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Abstract

Animal behavior constantly adapts to changes, for example when the statistical properties

of the environment change unexpectedly. For an agent that interacts with this volatile set-

ting, it is important to react accurately and as quickly as possible. It has already been shown

that when a random sequence of motion ramps of a visual target is biased to one direction

(e.g. right or left), human observers adapt their eye movements to accurately anticipate the

target’s expected direction. Here, we prove that this ability extends to a volatile environment

where the probability bias could change at random switching times. In addition, we also

recorded the explicit prediction of the next outcome as reported by observers using a rating

scale. Both results were compared to the estimates of a probabilistic agent that is optimal in

relation to the assumed generative model. Compared to the classical leaky integrator

model, we found a better match between our probabilistic agent and the behavioral

responses, both for the anticipatory eye movements and the explicit task. Furthermore, by

controlling the level of preference between exploitation and exploration in the model, we

were able to fit for each individual’s experimental dataset the most likely level of volatility

and analyze inter-individual variability across participants. These results prove that in such

an unstable environment, human observers can still represent an internal belief about the

environmental contingencies, and use this representation both for sensory-motor control

and for explicit judgments. This work offers an innovative approach to more generically test

the diversity of human cognitive abilities in uncertain and dynamic environments.

Author summary

Understanding how humans adapt to changing environments to make judgments or plan

motor responses based on time-varying sensory information is crucial for psychology,

neuroscience and artificial intelligence. Current theories for how we deal with the envi-

ronment’s uncertainty, that is, in response to the introduction of some randomness

change, mostly rely on the behavior at equilibrium, long after after a change. Here, we

show that in the more ecological case where the context switches at random times all

along the experiment, an adaptation to this volatility can be performed online. In
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particular, we show in two behavioral experiments that humans can adapt to such volatil-

ity at the early sensorimotor level, through their anticipatory eye movements, but also at a

higher cognitive level, through explicit ratings. Our results suggest that humans (and

future artificial systems) can use much richer adaptive strategies than previously assumed.

Introduction

Volatility of sensory contingencies and the adaptation of cognitive systems

We live in a fundamentally volatile world for which our cognitive system has to constantly

adapt. In particular, this volatility may be generated by processes with different time scales.

Imagine for instance you are a general practitioner and that you usually report an average

number of three persons infected by flu per week. However, this rate is variable and over the

past week you observe that the rate increased to ten cases. In consequence, two alternative

interpretations are available: the first possibility is that there is an outbreak of flu and one

should then estimate its incidence (i.e. the rate of new cases) since the inferred outbreak’s

onset, in order to quantify the infection rate specific to this outbreak, but also to update the

value of the probability of a new outbreak at a longer time scale. Alternatively, these cases are

“unlucky” coincidences that originate from the natural variability of the underlying statistical

process which drive patients to the doctor, and which are instances drawn from the same sta-

tionary random process. In that option, it may be possible to readjust the estimated baseline

rate of infection with this new data. This example illustrates one fundamental problem with

which our cognitive system is faced: when observing new sensory evidence, should I stay and

continue to exploit this novel data with respect to my current beliefs about the environment’s

state or should I go and explore a new hypothesis about the random process generating the

observations since the detection of a switch in the environment?

This uncertainty in the environment’s state is characterized by its volatility which by defini-

tion measures the temporal variability of the sufficient parameters of a random variable. Such

meta-analysis of the environment’s statistical properties is an effective strategy at a large tem-

poral scale level, as that for the flu outbreak of our example, but also at all levels which are

behaviorally relevant, such as contextual changes in our everyday life. Inferring near-future

states in a dynamic environment, such that one can prepare to act upon them ahead of their

occurrence—or at least forming beliefs as precise as possible about a future environmental

context—is an ubiquitous challenge for cognitive systems [1]. In the long term, how the

human brain dynamically manages this trade-off between exploitation and exploration is

essential to the adaptation of the behavior through reinforcement learning [2].

In controlled psychophysical experimental settings which challenge visual perception or

sensorimotor associations, such adaptive processes have been mostly put in evidence by pre-

cisely analyzing the participants’ behavior in a sequence of experimental trials. These typically

highlight sequential effects at the time scale of several seconds to minutes or even hours in the

case of the adaptation to a persistent sensorimotor relation. Indeed, stimulus history of sensory

events influences how the current stimulus is perceived [3–7] and acted upon [8–11]. Two

qualitatively opposite effects of the stimulus history have been described: negative (adapta-

tion), and positive (priming-like) effects. Adaptation reduces the sensitivity to recurrently pre-

sented stimuli, thus yielding a re-calibrated perceptual experience [12–14]. On the other hand,

priming is a facilitatory effect that enhances the identification of repeated stimuli [15, 16]: in

sensorimotor control, the same stimulus presented several times could indeed lead to faster

and more precise responses. Interestingly, priming effects are sometimes paralleled by
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anticipatory motor responses which are positively correlated with the repetition of stimulus

properties. A well-known example of this behavior are anticipatory smooth eye movements

(aSPEM or shortly, anticipatory pursuit), as we will illustrate in the next section.

Overall, the ability to take into account statistical regularities in the event sequence appears

as a fundamental ability for the adaptive behavior of living species. Importantly, few studies

have addressed the question of whether the estimate of such regularities is explicit, and

whether such explicit reports of the dynamic statistical estimates would eventually correlate

with the measures of behavioral adaptation or priming. Here we aim at investigating this ques-

tion in the specific case of the processing of a target’s motion direction. In addition, we attempt

to palliate the lack of a solid modeling approach to best understand the computation underly-

ing behavioral adaptation to the environment’s statistics, and in particular how sequential

effects are integrated within a hierarchical statistical framework.

Bayesian inference offers an effective methodology to deal with this question. Indeed, these

methods allow to define and quantitatively assess a range of hypotheses about the processing

of possibly noisy information by some formal agents [17–19]. A key principle in the Bayesian

inference approach is to introduce so-called latent variables which explicitly represent different

hypotheses by the agent and how these may predict experimental outcomes. Each hypothesis

defines different weights in the graph of probabilistic dependencies between variables (for

instance between the number of patients at a practitioner and the reality of a flu pandemic).

Then, using the rules of probability calculus and knowing incoming measurements, one can

progressively update beliefs about the latent variables, and eventually infer the hidden struc-

ture underlying the received inputs [20, 21]. For instance, using Bayes’s rule, one can combine

the likelihood of observations given a given generative model and the prior on these latent var-

iables [22] such that beliefs about latent variables may be represented as probabilities. Of par-

ticular interest for us is the possibility to quantitatively represent in this kind of probabilistic

model the predictive and iterative nature of a sequence of events. Indeed, once the belief about

latent variables is formed from the sensory input, this belief can be used to update the prior

over future beliefs [23]. In such models, the comparison between expectations and actual data

leads to continuous updates of the estimates of the latent variables, but also of the validity of

the model. There are numerous examples of Bayesian approaches applied to the study of the

adaptation to volatility. For instance, Meyniel et al [24] simulated a hierarchical Bayesian

model over five previously published datasets [25–29] in the domain of cognitive neurosci-

ence. Here we focus on an extension of this approach to the study of motion processing and

eye movements.

