
IDO is responsible for transformation from sickness behaviour to inflammation-induced depression.
Enhanced activity of IDO has been observed in somatization, after suicide attempts and in adolescents
with melancholic depression [23]. Interestingly, IDO also possesses antioxidant properties [355].
It has been demonstrated that alterations in the symptoms of depressed patients are positively
correlated with kynurenine and negatively correlated with 5-HT concentrations [143]. The TRYCATs
pathway produces kynurenine metabolites: 3-hydroxykynurenine (3-HK), 3-hydroxyanthranilic acid
(3-HAA) and quinolinic acid (QA) which are cytotoxic and neurotoxic, affecting neurons and T
lymphocytes [345]. QA acts as a NMDAR agonist, thus causing excitotoxicity. Its action could be
reversed by ketamine—a NMDAR antagonist—recently described as a rapid-acting antidepressant.
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Enhanced levels of TRYCATs correlate with higher psychiatric rating scores in depressive patients [356],
which could make them markers of depression severity. It should be noted here that most of the brain
kynurenine originates from the periphery [345].

In terms of biochemical markers, the kynurenic pathway provides three highly suggestive
markers for depression: decreased kynurenic acid (KYNA), decreased KYNA/3HK ratio and decreased
KYNA/QA ratio [40,357]. Myint et al. [358] reported no changes in kynurenine pathway markers after
antidepressant treatment.

An interesting distinction regarding the role of different types of glial cells in the kynurenic
pathway has been made: KYNA—neuroprotective kynurenine metabolite—originates from astrocytes,
while neurotoxic QA is produced only by microglia [359]. However, the exact role of astrocytes and
microglia in depression is still to be elucidated.

12. The Role of Glial Cells

Glial cell disturbances contribute to the development of depression. It appears that there is a
‘creative balance’ between pro-inflammatory microglia, Th1 lymphocytes and M1 macrophages on one
side and anti-inflammatory astroglia, Th2 cells, Tregs and M2 macrophages on the other. The former
components are responsible for IL-1β, Il-2, IL-6, TNF-α, INF-γ production. The latter cells produce
IL-4, IL-5 and IL-10. T cell activation with a Th1 shift is observed in depression [135]. Th1 cells
activate IDO in the brain, which leads to neurotoxic QA synthesis. It activates NMDAR, which leads to
hyper-glutamatergia and further Th1 activation.

In depression, the balance between glial cells is shifted towards microglial activation. Increased
microglial activation and proliferation (MAP) is attributable to MDD, but not to BPD. Antidepressant
treatment has been found to inhibit M1 microglia polarization [360]. On the other hand, astroglial
loss in depression is reported in the anterior cingulate cortex, prefrontal cortex, amygdala and the
white matter. The introduction of an astroglial-toxic agent—L-alpha-aminoadipic acid—provoked
depressive symptoms in rats [361]. Glial loss leads to the release of cytokines which dysregulate
glutamate metabolism leading to a further increase in cytokine concentrations. This leads to the
upregulation of S100 calcium-binding protein B (S100B) and alterations in the blood-brain barrier
function, which contributes to neuroinflammation. Elevated serum S100B levels have been observed
during acute depressive episodes and mania [362]. Serum S100B has been found to correlate with
suicidality in MDD and BPD.

13. Metabolomic Biomarkers

Depression research will undoubtedly take advantage of metabolomics—measuring small
molecules (metabolites) in biological samples [363]. Scanning of the patient’s entire metabolome
(a non-targeted approach) is a reasonable approach to identify new biomarkers and new pathways
involved in depression. ELISA and Western-blot tests are then used to validate proposed biomarkers [6].
The metabolomic approach is a rapidly growing field with great potential for producing new biomarkers
for depression.

13.1. Diagnostic Biomarkers

Metabolomic profiles are different in depressed individuals in comparison to healthy controls [364].
It has been demonstrated that a combination of plasma TRP, glutamate and cysteine can differentiate
depressive patients from healthy controls [365]. Elevated plasma amino acid concentrations
differentiated patients with melancholic depression from healthy controls [366]. In patients with MDD
and heart failure, higher concentrations of amino-acids glutamate, aspartate and cysteine have been
observed along with the dysfunction of fatty acids [367]. Downregulated N-methyl-nicotinamide
and hippuric acid, and upregulated azelaic acid have been found in the urine of patients suffering
from depression alone [368,369]. Paige et al. [364] found higher levels of lipid metabolites and
neurotransmitter metabolites in the blood of elderly patients with MDD (dicarboxylic fatty acids,
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glutamate, and aspartate). GABA, citrate, glycerate, 9,12-octadecadienoate and glycerol concentrations
were reduced in currently depressed patients [364]. A urinary biomarker panel for diagnosing patients
with depression and anxiety was proposed by Chen et al. [370]. The simplified panel consisted of
four metabolomic biomarkers: N-methyl-nicotinamide, amino-malonic acid, azelaic acid and hippuric
acid. Significant differences in metabolic phenotypes between non-medicated depressed patients and
healthy controls were revealed, whereas differences between non-medicated and medicated patients
were found to be insignificant This may indicate that treatment of depression has a limited impact on
metabolites in urine in the patient population [370].

A recently published systematic review performed by MacDonald et al. [371] analyzed metabolomic
biomarkers for depression and BPD. The pathway that was most significantly affected both in MDD
and BPD was the alanine, aspartate and glutamate pathway. For MDD and BPD, 10 out of 22 metabolic
pathways were common. Those specific to MDD were valine, leucine, isoleucine biosynthesis and
cyanoamino-acid metabolism [371]. Valine, leucine and isoleucine (branched-chain amino-acids) are
involved in the formation of glutamate, which is a major excitatory neurotransmitter responsible for
excitotoxicity [372].

In chromatography/nuclear magnetic resonance/mass spectrometry studies, the concentrations
of eight metabolites appear to follow a specific trend (up-or downregulation) in urine, CSF and
blood of depressed patients. These are increased glutamate, alanine, citrate, formate and decreased
phenylalanine, valine, aminoethanol, and hippurate [371]. Glutamate, glycine and cysteine are required
for the formation of glutathione [10]. Decreased GABA and increased lactate have been reported to be
specific for MDD (MacDonald et al., 2019). The majority of key metabolites are involved in processes
such as mitochondrial energy metabolism, signaling/neurotransmission and neuronal integrity [371].

In most studies using in vivo brain imaging techniques, a decrease in brain N-acetylaspartate
(NAA), glutamate, creatine, GABA, GSH and phosphocreatine and an increase in brain choline and
lactate have been observed [371]. Increased choline levels are in line with cholinergic hyperactivity
and adrenergic hypoactivity, described in depression [373]. Mitochondrial dysfunction (e.g., due to
oxidative stress) could cause anaerobic glycolysis which may explain elevated lactate levels in the brain.
Aspartate is involved in the synthesis of glutamate and NAA. NAA is ubiquitous in neurons and is
considered to be a marker of mitochondrial dysfunction and neuronal integrity [374]. NAA increases
after antidepressant treatment, which further supports the neurotrophic effects of antidepressants [375].