Anticipatory Smooth Pursuit Eye Movements (aSPEM)

Humans are able to accurately track a moving object with a combination of saccades and

Smooth Pursuit Eye Movements (for a review see [30]). These movements allow us to align

and stabilize the object on the fovea, thus enabling high-resolution visual processing. This pro-

cess is delayed by different factors such as axonal transduction, neural processing latencies and

the inertia of the oculomotor system [31]. When predictive information is available about tar-

get’s motion, an anticipatory Smooth Pursuit Eye Movement (aSPEM or shortly, anticipatory

pursuit) is generated before its appearance [32–34] thereby reducing visuomotor latency [35].

Moreover, some experiments have demonstrated the existence of prediction-based smooth

pursuit maintenance during the transient disappearance of a moving target [36–38] and even

predictive acceleration or deceleration during visual tracking [37, 39]. Overall, although the

initiation of smooth pursuit eye movements is almost always driven by a visual motion signal,

it is now clear that smooth pursuit behavior can be modulated at different stages by extra-
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retinal, predictive information even in the absence of a direct visual stimulation [40]. Several

functional and computational models have been proposed in the literature for the different

forms of prediction-based smooth eye movements, such as zero-lag tracking of a periodic tar-

get [41] or pursuit maintenance during target occlusion [39]. More recently an effort has been

made to provide a more general theoretical framework, which is based on Bayesian inference

and the reliability-based cue combination. Although the mapping of this theoretical frame-

work onto neuronal functions remains to be elucidated, it has the clear advantage of generality,

as for instance, it would encompass all forms of smooth pursuit behavior, including predic-

tion-based and visually-guided tracking [42–45]. Here, we present a model extending this

recent theoretical effort to include the adaptivity to a volatile environment.

Experience-based anticipatory pursuit behavior is remarkable in different aspects. First, its

buildup is relatively fast, such that only a few trials are sufficient to observe the effects of spe-

cific regularities in the properties of visual motion, such as speed, timing or direction [10, 44,

46]. Second, it is a robust phenomenon, which has been observed on a large population of

human participants and even in non-human primates (for a recent review see [47]). Note also,

that human participants seem to be largely unaware of this behavior (as inferred from informal

questioning). Finally, this kind of behavior has proven to be exquisitely sensitive to the proba-

bilistic properties of the sensorimotor context.

Typically, anticipatory pursuit is observed after a temporal cue and before target motion

onset [33, 34, 46]. In previous studies [11, 48], we have analyzed how forthcoming motion

properties, such as target speed or direction, can be anticipated with coherently oriented eye

movements. We have observed that the amplitude of anticipation, as measured by the mean

anticipatory eye velocity, increases when the target repeatedly moves in the same direction. In

particular, the mean anticipatory eye velocity is linearly related to the probability of motion’s

speed or direction. These results are coherent with findings by other groups [46, 49–51] and

they indicate that anticipatory pursuit behavior is potentially a useful marker to study the

internal representation of motion expectancy, and in particular to analyze how such expec-

tancy is dynamically modulated by probabilistic contingencies in shaping oculomotor

behavior.

Contributions

The goal of this study is to generalize the adaptive process observed in anticipatory pursuit [48,

51] to more ecological settings and also to broaden its scope by showing that such adaptive

processes occur also at an explicit level. We already mentioned that by manipulating the prob-

ability bias for target motion direction, it is possible to modulate the strength (direction and

mean velocity) of anticipatory pursuit. This suggests that probabilistic information about

direction bias may be used to inform the internal representation of motion prediction for the

initiation of anticipatory movements. However, previous studies have overlooked the impor-

tance to design a realistic generative model to dynamically manipulate the probability bias and

generate an ecologically relevant input sequence of target directions. A possible confound

comes from the fact that previous studies have used fixed-lengths sequences of trials, stacked

in a sequence of conditions defined by the different probability biases. Indeed, observers may

potentially pick up the information on the block’s length to predict the occurrence of a switch

(a change in probability bias) during the experiment. Second, we observed qualitatively that

following a switch, the amplitude of anticipatory pursuit velocity changed gradually, consis-

tently with other adaptation paradigms [52–54]. The estimate of the characteristic temporal

parameters for this adaptation mechanism may become particularly challenging in a dynamic

context, where the probabilistic contingencies vary in time in an unpredictable way. Finally,
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whether and how the information processing underlying the buildup of anticipatory pursuit

and its dynamics is linked to an explicit estimate of probabilities is still largely unknown.

To assess the dynamics of the adaptive processes which compensate for the variability

within sensory sequences, one may generate random sequences of Target Directions (TDs)

using a dynamic value for the probability bias p = Pr(TD is ‘right’), with a parametric mecha-

nism controlling for the volatility at each trial. In the Hierarchical Gaussian Filter model [55],

for instance, volatility is controlled as a non-linear transformation of a random walk (modeled

itself by a Brownian motion with a given diffusion coefficient). Ultimately, this hierarchical

model allows to generate a sequence of binary choices where volatility is controlled by a spe-

cific random variable which fluctuates in time according to some probabilistic law. Such a for-

ward probabilistic model is invertible using some simplifying assumptions and allows to

extract a time-varying inference of the agent’s belief about volatility [56]. Herein, to explicitly

analyze the effect of history length, we rather extend the protocol of [48] such that the proba-

bility bias is still fixed within sub-blocks but that these sub-blocks have variable lengths, that is,

by introducing switches occurring at random times. Therefore, similarly to [57], we use a

model for which the bias p in target direction varies according to a piecewise-constant func-

tion. We expect that within each of these sub-blocks that we defined, the uncertainty about of

the value of p will progressively decrease as we accumulate trials. In addition, the range of pos-

sible biases was finite (p 2 {0, .1, .25, .5, .75, .9, 1}) in our previous study. In the present work,

we also extend the paradigm by drawing p as a continuous random variable within the whole

range of possible probability biases (that is, the segment [0, 1]).

As a summary, we first draw random events (that we denote as “switches”) with a given

mean frequency (the “hazard rate”) and which controls the strength of the volatility. Second,

the value p of the bias only changes at the moment of a switch, independently of the previous

bias’ value and it is stationary between two switches, forming what we call an “epoch”. Third,

target direction is drawn as a Bernoulli trial using the current value of p. Such a hierarchical

structure is presented in Fig 1A, where we show the realization of the target’s directions

Fig 1. Smooth pursuit eye movements and explicit direction predictions in a volatile switching environment. We

test the capacity of human participants to adapt to a volatile environment. (A) We use a 3-layered generative model of

fluctuations in target directions (TD) that we call the Binary Switching model. This TD binary variable is chosen using

a Bernoulli trial of a given probability bias. This probability bias is constant for as many trials until a switch is

generated. At a switch, the bias is chosen at random from a given prior. Switches are generated in the third layer as

binary events drawn from a Bernoulli trial with a given hazard rate (defined here as 1/40 per trial). We show one

realization of a block of 200 trials. (B) The eye-movements task was an adapted version of a task developed by [48].

Each trial consisted of sequentially: a fixation dot (FIX, of random duration between 400 and 800 ms), a blank screen

(GAP, of fixed duration of 300 ms) and a moving ring-shaped target (TARGET, with 15˚/s velocity) which the

observers were instructed to follow. The direction of the target (right or left) was drawn pseudo-randomly according

to the generative model defined above. (C) In order to titrate the adaptation to the environmental volatility of target

direction at the explicit and conscious level, we invited each observer to perform on a different day a new variant of the

direction-biased experiment, where we asked participants to predict, before each trial, their estimate of the

forthcoming direction of the target. As shown in this sample screenshot, this was performed by moving a mouse

cursor (black triangle) on a continuous rating scale between “Left”, to “Unsure” and finally “Right”.

https://doi.org/10.1371/journal.pcbi.1007438.g001
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sequence, the trajectory of the underlying probability bias (hidden to the observer), and the

occurrences of switches. Mathematically, this can be considered as a three-layered hierarchical

model defining the evolution of the model at each trial t as the vector ðxt
2
; xt

1
; xt

0
Þ. At the top-

most layer, the occurrence xt
2
2 f0; 1g of a switch (1 for true, 0 for false) is drawn from a Ber-

noulli trial ℬ parameterized by its hazard rate h (as the frequency of occurrence for each trial).

The value of t ¼ 1

h thus gives the average duration (in number of trials) between the occurrence

of two switches. In the middle layer, the probability bias p of target direction is a random vari-

able that we define as xt
1
2 ½0; 1�. It is chosen at random from a prior distribution P at the

moment of a switch, and else it is constant until the next occurrence of a switch. The prior dis-

tribution P can be for instance the uniform distribution U on [0, 1] or Jeffrey’s prior P (see

Appendix). Finally, a target moves either to the left or to the right, and we denote this variable

(target direction, TD) as xt
0
2 f0; 1g. This direction is drawn from a Bernoulli trial parameter-

ized by the direction bias p ¼ xt
1
. In short, this is described according to the following equa-

tions:

Occurrence of a switch : xt
2
/ Bð1=tÞ

Dynamics of probability bias p ¼ xt
1

( if xt
2
¼ 0 then xt

1
¼ xt� 1

1

else xt
1
/ P

Sequence of directions : xt
0
/ Bðxt

1
Þ

8
>>>>>>><

>>>>>>>:

ð1Þ

In this study, we generated a sequence of 600 trials, and there is by construction a switch at

t = 0 (that is, x0
2
¼ 1). In addition, we imposed in our sequence that a switch occurs after trial

numbers 200 and 400, in order to be able to compare adaptation properties across these three

different trial blocks. With such a three-layered structure, the model generates the randomized

occurrence of switches, itself generating epochs with constant direction probability and finally

the random sequence of Target Direction (TD) occurrences at each trial. This system of three

equations defined in Eq 1 defines the Binary Switching model which we used for the genera-

tion of experimental sequences presented to human participants in the experiments. We will

use that generative model as the basis for an ideal observer model equipped to invert that gen-

erative model in order to estimate the time-varying probability bias for a given sequence of

observations (TDs). The comparison of human behavior with the ideal observer model’s pre-

dictions will allow us to test it as a model for the adaptation of human behavior to the environ-

ment’s volatility.

This paper is organized in five parts. After this introduction where we presented the moti-

vation for this study, the next section will present an inversion of the (forward) binary switch-

ing generative model, coined the Binary Bayesian Change-Point (BBCP) model. To our

knowledge, such algorithm was not yet available, and we will here provide with an exact ana-

lytical solution by extending previous results from [58] to the binary nature of data in the

Binary Switching model presented above (see Eq 1). In addition, the proposed algorithm is

biologically realistic as it uses simple computations and is online, that is, all computations on

the sequence may be done using solely a set of variables available at the present trial, compactly

representing all the sequence history seen in previous trials. We will also provide a computa-

tional implementation and a quantitative evaluation of this algorithm. Then, we will present

the analysis of experimental evidence to validate the generalization of previous results with this

novel switching protocol. In order to understand the nature of the representation of motion

regularities underlying adaptive behavior, we collected both the recording of eye movements

and the verbal explicit judgments about expectations on motion direction. In one session,
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participants were asked to estimate “how much they are confident that the target will move to

the right or left in the next trial” and to adjust the cursor’s position on the screen accordingly

(see Fig 1C). In the other experimental session on a different day, we showed the same

sequence of target directions and recorded participants’ eye movements (see Fig 1B). Combin-

ing these theoretical and experimental results, a novelty of our approach is to use the BBCP

agent as a regressor which will allow us to match experimental results and to compare its pre-

dictive power compared to classical models such as the leaky integrator model. Hence, we will

show that behavioral results match best with the BBCP model. In the following section, we will

synthesize these results by inferring the volatility parameters inherent to the models by best-fit-

ting it to each each individual participant. This will allow the analysis of inter-individual

behavioral responses for each session. In particular, we will test if one could extract observers’

prior (preferred) volatility, that is, a measure of the dynamic compromise between exploitation

(“should I stay?”) and exploration (“should I go?”) for the two different sessions challenging

predictive adaptive processes both at the implicit and explicit levels. Finally, we will summarize

and conclude this study and offer some perspectives for future work.

Results

Binary Bayesian Change-Point (BBCP) detection model

As we saw above, Bayesian methods provide a powerful framework for studying human behav-

ior and adaptive processes in particular. For instance, [55] first defined a multi-layered genera-

tive model for sequences of input stimuli. By inverting this stochastic forward process, they

could extract relevant descriptors at the different levels of the model and fit these parameters

with the recorded behavior. Here, we use a similar approach, focusing specifically on the

binary switching generative model, as defined in Eq 1. To begin, we define as a control a first

ideal observer, the leaky integrator (or forgetful agent), which has an exponentially-decaying

memory for the events that occurred in the past trials. This agent can equivalently be described

as one which assumes that volatility is stationary with a fixed characteristic frequency of

switches. Then, we extend this model to an agent which assumes the existence of (randomly

occurring) switches, that is, that the agent is equipped with the prior knowledge that the value

of the probability bias may change at specific (yet randomly drawn) trials, as defined by the

forward probabilistic model in Eq 1.