Most robust biomarkers identified do not follow a specific up-or downregulation trend.
This inconsistency is probably due to several variables which have not been taken into consideration in
the review such as depressive subtypes, the patient’s age, sex, BMI, hormonal and smoking status [371].
Nevertheless, a diagnostic panel for MDD and BPD consisting of lactate, alanine, glycine, phenylalanine,
tyrosine, sorbitol, pyroglutamate, aminoethanol and hippurate, and a panel for MDD alone comprising
glutamate, citrate, valine and formate have been proposed [371]. It is worth noting that metabolomic
research requires strict observance of the patient’s inclusion criteria and methodological procedures
since the metabolome is highly variable and significant differences in results may appear.

13.2. Prognostic Biomarkers

Metabolomic markers may also potentially serve as prognostic markers in depression. Baseline
levels of TRP, phenylalanine, purine and tocopherol could predict responders vs. non-responders to
antidepressant treatment [376].

14. Intracellular Pathways

Intracellular signaling networks and transcription factors are likely to be dysfunctional in
depression. The Janus kinases-signal transducer and activator of transcription (JAK-STAT) signaling
pathway, glycogen synthase kinase-3 (GSK-3), and nuclear factors NF-κB and NRF-2 modulate
inflammatory, O&NS and neuro-progressive pathways which are involved in depression [46]. By way of
illustration, the expression of NRF-2 is regulated by oxidative stress and is altered in depression [10,377].
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The expression of genes regulated by NRF-2 is upregulated in depression and downregulated after
successful therapy [378]. The inhibitory impact of lithium on the GSK-3 pathway produces an
anti-inflammatory effect and could partly explain the antidepressant effect of lithium [379].

Decreased adenosine triphosphate (ATP) levels have been found in post-mortem brains
(dorsolateral prefrontal cortex) of depressed individuals [380]. Interestingly, ATP administration
has been proven to have a fast antidepressant effect in mice [381].

A detailed review of intracellular pathway disturbances in depression is beyond the scope of this
review and can be found elsewhere [382].

15. Genetics

Genetic contribution to MDD is around 40%–50% [383]. Several single nucleotide polymorphisms
(SNPs) have been linked to depression, mainly those involved in monoaminergic and glutamatergic
signaling [6]. Polymorphism in genes encoding the 5-HT transporter, 5-HT2A receptor, BDNF,
TRP hydroxylase, SOD and CAT are candidate genes in the pathology of MDD [168,384,385].
Nevertheless, in an extensive Genome-Wide Association Study, no robust and meaningful genomic
differences were found between MDD and healthy controls despite the large size of the study group [386].
A probable explanation may be the significant heterogeneity of depression and diverse or even opposite
DSM criteria. Hence, a change in the paradigm may be necessary. Novel genomic approaches such as
polygenic scores [387] or telomere length [388,389] could be more useful.

SNPs in several genes have been associated with response to antidepressant treatment [390],
e.g., Met/Met genotype in the catechol-O-methyltransferase (COMT) gene [391]. However, no study
has identified genetic variants that could be associated with treatment outcomes at a genome-wide
statistical level [392].

16. Epigenetics

Epigenetic changes consist in modifications of gene expression without changes in the DNA
sequence. They are mainly mediated by two processes: DNA methylation and histone modifications.
Stress (both physical and psychological) is known to activate epigenetic mechanisms which increase the
risk of depression [393]. Early life stress and polymorphism in the serotonin transporter gene facilitate
methylation of the promoter region of the CRF gene in rats [394]. Stress during pregnancy leads to a
higher risk of depression and anxiety in young adults. It is associated with reduced expression of the
BDNF and AcH3K14 genes and increased expression of histone deacetylases in the hippocampus [395].
Elevated levels of methylation of the exon 1 promoter region in the BDNF gene have been found in
patients with MDD in comparison to healthy controls [396].

17. Physiological Markers

Among ‘physiological markers’, alterations in circadian rhythms and electroencephalography
(EEG) records have been observed in patients with MDD. Altered circadian rhythms are associated with
genetic, environmental and developmental abnormalities preceding the development of MDD [397,398].
Korb et al. [399] reported that clinical response to anti-depressant treatment can be predicted by assessing
activity in the rostral anterior cingulate cortex region in EEG.

18. Imipramine Binding

Imipramine was the first effective antidepressant drug in history. The binding of imipramine on the
surface of platelets is considered a potential biological feature able to differentiate depressed individuals
from healthy controls [400]. While several studies reported conflicting results, a meta-analysis
performed by Ellis and Salmond [401] confirmed decreased maximal platelet imipramine binding
(Bmax) in depressed patients. Nevertheless, the clinical utility of such a marker is questionable.
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19. Treatment-Resistant Depression

A distinct problem in depression is the issue of treatment resistance. Early identification
of patients at risk of treatment resistance may be possible with the use of biological markers.
TRD has been associated with immune activation (enhanced mitogen-induced lymphocyte response,
increased CD4/CD8 T cell ratio, enhanced IL-6 trans-signaling with higher sIL-6R, higher CRP and
TNF-α), significantly enhanced oxidative stress (higher TBARS) and attenuated immune regulation
(low sTNF-R2) in comparison to non-TRD patients [96,125,402,403]. IL-6, CRP, TNF and sTNF-R2
are associated with a number of failed antidepressant treatment attempts [404]. Risk factors for
non-response also include elevated concentrations of circulating IL-1β, TNF-α, MIF and cortisol,
dexamethasone non-suppression of cortisol, and decreased concentrations of IL-12, TSH, HDL, S100B,
serotonin and noradrenaline [405].

20. Depression Subtypes

20.1. Melancholia

As mentioned above, depression is a heterogeneous disorder. This heterogeneity is an obstacle
in biomarker research. In this section we would like to analyze in more detail two major depressive
subtypes—melancholic and atypical depression.

The prevalence of typical and atypical depression in the general population is 7.1% and 3.5%,
respectively [406]. Melancholic depression is a specifier of typical depression according to DSM-5.
Approximately 20%–30% of all MDD cases are classified as melancholic depression [407,408].

The history of the term ‘melancholia’ is long and goes back to antiquity. Throughout the years,
this type of depression has been described as endogenous, psychogenic, evolutionary, non-reactive,
anhedonic, ‘vital depression type’ or depression with psychomotor retardation [407]. Melancholic
depression is thought to be the most ‘pure’ endogenous depression. Even though it is difficult to
establish precise boundaries of the term ‘melancholia’, a few characteristics are repeatedly reported in
this subtype of depression. Motivational, appetitive and arousal functions are disturbed in melancholia
(anhedonia, psychomotor retardation, hyperarousal, stress sensitivity) [407]. Melancholia is often
characterized by greater severity, heritability, chronicity and a history of childhood trauma or abuse
and comorbid anxiety [20,366,407,409,410]. Chronic low stress causes melancholic type behaviour in
mice [411,412]. Melancholic depression is characterized by more significant psychomotor retardation
and attention deficits in comparison to NMD [413]. Melancholic depression is more common in
females and in advanced age, and is associated with greater severity and more common occurrence of
psychotic features [414]. The strong heritable component in melancholia suggests that there may be an
underlying biological dysfunction which could be manifested by certain biological features [366].