Forgetful agent (Leaky integrator) detection model. The leaky integrator ideal observer

represents a classical, widespread and realistic model of how trial-history shapes adaptive pro-

cesses in human behavior [59]. It is also well adapted to model motion expectation in the

direction-biased experiment which leads to anticipatory pursuit. In this model, given the

sequence of observations xt
0

from trial 0 to t, the expectation p ¼ x̂tþ1
1

of the probability for the

next trial direction can be modeled by making a simple heuristic [59]: This probability is the

weighted average of the previously predicted probability, x̂t
1
, with the new information xt

0
,

where the weight corresponds to a leak term (or discount) equal to (1 − h), with h 2 [0, 1]. At

trial t, this model can be expressed with the following equation:

x̂tþ1
1
¼ ð1 � hÞ � x̂t

1
þ h � xt

0 ð2Þ

where x̂t¼0
1

is equal to some prior value (0.5 in the unbiased case), corresponding to the best

guess at t = 0 (prior to the observation of any data).

In other words, the predicted probability x̂tþ1
1

is computed from the integration of previous

instances with a progressive discount of past information. The value of the scalar h represents

a compromise between responding rapidly to changes in the environment (h� 1) and not pre-

maturely discarding information still of value for slowly changing contexts (h� 0). For that
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reason, we call this scalar the hazard rate in the same way to that defined for the binary switch-

ing generative model presented above (see Eq 1). Moreover, one can define τ = 1/h as a charac-

teristic time (in units of number of trials) for the temporal integration of information. Looking

more closely at this expression, the “forgetful agent” computed in Eq 2 consists of an exponen-

tially-weighted moving average (see Appendix). It may thus be equivalently written in the

form of a time-weighted average:

x̂tþ1
1
¼ ð1 � hÞtþ1

� x̂t¼0
1
þ h �

X

0�i�t

ð1 � hÞi � xt� i
0 ð3Þ

The first term corresponds to the discounted effect of the prior value, which tends to 0 as t
increases. More importantly, as 1 − h< 1, the second term corresponds to the leaky integration

of novel observations. Inversely, let us now assume that the true probability bias for direction

changes randomly with a mean rate of once every τ trials: Prðxt
2
¼ 1Þ ¼ h. As a consequence,

the probability that the bias does not change is Prðxt
2
¼ 0Þ ¼ 1 � h at each trial. Assuming

independence of these occurrences, the predicted probability p ¼ x̂tþ1
1

is thus proportional to

the sum of the past observations weighted by the belief that the bias has not changed during i
trials in the past, that is, exactly as defined by the second term of the right-hand side in Eq 3.

This shows that assuming that changes occur at a constant rate (x̂t
2
¼ h) but ignoring more

precise information on the temporal occurrence of the switch, the optimal solution to this

inference problem is the ideal observer defined in Eq 3, which finds an online recursive solu-

tion in Eq 2. We therefore proved here that the heuristic derived for the leaky integrator is an

exact inversion of the two-layered generative model which assumes a constant epoch-duration

between switches of the probability bias.

The correspondence that we proved between the weighted moving average heuristic and

the forgetful agent model as an ideal solution to that generative model leads us to several

interim conclusions. First, the time series of inferred x̂tþ1
1

values can serve as a regressor for

behavioral data to test whether human observers follow a similar strategy. In particular, the

free parameter of the model (h), may be fitted to the behavioral dataset. Testing different

hypothesis for the value of h thus allows to infer the agents’ most likely belief in the (fixed)

weight decay. Now, since we have defined a first generative model and the corresponding ideal

observer (the forgetful agent), we next define a more complex model, in order to overcome

some of the limits of the leaky integrator. Indeed, a first criticism could be that this model is

too rigid and does not sufficiently account for the dynamics of contextual changes [60] as the

weight decay corresponds to assuming a priori a constant precision in the data sequence, con-

trary to more elaborate Bayesian models [61]. It seems plausible that the memory size (or his-

tory length) used by the brain to infer any event probability can vary, and that this variation

could be related to an estimate of environmental volatility as inferred from past data. The

model presented in Eq 3 uses a constant weight for all trials, while the actual precision of each

trial can be potentially evaluated and used for precision-weighted estimation of the probability

bias. To address this hypothesis, our next model is inspired by the Bayesian Change-Point

detection model [58] of an ideal agent inferring the trajectory in time of the probability bias

(xt
1
), but also predicting the probability Prðxt

2
¼ 1Þ of the occurrence of switches.

Binary Bayesian Change-Point (BBCP) detection model. There is a crucial difference

between the forgetful agent presented above and an ideal agent which would invert the (gener-

ative) Binary Switching model (see Eq 1). Indeed, at any trial during the experiment, the agent

may infer beliefs about the probability of the volatility xt
2

which itself is driving the trajectory

of the probability bias xt
1
. Knowing that the latter is piece-wise constant, an agent may have a

belief over the number of trials since the last switch. This number, that is called the run-length
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rt [58], is useful in two manners. First, it allows the agent to restrict the prediction x̂tþ1
1

of xtþ1
1

only based on those samples produced since the last switch, from t − rt until t. Indeed, the sam-

ples xt
0

which occurred before the last switch were drawn independently from the present true

value xt
1

and thus cannot help estimating the latter. As a consequence, the run-length is a latent

variable that captures at any given trial all the hypotheses that may be occurring. Second, it is

known that for this estimate, the precision (that is, the inverse of variance) on the estimate x̂tþ1
1

grows linearly with the number of samples: The longer the run-length, the sharper the corre-

sponding (probabilistic) belief. We have designed an agent inverting the binary switching gen-

erative model by extending the Bayesian Change-Point (BCP) detection model [58]. The latter

model defines the agent as an inversion of a switching generative model for which the observed

data (input) is Gaussian. We present here an exact solution for the case of the Binary Switching

model, that is, for which the input is binary (here, left or right).

In order to define in all generality the change-point (switch) detection model, we will ini-

tially describe the fundamental steps leading to its construction, while providing the full algo-

rithmic details in Appendix. The goal of predictive processing at trial t is to infer the

probability Prðxtþ1
0
jx0:t

0
Þ of the next datum knowing what has been observed until that trial

(that we denote by x0:t
0
¼ fx0

0
; . . . ; xt

0
g). This prediction uses the agent’s prior knowledge that

data is the output of a given (stochastic) generative model (here, the Binary Switching model).