Melancholic depression appears to be associated with significant dysregulation of the DA system
(e.g., higher frequency in people with Parkinson’s disease) [415]. Decreased dopaminergic function
leads to psychomotor retardation which could underpin learned helplessness [416].

The presence of melancholic features is considered a risk factor for TRD [417]. In melancholic
depression, response to SSRI treatment is poorer in comparison to response to drugs modulating
multiple neurotransmitters (e.g., tricyclic antidepressants—TCA). This could be caused by a
different circuitry characteristic of melancholia—more dopaminergic and noradrenergic, and not only
serotoninergic [407,418,419]. In terms of treatment response, lower baseline plasma S100B protein may
predict treatment resistance in patients with melancholic depression [420].

20.1.1. Markers to Differentiate Melancholia from Healthy Controls

A significant number of studies have investigated biological features of melancholic depression.
Among physiological markers of melancholia, lower systolic blood pressure, higher heart rate and a lower
BMI have been found [230]. Melancholia is characterized by HPA axis hyperactivity, CRH dysfunction,
higher plasma cortisol with altered cortisol diurnal variation, higher androstenedione and corticosterone
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(dysregulation promoting steroidogenesis in the upstream pathway), higher plasma arginine
vasopressin, higher central NA, and basal hypothalamic-pituitary-thyroid ultra-sensitivity [230,366].
More pronounced inflammation or deficits in immune regulation have been reported in melancholic
depression in comparison to healthy controls [230]. Upregulation of T cytotoxic CD8+ cells,
M1 macrophages and Th1 lymphocytes [49,421] as well as downregulation of NK cells and Tregs
have been found characteristic of melancholic depression. Melancholic depression is also characterized
by increased IL-6 and sIL-6R (enhanced IL-6 trans-signaling) and decreased IL-1α and TGF-β [125,422].

Metabolomic biosignature differentiates patients with melancholic depression from healthy
controls. Most metabolites related to lipids and metabolites related to stress hormone signaling are
elevated in depression with melancholic features. One study demonstrated different levels of cystine,
dodecanal, isoleucine, methionine, leucine, normetanephrine, and phenylalanine in melancholia [366].
Another study reported lower aspartic acid, glycine, GABA and higher NO levels in melancholic
depression in comparison to healthy controls [423].

20.1.2. Markers to Differentiate Melancholia from Atypical Depression

Since the performance of the pioneering research by Carroll et al. [235] in 1981, attempts have
been made to differentiate two major depressive subtypes—melancholic and atypical—based on
the biological profile. HPA hyperactivation and sustained cortisol elevation have repeatedly been
indicated as distinct features of melancholic depression which can differentiate it from atypical
depression [230,424,425]. Melancholic depression is characterized by a lower absolute monocyte count,
increased haptoglobin, IL-6 and CRP, enhanced expression of T cell activation markers, and increased
resistance of sIL-2R and IL-1β production in response to dexamethasone administration as compared
to non-melancholic depression [426–431]. Higher triglycerides and fatty acids have been observed in
the melancholic subtype [366]. Studies suggest that the angiotensin-converting enzyme (ACE) could be
decreased in melancholic depression (vs. atypical, vs. healthy controls) [151,432], although published
results are inconsistent.

Liu found decreased histamine and decreased arachidonic acid in melancholic depression [366].
The findings are in line with previous studies indicating that melancholic depression is characterized by
immune repression in contrast to atypical depression which presents with inflammatory activation [222,424].

Among ‘physiological’ markers, differences in EEG patterns have been reported between
melancholic and atypical depression [433].

20.2. Atypical Depression

Atypical depression differs more from healthy controls than melancholic depression. In a study
by Lamers et al. [151], eight out of nine markers overlapped when the authors compared atypical
depression with healthy controls and with melancholic depression. No marker reached statistical
significance which would allow for differentiating between melancholic depression and healthy
controls. The study demonstrated that in atypical depression the following molecules were altered as
compared to melancholic depression: higher leptin, FABPa, complement C3, insulin, B2-microglobulin,
ACE, and lower insulin-like growth factor-binding protein 1 and 2 (IGFBP1, IGFBP2) and mesothelin.
When correcting for BMI, the effect remained significant only for IGFBP1, ACE and B2-microglobulin
(the mediating effect of BMI) [151]. The results are not entirely consistent—enhanced leptin was also
found in melancholic, but not atypical depression in a POWER (Premenopausal, Osteoporosis, Women,
Alendronate, Depression) study [434].

In the majority of studies, atypical depression presents with a more disturbed metabolic profile.
Atypical features correlate with a higher BMI, triglycerides and waist circumference, and lower HDL
and obesity, which could partly explain elevations in IL-6, CRP, TNF-α, and IL-1β since adipose tissue
enhances the production of pro-inflammatory agents [435]. However, metabolic disturbances cannot
fully explain the pro-inflammatory shift characteristic of atypical depression [230].
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Although some similarities were found between melancholic and atypical depression
(e.g., televated IL-6 and CRP concentrations) in a study by Lamers et al. [230], the authors suggest that
inflammation per se is characteristic of atypical depression only, while melancholic depression is even
thought to present an anti-inflammatory profile. Enhanced inflammation reported in the melancholic
subtype in certain studies (e.g., elevated CRP, IL-6, TNF-α) could reflect the characteristics of the
study cohort (e.g., patients with more severe symptoms of depression, inpatient). Decreased IL-4 and
increased IL-2 have been reported in atypical as compared to melancholic depression [421].

21. Discussion

21.1. The Need for Markers

Psychiatric disorders, including depression, are still not completely understood. Knowledge
regarding the etiopathogenesis of depression remains rudimentary. However, thanks to the
implementation of new diagnostic techniques and technologies, particularly the ‘omics’ modalities,
new evidence is emerging and our understanding of the complex nature of depression is becoming
more profound. At present, depression is regarded as a disorder of communication between neurons,
glia and endothelial cells, which is dependent on different systemic factors, including inflammation
and oxidative stress [345]. However, this definition is probably incomplete. Biological markers
constitute an invaluable aid in finding potential new patho-mechanisms involved in the pathogenesis
of depression. Another important issue is a high level of treatment resistance in depression which
occurs in more than one third of all MDD cases. Biological markers could help stratify patients into
more homogenous subgroups and subtypes, such as melancholic and atypical depression, identify
patients at risk of TRD or suicide and elucidate causes and mechanisms underlying these states,
such as increased inflammation or pronounced oxidative stress. Biomarker levels can help assess the
severity of depression, predict outcomes or guide adequate treatment selection. Lastly, by revealing
underlying biological processes, biomarkers may help discover new drug targets and reduce the global
depression burden.