To derive a Bayesian predictive model, we introduce the run-length as a latent variable which

gives to the agent the possibility to represent different hypotheses about the input. We there-

fore draw a computational graph (see Fig 2A) where, at any trial, an hypothesis is formed on as

many “nodes” than there are run-lengths. Note that run-lengths may be limited by the total

number of trials t. As a readout, we can use this knowledge of the predictive probability condi-

tioned on the run-length, such that one can compute the marginal predictive distribution:

Prðxtþ1
0
jx0:t

0
Þ ¼

X

rt�0

Prðxtþ1

0
jrt; x0:t

0
Þ � b

ðrÞ
t ð4Þ

where Prðxtþ1
0
jrt; x0:t

0
Þ is the probability of the Bernoulli trial modeling the outcome of a future

datum xtþ1
0

, conditioned on the run-length and b
ðrÞ
t ¼ Prðrtjx0:t

0
Þ is the probability for each pos-

sible run-length given the observed data. Note that we know that, at any trial, there is a single

true value for this variable rt and that b
ðrÞ
t thus represents the agent’s inferred probability distri-

bution over the run-length r. As a consequence, b
ðrÞ
t is scaled such that

P
r�0
b
ðrÞ
t ¼ 1.

With these premises, we define the BBCP as a prediction / update cycle which connects

nodes from the previous trial to that at the current trial. Indeed, we will predict the probability

b
ðrÞ
t at each node, knowing either an initial prior, or its value on a previous trial. In particular,

at the occurrence of the first trial, we know for certain that there is a switch and initial beliefs

are thus set to the values b
ð0Þ

0
¼ Prðrt ¼ 0Þ ¼ 1 and 8r> 0, b

ðrÞ
0
¼ Prðr0 ¼ rÞ ¼ 0. Then, at any

trial t> 0, as we observe a new datum xt
0
, we use a knowledge of b

ðrÞ
t� 1

at trial t − 1, the likeli-

hood p
ðrÞ
t ¼ Prðxt

0
jrt� 1; x0:t� 1

0
Þ and the transition probabilities defined by the generative model

to predict the beliefs over all nodes:

b
ðrÞ
t /

X

rt� 1�0

b
ðrÞ
t� 1
� Prðrtjrt� 1Þ � pðrÞt ð5Þ

In the computational graph, Eq 5 corresponds to a message passing from the nodes at time

t − 1 to that at time t. We will now detail how to compute the transition probabilities and the

likelihood.
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First, knowing that the data is generated by the Binary Switching model (see Eq 1), the run-

length is either null at the moment of a switch, or its length (in number of trials) is incremen-

ted by 1 if no switch occurred:

( if xt
2
¼ 1; rt ¼ 0

else xt
2
¼ 0; rt ¼ rt� 1 þ 1

ð6Þ

This may be illustrated by a graph in which information will be represented at the different

nodes for each trial t. This defines the transition matrix Pr(rt|rt−1) as a partition in two exclu-

sive possibilities: Either there was a switch or not. It allows us to compute the growth probabil-
ity for each run-length. On the one hand, the belief of an increment of the run-length at the

next trial is:

b
ðrþ1Þ

t ¼
1

B
� b
ðrÞ
t� 1
� pðrÞt � ð1 � hÞ ð7Þ

Fig 2. Binary Bayesian Change-Point (BBCP) detection model. (A) This plot shows a synthesized sequence of 13

events, either a leftward or rightward movement of the target (TD). Run-length estimates are expressed as hypotheses

about the length of an epoch over which the probability bias was constant, that is, the number of trials since the last

switch. Here, the true probability bias switched from a value of .5 to .9 at trial 7, as can be seen by the trajectory of the

true run-length (blue line). The BBCP model tries to capture the occurrences of a switch by inferring the probability of

different possible run-lengths. At any new datum (trial), this defines a Hidden Markov Model as a graph (trellis),

where edges indicate that a message is being passed to update each node’s probability (as represented by arrows from

trial 13 to 14). Black arrows denote a progression of the run-length at the next step (no switch), while gray lines stand

for the possibility that a switch happened: In this case the run-length would fall back to zero. The probability for each

node is represented by the grey scale (darker grey colors denote higher probability) and the distribution is shown in the

inset for two representative trials: 5 and 11. Overall, this graph shows how the model integrates information to

accurately identify a switch and produce a prediction for the next trial (e.g. for t = 14). (B) On a longer sequence of 200

trials, representative of a trial block of our experimental sequence (see Fig 1A), we show the actual events which are

observed by the agent (TD), along with the (hidden) dynamics of the true probability bias Ptrue (blue line), the value

inferred by a leaky integrator (Pleaky, orange line) and the results of the BBCP model in estimating the probability bias

PBBCP (green line), along with .05 and .95 quantiles (shaded area). This shows that for the BBCP model, the accuracy of

the predicted value of the probability bias is higher than for the leaky integrator. Below, we show the belief (as

grayscales) for the different possible run-lengths. The green and orange line correspond to the mean run-length which

is inferred, respectively, by the BBCP and leaky models: Note that in the BBCP, while it takes some trials to detect

switches, they are in general correctly identified (transitions between diagonal lines) and that integration is thus faster

than for the leaky integrator, as illustrated by the inferred value of the probability bias.

https://doi.org/10.1371/journal.pcbi.1007438.g002
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where h is the scalar defining the hazard rate. On the other hand, it also allows to express the

change-point probability as:

b
ð0Þ

t ¼
1

B
�
X

r�0

b
ðrÞ
t� 1
� pðrÞt � h ð8Þ

with B such that
P

r�0
b
ðrÞ
t ¼ 1. Note that b

ð0Þ

t ¼ h and thus B ¼
P

r�0
b
ðrÞ
t� 1
� p
ðrÞ
t . Knowing this

probability strength and the previous value of the prediction, we can therefore make a predic-

tion for our belief of the probability bias at the next trial t+ 1, prior to the observation of a new

datum xtþ1
0

and resume the prediction / update cycle (see Eqs 4, 7 and 8).