21.2. Biomarkers That Have Potential

The selection of the most accurate biomarkers for depression is not an easy task. Research into
depression markers has intensified in recent years, revealing a plethora of substances, gene polymorphisms,
metabolites and other indicators of depression. Multiple meta-analyses present conflicting results,
which may be due to a vast number of small, marginally significant studies, methodological differences
between studies, depression comorbidities and the high heterogeneity of depression itself. Nevertheless,
inflammatory biomarkers, biomarkers related to oxidative stress, HPA changes, growth factors and
kynurenine pathway markers are repeatedly reported in depression studies and have promise to be
reliable indicators of depression. The most recent and comprehensive, to date, umbrella meta-analysis by
Carvalho et al. [40] demonstrates that depression is associated with increased CRP, IL-6, TNF-α, sIL-2R,
IGF-1, FGF-2, glutamate and lipid peroxidation markers, and decreased BDNF, total cholesterol, KYNA,
KYNA/3HK and KYNA/QA.

21.3. Looking for Biosignature

No individual marker for MDD has displayed sufficient specificity and sensitivity to be a
diagnostic biomarker [436]. Absolute changes in HDRS—the most popular scale to measure depression
intensity—are not significantly correlated with alterations in the levels of any particular biomarkers [115].
One of the biggest challenges (and opportunities) of current depression biomarker research is the
inevitable and indispensable shift in the paradigm—from studies focused on one or two specific
biomarkers (proteins, mutations, etc.) to a far more holistic approach, considering multiple biomarkers
of different classes (i.e., a biosignature) [437] and interactions between them (interactome). It may also
be the case that questionnaires used for the clinical assessment of depression are not best correlated
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with biomarker levels. Perhaps a more holistic approach to the patient’s state, including quality of
life or everyday functioning, is needed to increase biomarker accuracy [438]. A possible lack of a link
between various depression scales and depressive markers may also be due to high levels of comorbid
anxiety in depressive patients since anxiety substantially impacts on the stress axis and hormones.

21.4. Issues

Biomarker research in psychiatry is particularly difficult due to a number of issues highlighted below.

21.4.1. Lack of Specificity

Mental diseases have no sharp boundaries and there is a considerable overlap of symptoms
between psychiatric entities. In addition, they could be perceived as spectrum disorders [439,440] and
psychiatric biomarkers may have a transdiagnostic nature [441].

To address this issue, the Research Domain Criteria Initiative (RDoC) was launched by the
National Institute of Mental Health. This postulates a totally new approach to the classification
of mental disorders and seeks to connect observed behavioral dimensions with neurobiological
systems [442]. It is designed in the form of a matrix concentrating on the assessment of different
spheres of mental functioning affected by mental disorders (such as negative and positive valence
systems, cognitive system, system for social processes and arousal/regulatory system) at different
levels of analysis (genetic, molecular, cellular, neuroanatomical, behavioral, etc.) [33]. This approach
goes across existing diagnostic entities, attempting not to replace the DSM-5 but rather to supplement
it in a more biological, evidence-based way.

21.4.2. Poor Understanding of the Biology of Depression

Another issue hindering depression research is a lack of broader understanding of its
etiopathogenesis. This process has accelerated several times as a result of frequently accidental,
discoveries of new antidepressant drugs. Studying the mechanism of action of these drugs eventually
led scientists to the construction of new hypotheses of depression. That was the case with, inter
alia, imipramine, initially designed as an anti-tuberculosis drug, which unraveled the monoamine
mechanism of depression, and ketamine, an NMDAR antagonist, which underpinned the importance
of NMDAR activation in the development of depression. However, our knowledge regarding the
pathogenesis of depression is still rudimentary. Therefore, when it comes to studies of biomarkers,
they frequently only correlate depression with altered levels of a few molecules, without providing a
comprehensive explanation of the origin of the observed changes. Some studies ignore the fact that
markers are interrelated in a complex, difficult-to-model network (e.g., some could be epiphenomena
of others) [438]. Besides, the exact role of markers in healthy individuals and in depressive patients
remains largely unknown.

To better understand depression, there is a need for reliable animal models. On the other hand,
to build such models, a more comprehensive understanding of the pathophysiology of depression is
necessary [11].

21.4.3. Weak Studies

Recent technological advances have contributed to the intensification of research efforts in the
field of biomarker discovery, particularly thanks to the expansion of ‘omics’ technologies which
have revealed hundreds of putative biomarkers—gene polymorphisms, proteins and metabolites,
whose presence (or altered levels—up or downregulation) could indicate depression. However, the
published results are inconsistent and most markers lack robustness and validation and cannot be
applied directly to clinical practice, which causes a ‘translational gap’ [6,40]. This is due to issues
including a lack of clear definition of psychiatric illnesses, biomarker variability in individuals,
widespread diffusion of small, underpowered studies characterized by ‘significance chasing’ and
small effect size, ‘approximate replications’ of these studies which neither confirm decisively nor
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reject original findings (instead creating a penumbra of new hypotheses), selective publication of
‘positive’ results, selective reporting of outcomes, and finally, for most studies, focus on comparing
‘textbook patients’ with perfectly healthy individuals, which limits clinical application of such a
biomarker [30,443]. A more profound understanding of individual variables such as patient’s age, sex,
menstrual cycle, medication use, smoking status, BMI, and time of sample collection are important to
ameliorate the accuracy of results [23].

21.4.4. Heterogeneity

A search for biomarkers is also hindered by the heterogeneity of MDD [53,206,444]. A lack of
robust, biologically validated, homogenous subgroups is one the greatest obstacles in establishing
biomarkers for depression [3]. Making generalized statements about depression is difficult when
one considers the plethora of different depressive subtypes described in the literature which are
characterized by distinct symptomatologies. It might be worthwhile to use biological differences as a
springboard for defining depression subtypes based on biomarker profile analysis utilizing latent class
analysis [445].

21.4.5. Brain-Periphery Differences

Peripheral fluids (blood, urine, saliva) are the most obvious sources of biomarkers in various
diseases, including MDD. It remains an open question, however, to what degree biochemical changes
in peripheral fluids reflect what happens in the brain/CSF. By way of illustration, even if cytokines
can cross the blood-brain barrier and elevated levels of cytokines are present both peripherally
and centrally in depressed patients [47,53,93,446], the peripheral cytokine profile should not be
considered a simple reflection of what is happening in the brain since peripheral cytokines are strongly
influenced by several extra-central nervous system (CNS) variables. A poor correlation between
blood and brain biomarkers (with some overlaps) was described by Hayashi-Takagi et al. [447].
There are also discrepancies between studies caused by differences in investigated blood samples types
(serum, plasma or cellular components).