Integrated in our cycle, we update beliefs on all nodes by computing the likelihood p
ðrÞ
t of

the current datum xt
0

knowing the current belief at each node, that is, based on observations

from trials 0 to t − 1. A major algorithmic difference with the BCP model [58], is that here, the

observed data is a Bernoulli trial and not a Gaussian random variable. The random variable xt
1

is the probability bias used to generate the sequence of events xt
0
. We will infer it for all differ-

ent hypotheses on rt, that is, knowing there was a sequence of rt Bernoulli trials with a fixed

probability bias in that epoch. Such an hypothesis will allow us to compute the distribution

Prðxtþ1
0
jrt; x0:t

0
Þ by a simple parameterization. Mathematically, a belief on the random variable

xt
1

is represented by the conjugate probability distribution of the binomial distribution, that is,

by the beta-distribution Bðxt
1
; m
ðrÞ
t ; n

ðrÞ
t Þ. It is parameterized here by its sufficient statistics, the

mean m
ðrÞ
t and sample size n

ðrÞ
t (see Appendix for our choice of parameterization). First, at the

occurrence of a switch (for the node rt = 0) beliefs are set to prior values (before observing any

datum): m
ð0Þ
t ¼ mprior and n

ð0Þ
t ¼ nprior. By recurrence, one can show that at any trial t> 0, the

sufficient statistics ðm
ðrÞ
t ; n

ðrÞ
t Þ can be updated from the previous trial following:

n
ðrþ1Þ
t ¼ n

ðrÞ
t� 1 þ 1 ð9Þ

As a consequence, 8r; t; nðrÞt is the sample size corrected by the initial condition, that is,

n
ðrÞ
t ¼ r þ nprior. For the mean, the series defined by m

ðrþ1Þ
t is the average at trial t over the r + 1

last samples, which can also be written in a recursive fashion:

m
ðrþ1Þ
t ¼

1

n
ðrþ1Þ
t

� ðn
ðrÞ
t� 1 � m

ðrÞ
t� 1 þ xt

0
Þ ð10Þ

This updates for each node the sufficient statistics of the probability density function at the

current trial.

We can now detail the computation of the likelihood of the current datum xt
0

with respect

to the current beliefs: p
ðrÞ
t ¼ Prðxt

0
jm
ðrÞ
t� 1; n

ðrÞ
t� 1Þ. This scalar is returned by the binary function

LðrjoÞ which evaluates at each node r the likelihood of the parameters of each node whenever

we observe a counterfactual alternative outcome o = 1 or o = 0 (respectively right or left) know-

ing a mean bias p ¼ mðrÞt� 1 and a sample size r ¼ nðrÞt� 1. For each outcome, the likelihood of

observing an occurrence of o, is the probability of a binomial random variable knowing an

updated probability bias of
p�rþo
rþ1

, a number p � r + o of trials going to the right and a number

(1 − p) � r + 1 − o of trials to the left. After some algebra, this defines the likelihood as:

LðrjoÞ ¼
1

Z
� ðp � r þ oÞp�rþo � ðð1 � pÞ � r þ 1 � oÞð1� pÞ�rþ1� o ð11Þ

with Z such that Lðrjo ¼ 1Þ þ Lðrjo ¼ 0Þ ¼ 1. The full derivation of this function is detailed
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in Appendix. This provides us with the likelihood function and finally the scalar value

p
ðrÞ
t ¼ Lðrjxt

0
Þ.

Finally, the agent infers at each trial the belief and parameters at each node and uses the

marginal predictive probability (see Eq 4) as a readout. This probability bias is best predicted

by its expected value x̂tþ1
1
¼ Prðxtþ1

0
jx0:t

0
Þ as it is marginalized over all run-lengths:

x̂tþ1
1
¼
X

r�0

mðrÞt � b
ðrÞ
t ð12Þ

Interestingly, it can be proven that if, instead of updating beliefs with Eqs 7 and 8, we set

nodes’ beliefs to the constant vector b
ðrÞ
t ¼ h � ð1 � hÞr , then the marginal probability is equal

to that obtained with the leaky integrator (see Eq 2). This highlights again that, contrary to the

leaky integrator, the BBCP model uses a dynamical model for the estimation of the volatility.

Still, as for the latter, there is only one parameter h ¼ 1

t
which informs the BBCP model that

the probability bias switches on average every τ trials. Moreover, note that the resulting opera-

tions (see Eqs 4, 7, 8, 11 and 12) which constitute the BBCP algorithm can be implemented

online, that is, only the state at trial t and the new datum xt
0

are sufficient to predict all probabil-

ities for the next trial. In summary, this prediction/update cycle exactly inverts the binary

switching generative model and constitutes the Binary Bayesian Change-Point (BBCP) detec-

tion model.

Quantitative analysis of the BBCP detection model. We have implemented the BBCP

algorithm using a set of Python scripts. This implementation provides also some control

scripts to test the behavior of the algorithm with synthetic data. This strategy allows to qualita-

tively and quantitatively assess this ideal observer model against a ground truth before apply-

ing it on the trial sequence that was used for the experiments and ultimately comparing it to

the human behavior. Fig 2A shows a graph-based representation of the BBCP estimate of the

run-length for one instance of a short sequence (14 trials) of simulated data xt
0

of leftward and

rightward trials, with a switch in the probability bias of moving rightward occurring at trial 7

(see figure caption for a detailed explanation). Fig 2B, illustrates the predicted probability x̂t
1
,

as well as the corresponding uncertainty (the shaded areas correspond to .05 and .95 quantiles)

when we applied respectively the BBCP (green curve) and the forgetful agent (orange curve)

model to a longer sequence of 200 trials, characteristic of our behavioral experiments. In the

bottom panel, we show the dynamical evolution of the belief on the latent variable (run-

length), corresponding to the same sequence of 200 trials. The BBCP model achieves a correct

detection of the switches after a short delay of a few trials.

Two main observations are noteworthy. First, after each detected switch, beliefs align along

a linear ridge, as our model best estimate of the current run-length is steadily incremented by

1 at each trial until a new switch, and the probability x̂t
1

is predicted by integrating sensory evi-

dence in this epoch: the model “stays”. Then, we observe that shortly after a switch (an event

that is hidden to the agent), the belief assigned to a smaller run-length smoothly increases

while while the belief on the previous epoch decreases. At the trial for which the relative proba-

bility of the previous epoch is lower that that of the new, there is a transition to a new state: the

model “goes”. Such dynamic is similar to the slow / fast heuristic model proposed in other

studies [62]. Second, we can use this information to readout the most likely probability bias

and use it as a regressor for the behavioral data. Note that the leaky integrator model is imple-

mented by the agent assuming a fixed-length profile (see orange line in Fig 2B), allowing for a

simple comparison of the BBCP model with the leaky integrator. Again, we see that a fixed-

length model gives qualitatively a similar output but with two disadvantages compared to the

BBCP model, namely that there is a stronger inertia in the dynamics of the model estimates
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and that there is no improvement in the precision of the estimates after a switch. In contrast,

after a correct switch detection in the BBCP model, the value of the inferred probability con-

verges rapidly to the true probability as the number of observations steadily increases after a

switch.