To sum up, it is very unlikely that a single marker for MDD is established. However, even if the
diagnosis of depression continues to be based on clinical signs, biomarkers may be a valuable tool for
stratifying particular patients with the disorder, defining subtypes, improving treatment matching,
avoiding specific treatment modalities, predicting response, etc. Such biomarker application is already
common in other areas of medicine in diseases such as asthma, rheumatoid arthritis or cancer [30].

22. Limitations

The study is not systematic and does not provide quantitative information. The authors did not
use strict inclusion and exclusion criteria. Both large and small studies were included. No age and
gender bias were considered.
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176. Gałecki, P.; Szemraj, J.; Bieńkiewicz, M.; Zboralski, K.; Gałecka, E. Oxidative stress parameters after combined
fluoxetine and acetylsalicylic acid therapy in depressive patients. Hum. Psychopharmacol. 2009, 24, 277–286.
[CrossRef] [PubMed]

177. Maes, M.; Mihaylova, I.; Kubera, M.; Uytterhoeven, M.; Vrydags, N.; Bosmans, E. Increased plasma peroxides and
serum oxidized low density lipoprotein antibodies in major depression: Markers that further explain the higher
incidence of neurodegeneration and coronary artery disease. J. Affect. Disord. 2010, 125, 287–294. [CrossRef]

178. Pinto, V.L.M.; Brunini, T.M.C.; Ferraz, M.R.; Okinga, A.; Mendes-Ribeiro, A.C. Depression and cardiovascular
disease: Role of nitric oxide. Cardiovasc. Hematol. Agents Med. Chem. 2008, 6, 142–149. [CrossRef]

179. Dhir, A.; Kulkarni, S.K. Nitric oxide and major depression. Nitric Oxide Biol. Chem. 2011, 24, 125–131. [CrossRef]
180. Brand, S.J.; Möller, M.; Harvey, B.H. A review of biomarkers in mood and psychotic disorders: A dissection

of clinical vs. preclinical correlates. Curr. Neuropharmacol. 2015, 13, 324–368. [CrossRef]
181. Scapagnini, G.; Davinelli, S.; Drago, F.; De Lorenzo, A.; Oriani, G. Antioxidants as antidepressants: Fact or

fiction? CNS Drugs 2012, 26, 477–490. [CrossRef]
182. Kim, Y.-K.; Paik, J.-W.; Lee, S.-W.; Yoon, D.; Han, C.; Lee, B.-H. Increased plasma nitric oxide level

associated with suicide attempt in depressive patients. Prog. Neuropsychopharmacol. Biol. Psychiatry
2006, 30, 1091–1096. [CrossRef]

183. Suzuki, E.; Yoshida, Y.; Shibuya, A.; Miyaoka, H. Nitric oxide involvement in depression during
interferon-alpha therapy. Int. J. Neuropsychopharmacol. 2003, 6, 415–419. [CrossRef] [PubMed]

184. Chrapko, W.E.; Jurasz, P.; Radomski, M.W.; Lara, N.; Archer, S.L.; Le Mellédo, J.-M. Decreased platelet nitric
oxide synthase activity and plasma nitric oxide metabolites in major depressive disorder. Biol. Psychiatry
2004, 56, 129–134. [CrossRef] [PubMed]

185. Jiménez-Fernández, S.; Gurpegui, M.; Díaz-Atienza, F.; Pérez-Costillas, L.; Gerstenberg, M.; Correll, C.U.
Oxidative stress and antioxidant parameters in patients with major depressive disorder compared to
healthy controls before and after antidepressant treatment: Results from a meta-analysis. J. Clin. Psychiatry
2015, 76, 1658–1667. [CrossRef] [PubMed]
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249. Herman, A.P.; Bochenek, J.; Król, K.; Krawczyńska, A.; Antushevich, H.; Pawlina, B.; Herman, A.;
Romanowicz, K.; Tomaszewska-Zaremba, D. Central interleukin-1β suppresses the nocturnal secretion of
melatonin. Mediat. Inflamm. 2016, 2016, 2589483. [CrossRef]

250. Clark-Raymond, A.; Halaris, A. VEGF and depression: A comprehensive assessment of clinical data.
J. Psychiatr. Res. 2013, 47, 1080–1087. [CrossRef]

251. Castrén, E.; Rantamäki, T. The role of BDNF and its receptors in depression and antidepressant drug action:
Reactivation of developmental plasticity. Dev. Neurobiol. 2010, 70, 289–297. [CrossRef]

252. Malberg, J.E.; Monteggia, L.M. VGF, a new player in antidepressant action? Sci. Signal. 2008, 1, pe19. [CrossRef]
253. Turner, C.A.; Akil, H.; Watson, S.J.; Evans, S.J. The fibroblast growth factor system and mood disorders.

Biol. Psychiatry 2006, 59, 1128–1135. [CrossRef] [PubMed]
254. Hanson, N.D.; Owens, M.J.; Nemeroff, C.B. Depression, antidepressants, and neurogenesis: A critical

reappraisal. Neuropsychopharmacology 2011, 36, 2589–2602. [CrossRef] [PubMed]
255. Karege, F.; Perret, G.; Bondolfi, G.; Schwald, M.; Bertschy, G.; Aubry, J.-M. Decreased serum brain-derived

neurotrophic factor levels in major depressed patients. Psychiatry Res. 2002, 109, 143–148. [CrossRef]
256. Dwivedi, Y.; Rizavi, H.S.; Roberts, R.C.; Conley, R.C.; Tamminga, C.A.; Pandey, G.N. Reduced activation and

expression of ERK1/2 MAP kinase in the post-mortem brain of depressed suicide subjects. J. Neurochem.
2001, 77, 916–928. [CrossRef] [PubMed]

257. Aydemir, C.; Yalcin, E.S.; Aksaray, S.; Kisa, C.; Yildirim, S.G.; Uzbay, T.; Goka, E. Brain-derived neurotrophic
factor (BDNF) changes in the serum of depressed women. Prog. Neuropsychopharmacol. Biol. Psychiatry
2006, 30, 1256–1260. [CrossRef]

258. Brunoni, A.R.; Lopes, M.; Fregni, F. A systematic review and meta-analysis of clinical studies
on major depression and BDNF levels: Implications for the role of neuroplasticity in depression.
Int. J. Neuropsychopharmacol. 2008, 11, 1169–1180. [CrossRef]

259. Sen, S.; Duman, R.; Sanacora, G. Serum brain-derived neurotrophic factor, depression, and antidepressant
medications: Meta-analyses and implications. Biol. Psychiatry 2008, 64, 527–532. [CrossRef]

260. Molendijk, M.L.; Spinhoven, P.; Polak, M.; Bus, B.A.A.; Penninx, B.W.J.H.; Elzinga, B.M. Serum BDNF
concentrations as peripheral manifestations of depression: Evidence from a systematic review and
meta-analyses on 179 associations (N = 9484). Mol. Psychiatry 2014, 19, 791–800. [CrossRef]

261. Flensborg-Madsen, T.; von Scholten, M.B.; Flachs, E.M.; Mortensen, E.L.; Prescott, E.; Tolstrup, J.S. Tobacco
smoking as a risk factor for depression. A 26-year population-based follow-up study. J. Psychiatr. Res. 2011,
45, 143–149. [CrossRef]

262. Golden, S.H.; Lazo, M.; Carnethon, M.; Bertoni, A.G.; Schreiner, P.J.; Roux, A.V.D.; Lee, H.B.; Lyketsos, C.
Examining a bidirectional association between depressive symptoms and diabetes. JAMA J. Am. Med. Assoc.
2008, 299, 2751–2759. [CrossRef]

263. Hong, W.; Fan, J.; Yuan, C.; Zhang, C.; Hu, Y.; Peng, D.; Wang, Y.; Huang, J.; Li, Z.; Yu, S.; et al.
Significantly decreased mRNA levels of BDNF and MEK1 genes in treatment-resistant depression. Neuroreport
2014, 25, 753–755. [CrossRef] [PubMed]

264. Li, Y.-J.; Xu, M.; Gao, Z.-H.; Wang, Y.-Q.; Yue, Z.; Zhang, Y.-X.; Li, X.-X.; Zhang, C.; Xie, S.-Y.; Wang, P.-Y.
Alterations of serum levels of BDNF-related miRNAs in patients with depression. PLoS ONE 2013, 8, e63648.
[CrossRef] [PubMed]

265. Fernandes, B.S.; Berk, M.; Turck, C.W.; Steiner, J.; Gonçalves, C.-A. Decreased peripheral brain-derived
neurotrophic factor levels are a biomarker of disease activity in major psychiatric disorders: A comparative
meta-analysis. Mol. Psychiatry 2014, 19, 750–751. [CrossRef]

http://dx.doi.org/10.1016/S0165-1781(96)02937-X
http://dx.doi.org/10.1590/S1516-31802012000300006
http://www.ncbi.nlm.nih.gov/pubmed/22790549
http://dx.doi.org/10.1016/j.jpsychires.2009.06.012
http://www.ncbi.nlm.nih.gov/pubmed/20004915
http://dx.doi.org/10.1155/2016/2589483
http://dx.doi.org/10.1016/j.jpsychires.2013.04.008
http://dx.doi.org/10.1002/dneu.20758
http://dx.doi.org/10.1126/stke.118pe19
http://dx.doi.org/10.1016/j.biopsych.2006.02.026
http://www.ncbi.nlm.nih.gov/pubmed/16631131
http://dx.doi.org/10.1038/npp.2011.220
http://www.ncbi.nlm.nih.gov/pubmed/21937982
http://dx.doi.org/10.1016/S0165-1781(02)00005-7
http://dx.doi.org/10.1046/j.1471-4159.2001.00300.x
http://www.ncbi.nlm.nih.gov/pubmed/11331420
http://dx.doi.org/10.1016/j.pnpbp.2006.03.025
http://dx.doi.org/10.1017/S1461145708009309
http://dx.doi.org/10.1016/j.biopsych.2008.05.005
http://dx.doi.org/10.1038/mp.2013.105
http://dx.doi.org/10.1016/j.jpsychires.2010.06.006
http://dx.doi.org/10.1001/jama.299.23.2751
http://dx.doi.org/10.1097/WNR.0000000000000165
http://www.ncbi.nlm.nih.gov/pubmed/24709918
http://dx.doi.org/10.1371/journal.pone.0063648
http://www.ncbi.nlm.nih.gov/pubmed/23704927
http://dx.doi.org/10.1038/mp.2013.172


J. Clin. Med. 2020, 9, 3793 45 of 54

266. Kunugi, H.; Hori, H.; Adachi, N.; Numakawa, T. Interface between hypothalamic-pituitary-adrenal
axis and brain-derived neurotrophic factor in depression. Psychiatry Clin. Neurosci. 2010, 64, 447–459.
[CrossRef] [PubMed]

267. Fernandes, B.S.; Gama, C.S.; Ceresér, K.M.; Yatham, L.N.; Fries, G.R.; Colpo, G.; de Lucena, D.; Kunz, M.;
Gomes, F.A.; Kapczinski, F. Brain-derived neurotrophic factor as a state-marker of mood episodes in
bipolar disorders: A systematic review and meta-regression analysis. J. Psychiatr. Res. 2011, 45, 995–1004.
[CrossRef] [PubMed]

268. Du, Y.; Wu, H.-T.; Qin, X.-Y.; Cao, C.; Liu, Y.; Cao, Z.-Z.; Cheng, Y. Postmortem brain, cerebrospinal fluid,
and blood neurotrophic factor levels in Alzheimer’s disease: A systematic review and meta-analysis. J. Mol.
Neurosci. MN 2018, 65, 289–300. [CrossRef]

269. Blugeot, A.; Rivat, C.; Bouvier, E.; Molet, J.; Mouchard, A.; Zeau, B.; Bernard, C.; Benoliel, J.-J.; Becker, C.
Vulnerability to depression: From brain neuroplasticity to identification of biomarkers. J. Neurosci.
2011, 31, 12889–12899. [CrossRef]

270. Cannon, T.D.; van Erp, T.G.M.; Bearden, C.E.; Loewy, R.; Thompson, P.; Toga, A.W.; Huttunen, M.O.;
Keshavan, M.S.; Seidman, L.J.; Tsuang, M.T. Early and late neurodevelopmental influences in the
prodrome to schizophrenia: Contributions of genes, environment, and their interactions. Schizophr. Bull.
2003, 29, 653–669. [CrossRef]

271. Huang, T.L.; Lee, C.T.; Liu, Y.L. Serum brain-derived neurotrophic factor levels in patients with major
depression: Effects of antidepressants. J. Psychiatr. Res. 2007, 42, 521–525. [CrossRef]

272. Dwivedi, Y.; Rizavi, H.S.; Conley, R.R.; Roberts, R.C.; Tamminga, C.A.; Pandey, G.N. Altered gene expression
of brain-derived neurotrophic factor and receptor tyrosine kinase B in postmortem brain of suicide subjects.
Arch. Gen. Psychiatry 2003, 60, 804–815. [CrossRef]

273. Nibuya, M.; Morinobu, S.; Duman, R.S. Regulation of BDNF and trkB mRNA in rat brain by
chronic electroconvulsive seizure and antidepressant drug treatments. J. Neurosci. Off. J. Soc. Neurosci.
1995, 15, 7539–7547. [CrossRef]

274. Brunoni, A.R.; Baeken, C.; Machado-Vieira, R.; Gattaz, W.F.; Vanderhasselt, M.-A. BDNF blood levels after
electroconvulsive therapy in patients with mood disorders: A systematic review and meta-analysis. World J.
Biol. Psychiatry Off. J. World Fed. Soc. Biol. Psychiatry 2014, 15, 411–418. [CrossRef] [PubMed]