In order to quantitatively evaluate the algorithm and following a similar strategy as [63], we

computed an overall cost C as the negative log-likelihood (in bits) of the predicted probability

bias, knowing the true probability and averaged over all T trials:

(
C ¼

1

T

X

t
Cðxt

1
; x̂t

1
Þ with Cðxt

1
; x̂t

1
Þ ¼ Hðxt

1
; x̂t

1
Þ � Hðxt

1
; xt

1
Þ

where Hðxt
1
; x̂t

1
Þ ¼ � x1

t log 2ðx̂t1Þ � ð1 � x1
tÞ log 2ð1 � x̂t

1
Þ

ð13Þ

The measure Cðxt
1
; x̂t

1
Þ explicitly corresponds to the average score of our model, as the Kull-

back-Leibler distance of x̂t
1

compared to the hidden true probability bias xt
1
. We have tested

100 trial blocks of 2000 trials for each read-out. In general, we found that the inference is

better for the BBCP algorithm (C ¼ 0:171� 0:030) than for the leaky integrator

(C ¼ 0:522� 0:128), confirming that it provides overall a better description of the data. Note

that the only free parameter of this model is the hazard rate h assumed by the agent (as in the

fixed-length agent). Although more generic solutions exist [64–66], we decided as a first step

to keep this parameter fixed for our agent, and evaluate how well it matches to the experimen-

tal outcomes at the different scales of the protocol: averaged over all observers, for each indi-

vidual observer or independently in all individual trial blocks. In a second step, by testing

different values of h assumed by the agent but for a fixed hazard rate h = 1/40 in the Binary

Switching model, we found that the distance given by Eq 13 is minimal for the true hazard rate

used to generate the data. In other words, this analysis shows that the agent’s inference is best

for a hazard rate equal to that implemented in the generative model and which is actually hid-

den to the BBCP agent. This property will be important in a following section to validate the

estimated hazard rate implicitly assumed by an individual participant on the basis of the set of

responses given to the sequence of stimuli. As a summary, for each trial of any given sequence,

we obtain an estimate of the probability bias assumed by the ideal observer and which we may

use as a regressor. We will now present the analysis of this model’s match to our experimental

measures of anticipatory eye movements and explicit guesses about target motion direction.

Anticipatory pursuit and explicit ratings

We used the binary switching model model to generate the (pseudo-)random sequence of the

target’s directions (the alternation of leftward/rightward trials) as the sequence of observations

that were used in both sessions (see Fig 3). In the top panel of Fig 3, we show the actual

sequence of binary choices (TD, leftward or rightward) of the Bernoulli trials. In the panel

below, we compare the true value of the hidden probability bias x1 (step-like blue curve), and

the median predicted values using the leaky integrator (Pleaky, orange color) and BBCP model

(PBBCP, green color), along with the .05 to .95 quantile range (green shaded area), just as in Fig

2B. In the middle panel of Fig 3, we show the median (with the 0.25 ans 0.75 quantiles) antici-

patory pursuit velocity (for details see Materials and methods) for the 12 participants, through-

out a trial block of 200 trials of the experimental sequence. First, one can observe a trend in the

polarity of anticipatory pursuit velocity to be negative for probability bias values below .5 and

positive for values above .5. Comparing the raw anticipatory pursuit results with the BBCP

agent predictions, it appears qualitatively that both traces evolve in good agreement. In partic-

ular, both curves unveil similar delays in detecting and taking into account a switch of the

probability bias (while being hidden to the observers), reflecting the time (in the order of a few
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trials) taken to integrate enough information to build up the estimation of a novel expectation

about the probability bias value which parameterizes this Bernoulli trial. In general, results are

more variable when the bias is weak (p�.5) than when it is strong (close to zero or one), con-

sistent with the well-known dependence of the variance of a Bernoulli trial upon the probabil-

ity bias (Var(p) = p � (1 − p)). In addition, the precision (i.e. the inverse of the variance) of the

inferred probability bias x̂1 increases in longer epochs, as information is integrated over more

trials. As a result, the inferred probability as a function of time seems qualitatively to constitute

a reliable regressor for predicting the amplitude of anticipatory pursuit velocity.

In addition, the explicit ratings for the next trial’s expected motion direction (or bet scores,
red curve in Fig 3) provided in the other experimental session seem to qualitatively follow the

same trend. As with anticipatory pursuit, the series of the participants’ bias guesses exhibits a

positive correlation with the true probability bias: The next outcome of xt
0

will in general be

correctly inferred, as compared to a random choice, as reported previously [67]. Indeed, simi-

larly to the amplitude of anticipatory pursuit velocity, we qualitatively compare in Fig 3 the

trace of the bet scores with the probability bias x̂1 inferred by the BBCP model. Moreover, we

observe again that a stronger probability bias leads to a lower variability in the bet scores, com-

pared to bias values close to 0.5. Again, a (hidden) switch in the value of the bias is most of the

time correctly identified after only a few trials. Finally, note that after every pause (black verti-

cal bar in Fig 3), participants tended to favor unbiased guesses, closer to 0.5. We can speculate

that this phenomenon could correspond to a spontaneous resetting mechanism of the internal

belief on the probability bias and indeed, we can introduce such an assumption in the model

as a reset of the internal belief after each pause. To conclude, the experiment performed in this

session shows that the probability bias values that are explicitly estimated by participants are

qualitatively similar to the implicit ones which supposedly underlie the generation of graded

anticipatory pursuit.

Fig 3. Behavioral results, qualitative overview. For one trial block of 200 trials, we compare the different model-

estimated probabilities with respect to the behavioral results. The top row represents the sequence of target directions

(TD) that were presented to observers and agents, as generated by the binary switching model (see Fig 1A). We show

the evolution of the value of the (true) probability bias Ptrue (blue line) which is hidden to observers and that is used to

generate the TD sequence above. We have overlaid the results of the probability bias predicted with a leaky integrator

(Pleaky, orange line) and with the BBCP model (PBBCP, see Fig 2B, green line). Bottom two rows display the raw

behavioral results for the n = 12 observers, by showing their median (lines) and the .25 and .75 quantiles (shaded

areas): First, we show the anticipatory pursuit eye velocity, as estimated right before the onset of the visually-driven

pursuit. Below, we show the explicit ratings about the expected target direction (or bet scores). These plots show a good

qualitative match between the experimental evidence and the BBCP model, in particular after the switches. Note that

short pauses occurred every 50 trials (as denoted by vertical black lines, see main text), and we added the assumption in

the model that there was a switch at each pause. This is reflected by the reset of the green curve close to the 0.5 level and

the increase of the uncertainty after each pause.