275. Polyakova, M.; Stuke, K.; Schuemberg, K.; Mueller, K.; Schoenknecht, P.; Schroeter, M.L. BDNF as a biomarker
for successful treatment of mood disorders: A systematic & quantitative meta-analysis. J. Affect. Disord. 2015,
174, 432–440. [CrossRef] [PubMed]

276. Mill, J.; Petronis, A. Molecular studies of major depressive disorder: The epigenetic perspective.
Mol. Psychiatry 2007, 12, 799–814. [CrossRef] [PubMed]

277. Sahay, A.; Hen, R. Adult hippocampal neurogenesis in depression. Nat. Neurosci. 2007, 10, 1110–1115. [CrossRef]
278. Tu, K.-Y.; Wu, M.-K.; Chen, Y.-W.; Lin, P.-Y.; Wang, H.-Y.; Wu, C.-K.; Tseng, P.-T. Significantly higher peripheral

insulin-like growth factor-1 levels in patients with major depressive disorder or bipolar disorder than in
healthy controls. Medicine 2016, 95. [CrossRef]

279. Anderson, M.F.; Aberg, M.A.I.; Nilsson, M.; Eriksson, P.S. Insulin-like growth factor-I and neurogenesis in
the adult mammalian brain. Brain Res. Dev. Brain Res. 2002, 134, 115–122. [CrossRef]

280. Aberg, M.A.; Aberg, N.D.; Hedbäcker, H.; Oscarsson, J.; Eriksson, P.S. Peripheral infusion of IGF-I
selectively induces neurogenesis in the adult rat hippocampus. J. Neurosci. Off. J. Soc. Neurosci.
2000, 20, 2896–2903. [CrossRef]

281. Park, S.-E.; Dantzer, R.; Kelley, K.W.; McCusker, R.H. Central administration of insulin-like growth
factor-I decreases depressive-like behavior and brain cytokine expression in mice. J. Neuroinflammation
2011, 8, 12. [CrossRef]

282. Duman, C.H.; Schlesinger, L.; Terwilliger, R.; Russell, D.S.; Newton, S.S.; Duman, R.S. Peripheral
insulin-like growth factor-I produces antidepressant-like behavior and contributes to the effect of exercise.
Behav. Brain Res. 2009, 198, 366–371. [CrossRef]

283. Palmer, T.D.; Willhoite, A.R.; Gage, F.H. Vascular niche for adult hippocampal neurogenesis. J. Comp. Neurol.
2000, 425, 479–494. [CrossRef]

284. Carvalho, A.F.; Köhler, C.A.; McIntyre, R.S.; Knöchel, C.; Brunoni, A.R.; Thase, M.E.; Quevedo, J.;
Fernandes, B.S.; Berk, M. Peripheral vascular endothelial growth factor as a novel depression biomarker:
A meta-analysis. Psychoneuroendocrinology 2015, 62, 18–26. [CrossRef] [PubMed]

http://dx.doi.org/10.1111/j.1440-1819.2010.02135.x
http://www.ncbi.nlm.nih.gov/pubmed/20923424
http://dx.doi.org/10.1016/j.jpsychires.2011.03.002
http://www.ncbi.nlm.nih.gov/pubmed/21550050
http://dx.doi.org/10.1007/s12031-018-1100-8
http://dx.doi.org/10.1523/JNEUROSCI.1309-11.2011
http://dx.doi.org/10.1093/oxfordjournals.schbul.a007037
http://dx.doi.org/10.1016/j.jpsychires.2007.05.007
http://dx.doi.org/10.1001/archpsyc.60.8.804
http://dx.doi.org/10.1523/JNEUROSCI.15-11-07539.1995
http://dx.doi.org/10.3109/15622975.2014.892633
http://www.ncbi.nlm.nih.gov/pubmed/24628093
http://dx.doi.org/10.1016/j.jad.2014.11.044
http://www.ncbi.nlm.nih.gov/pubmed/25553404
http://dx.doi.org/10.1038/sj.mp.4001992
http://www.ncbi.nlm.nih.gov/pubmed/17420765
http://dx.doi.org/10.1038/nn1969
http://dx.doi.org/10.1097/MD.0000000000002411
http://dx.doi.org/10.1016/S0165-3806(02)00277-8
http://dx.doi.org/10.1523/JNEUROSCI.20-08-02896.2000
http://dx.doi.org/10.1186/1742-2094-8-12
http://dx.doi.org/10.1016/j.bbr.2008.11.016
http://dx.doi.org/10.1002/1096-9861(20001002)425:4&lt;479::AID-CNE2&gt;3.0.CO;2-3
http://dx.doi.org/10.1016/j.psyneuen.2015.07.002
http://www.ncbi.nlm.nih.gov/pubmed/26210676


J. Clin. Med. 2020, 9, 3793 46 of 54

285. Tseng, P.-T.; Cheng, Y.-S.; Chen, Y.-W.; Wu, C.-K.; Lin, P.-Y. Increased levels of vascular endothelial growth
factor in patients with major depressive disorder: A meta-analysis. Eur. Neuropsychopharmacol. J. Eur.
Coll. Neuropsychopharmacol. 2015, 25, 1622–1630. [CrossRef] [PubMed]

286. Iga, J.I.; Ueno, S.I.; Yamauchi, K.; Numata, S.; Tayoshi-Shibuya, S.; Kinouchi, S.; Nakataki, M.; Song, H.;
Hokoishi, K.; Tanabe, H.; et al. Gene expression and association analysis of vascular endothelial growth
factor in major depressive disorder. Prog. Neuropsychopharmacol. Biol. Psychiatry 2006, 31, 658–663.
[CrossRef] [PubMed]

287. Wu, C.-K.; Tseng, P.-T.; Chen, Y.-W.; Tu, K.-Y.; Lin, P.-Y. Significantly higher peripheral fibroblast growth
factor-2 levels in patients with major depressive disorder: A preliminary meta-analysis under MOOSE
guidelines. Medicine 2016, 95, e4563. [CrossRef]

288. Jarosik, J.; Legutko, B.; Werner, S.; Unsicker, K.; von Bohlen und Halbach, O. Roles of exogenous and
endogenous FGF-2 in animal models of depression. Restor. Neurol. Neurosci. 2011, 29, 153–165. [CrossRef]

289. Audet, M.-C.; Anisman, H. Interplay between pro-inflammatory cytokines and growth factors in depressive
illnesses. Front. Cell. Neurosci. 2013, 7. [CrossRef]

290. Cattaneo, A.; Sesta, A.; Calabrese, F.; Nielsen, G.; Riva, M.A.; Gennarelli, M. The expression of VGF
is reduced in leukocytes of depressed patients and it is restored by effective antidepressant treatment.
Neuropsychopharmacology 2010, 35, 1423–1428. [CrossRef]

291. Virkkunen, M.; Goldman, D.; Nielsen, D.A.; Linnoila, M. Low brain serotonin turnover rate (low CSF
5-HIAA) and impulsive violence. J. Psychiatry Neurosci. 1995, 20, 271–275.

292. Lidberg, L.; Tuck, J.R.; Asberg, M.; Scalia-Tomba, G.P.; Bertilsson, L. Homicide, suicide and CSF 5-HIAA.
Acta Psychiatr. Scand. 1985, 71, 230–236. [CrossRef]

293. Kaufman, J.; DeLorenzo, C.; Choudhury, S.; Parsey, R.V. The 5-HT1A receptor in major depressive disorder.
Eur. Neuropsychopharmacol. J. Eur. Coll. Neuropsychopharmacol. 2016, 26, 397–410. [CrossRef] [PubMed]

294. Wang, L.; Zhou, C.; Zhu, D.; Wang, X.; Fang, L.; Zhong, J.; Mao, Q.; Sun, L.; Gong, X.; Xia, J.; et al. Serotonin-1A
receptor alterations in depression: A meta-analysis of molecular imaging studies. BMC Psychiatry 2016, 16, 319.
[CrossRef] [PubMed]

295. Maes, M.; Ringel, K.; Kubera, M.; Berk, M.; Rybakowski, J. Increased autoimmune activity against 5-HT: A
key component of depression that is associated with inflammation and activation of cell-mediated immunity,
and with severity and staging of depression. J. Affect. Disord. 2012, 136, 386–392. [CrossRef] [PubMed]

296. Mendelson, S.D. The current status of the platelet 5-HT(2A) receptor in depression. J. Affect. Disord.
2000, 57, 13–24. [CrossRef]

297. Nestler, E.J.; Carlezon, W.A. The mesolimbic dopamine reward circuit in depression. Biol. Psychiatry
2006, 59, 1151–1159. [CrossRef]

298. Moret, C.; Briley, M. The importance of norepinephrine in depression. Neuropsychiatr. Dis. Treat.
2011, 7, 9–13. [CrossRef]

299. Hughes, J.W.; Watkins, L.; Blumenthal, J.A.; Kuhn, C.; Sherwood, A. Depression and anxiety symptoms
are related to increased 24-hour urinary norepinephrine excretion among healthy middle-aged women.
J. Psychosom. Res. 2004, 57, 353–358. [CrossRef]

300. Mooney, J.J.; Samson, J.A.; Hennen, J.; Pappalardo, K.; McHale, N.; Alpert, J.; Koutsos, M.; Schildkraut, J.J.
Enhanced norepinephrine output during longterm desipramine treatment: A possible role for the
extraneuronal monoamine transporter (SLC22A3). J. Psychiatr. Res. 2008, 42, 605–611. [CrossRef]

301. Zeb, F.; Naqvi, S.; Rahman, R.; Farooq, A.D. Depressive symptoms, monoamines levels, MAO-B activity and
effect of treatment in a subset of depressed individuals from government sector hospital at Karachi. Pak. J.
Pharm. Sci. 2017, 30, 1509–1519.

302. Hashimoto, K. Emerging role of glutamate in the pathophysiology of major depressive disorder. Brain Res. Rev.
2009, 61, 105–123. [CrossRef]

303. Coyle, J.T.; Puttfarcken, P. Oxidative stress, glutamate, and neurodegenerative disorders. Science
1993, 262, 689–695. [CrossRef] [PubMed]

304. Suzuki, E.; Yagi, G.; Nakaki, T.; Kanba, S.; Asai, M. Elevated plasma nitrate levels in depressive states.
J. Affect. Disord. 2001, 63, 221–224. [CrossRef]

305. Zarate, C.A.; Du, J.; Quiroz, J.; Gray, N.A.; Denicoff, K.D.; Singh, J.; Charney, D.S.; Manji, H.K. Regulation of
cellular plasticity cascades in the pathophysiology and treatment of mood disorders: Role of the glutamatergic
system. Ann. N. Y. Acad. Sci. 2003, 1003, 273–291. [CrossRef] [PubMed]

http://dx.doi.org/10.1016/j.euroneuro.2015.06.001
http://www.ncbi.nlm.nih.gov/pubmed/26123242
http://dx.doi.org/10.1016/j.pnpbp.2006.12.011
http://www.ncbi.nlm.nih.gov/pubmed/17257729
http://dx.doi.org/10.1097/MD.0000000000004563
http://dx.doi.org/10.3233/RNN-2011-0588
http://dx.doi.org/10.3389/fncel.2013.00068
http://dx.doi.org/10.1038/npp.2010.11
http://dx.doi.org/10.1111/j.1600-0447.1985.tb01279.x
http://dx.doi.org/10.1016/j.euroneuro.2015.12.039
http://www.ncbi.nlm.nih.gov/pubmed/26851834
http://dx.doi.org/10.1186/s12888-016-1025-0
http://www.ncbi.nlm.nih.gov/pubmed/27623971
http://dx.doi.org/10.1016/j.jad.2011.11.016
http://www.ncbi.nlm.nih.gov/pubmed/22166399
http://dx.doi.org/10.1016/S0165-0327(99)00177-9
http://dx.doi.org/10.1016/j.biopsych.2005.09.018
http://dx.doi.org/10.2147/NDT.S19619
http://dx.doi.org/10.1016/S0022-3999(04)00064-9
http://dx.doi.org/10.1016/j.jpsychires.2007.07.009
http://dx.doi.org/10.1016/j.brainresrev.2009.05.005
http://dx.doi.org/10.1126/science.7901908
http://www.ncbi.nlm.nih.gov/pubmed/7901908
http://dx.doi.org/10.1016/S0165-0327(00)00164-6
http://dx.doi.org/10.1196/annals.1300.017
http://www.ncbi.nlm.nih.gov/pubmed/14684452


J. Clin. Med. 2020, 9, 3793 47 of 54

306. Inoshita, M.; Umehara, H.; Watanabe, S.; Nakataki, M.; Kinoshita, M.; Tomioka, Y.; Tajima, A.; Numata, S.;
Ohmori, T. Elevated peripheral blood glutamate levels in major depressive disorder. Neuropsychiatr. Dis. Treat.
2018, 14, 945–953. [CrossRef]

307. Harvey, B.H. Is major depressive disorder a metabolic encephalopathy? Hum. Psychopharmacol.
2008, 23, 371–384. [CrossRef]

308. Bak, L.K.; Schousboe, A.; Waagepetersen, H.S. The glutamate/GABA-glutamine cycle: Aspects of transport,
neurotransmitter homeostasis and ammonia transfer. J. Neurochem. 2006, 98, 641–653. [CrossRef]

309. Petty, F.; Steinberg, J.; Kramer, G.L.; Fulton, M.; Moeller, F.G. Desipramine does not alter plasma GABA in
patients with major depression. J. Affect. Disord. 1993, 29, 53–56. [CrossRef]

310. Petty, F.; Kramer, G.L.; Fulton, M.; Davis, L.; Rush, A.J. Stability of plasma GABA at four-year follow-up in
patients with primary unipolar depression. Biol. Psychiatry 1995, 37, 806–810. [CrossRef]
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