https://doi.org/10.1371/journal.pcbi.1007438.g003
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Quantitatively, we now compare the experimental results with the value of the probability

bias x̂1 predicted by the leaky and BBCP algorithms. Compiling results from all participants,

we have plotted in Fig 4 the anticipatory pursuit velocity (panel A) and the bet scores (panel B)

as a function of the predicted probability biases. In a first analysis, all trials from all participants

were pooled together and we show this joint data as an error bar plot as computed for 5 equal

partitions of the [0, 1] probability segment showing the median along with the .25 and .75

quantiles. As a comparison, the same method was applied to the true value Ptrue and to the esti-

mate obtained by the leaky integrator Pleaky. We remind here that the true value of the proba-

bility bias was coded at the second layer of the binary switching generative model and is

hidden both to the agents and to the human observers. Qualitatively, as we can see in Fig 4A,

the predicted probability bias is linearly correlated with the anticipatory pursuit velocity and

this dependence is stronger with the the probability bias predicted by the leaky and BBCP algo-

rithms (respectively Pleaky and PBBCP). In a second analysis, we quantitatively estimated the

squared Pearson correlation coefficient and the mutual information between the raw data and

the different models, both as computed on the whole data or for each observer individually

(see insets in Fig 4). The respective values for the whole dataset (r2 = 0.486 and MI = 0.729)

and across participants (r2 = 0.459 ± 0.104 and MI = 0.707 ± 0.134) are slightly higher than

that found by [48] and [11] for anticipatory pursuit measures gathered across experimental

trial blocks with fixed direction biases and significantly better than that estimated with the true

probability (r2 = 0.381 ± 0.083 with p = 0.002 and MI = 0.562 ± 0.107 with p = 0.002) and for

that estimated by the leaky-integrator model (r2 = 0.366 ± 0.089 with p = 0.002 and

Fig 4. Behavioral results, quantitative analysis across participants (n = 12). To analyze the relation between these

behavioral data with the predictions made by models, we first looked at the variability of all these measures

conditioned on the predicted probability and gathered over 5 equal partitions of the [0, 1] probability segment. For the

12 participants, we collected an estimate of (A) the amplitude of anticipatory pursuit (aSPEM) and (B) the bet score

value. As a regressor, we have used the true probability (Ptrue ¼ xt
1
, blue color), and the probability bias estimates

obtained with a leaky integrator (Pleaky, orange color) and by the BBCP model (PBBCP, green color). We display these

functional relations using an error-bar plot showing the median with .25 and .75 quantiles over the 5 partitions. This

shows a monotonous dependency for both behavioral measures with respect to the probability, close to a linear

regression, but with different strengths. Second, we summarize in insets quantitative measures of the strength of this

dependence for each participant individually, by computing the squared Pearson correlation coefficient r2 and the

mutual information (MI). Dots correspond to these measures for each individual observer, while the bar gives the

median value over the population. This confirms quantitatively that for both experimental measures, there is a strong

statistical dependency between the behavioral results and the prediction of the BBCP model, but also that this

dependency is significantly stronger than that obtained with the true probability and with the estimates obtained with

the leaky integrator (stars denote significative differences, see text for details).

https://doi.org/10.1371/journal.pcbi.1007438.g004
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MI = 0.622 ± 0.102 with p = 0.004) see inset). Note that p-values were obtained from the Wil-

coxon signed-rank test.

A similar analysis illustrates the relationship between the model-estimated probability

bias and the rating value, or bet score, about the expected outcome, which was provided at

each trial by participants and is shown in Fig 3. Similarly to the anticipatory pursuit velocity,

the rating values are nicely correlated with the probability bias given by the model, as quanti-

fied by the squared Pearson correlation coefficient and mutual information across partici-

pants (r2 = 0.670 ± 0.145 and MI = 1.312 ± 0.364). Importantly, this value is again higher for

the BBCP model than for the leaky integrator (r2 = 0.551 ± 0.19 with p = 0.018 and

MI = 1.117 ± 0.409 with p = 0.028), or with the true probability (r2 = 0.490 ± 0.114 with

p = 0.002 and MI = 0.940 ± 0.255 with p = 0.002). Further notice that, in order to account

for some specific changes observed in the behavioral data after the short pauses occurring

every 50 trials, we added the assumption that there was a switch at each pause. However,

removing this assumption did not significantly change the conclusions about the match of

the model compared to Ptrue or Pleaky both for eye movements (PBBCP: r2 = 0.452 ± 0.101 and

MI = 0.712 ± 0.125, Pleaky: r2 = 0.305 ± 0.077 with p = 0.002 and MI = 0.577 ± 0.096 with

p = 0.003; Ptrue: r2 = 0.381 ± 0.083 with p = 0.002 and MI = 0.562 ± 0.107 with p = 0.002)

and the bet experiment (PBBCP: r2 = 0.652 ± 0.142 and MI = 1.255 ± 0.349, Pleaky: r2 =

0.425 ± 0.158 with p = 0.002 and MI = 0.966 ± 0.300 with p = 0.002; Ptrue: r2 = 0.490 ± 0.114

with p = 0.002 and MI = 0.940 ± 0.255 with p = 0.002). To conclude, we deduce that the

dynamic estimate of the probability bias produced by the BBCP model is a powerful regres-

sor to explain both the amplitude of anticipatory pursuit velocity and the explicit ratings of

human observers experiencing a volatile context for visual motion.

Analyzing inter-individual differences

So far, we have presented the qualitative behavior of individual participants and have reported

the quantitative analysis of the data for the fit between experimental and model-inferred esti-

mates of the hidden probability bias. For instance, the experimental measures for the popula-

tion of 12 participants in Fig 3, support the qualitative match between behavioral data and

model predictions, which we then confirmed quantitatively on the whole group of participants.

It is important to note that no model fitting procedure was used so far, but only the direct

match of the prediction from the BBCP-model resulting from the sequence of binary target

directions which were also presented to the human participants, as shown in Fig 2B. Neverthe-

less, we observed that in both sessions the qualitative match between model and data varied

across participants. This was best characterized by differences in the variability of the

responses, but also, for instance, by the different characteristic delays after a switch. This

reflects the spectrum of individual behavioral choices between exploitation versus exploration

[60]. As a consequence, we were interested in characterizing these individual preferences for

each individual participant, and potentially to investigate whether this preference co-varied

across the two experimental sessions (i.e. across implicit vs explicit response modalities). Cru-

cially, we have seen that the BBCP model is controlled by a single parameter, the hazard rate,

or equivalently by its inverse, the characteristic time τ. Also, we have shown that knowing an

observed sequence of behavioral responses, we could fit the value of h which would best

explain the observations, as quantified by the squared Pearson correlation coefficient or by the

mutual information. Thus, by extracting the best-fit parameters for each participant and exper-

imental session, we expect to better understand the variety of inter-individual differences.

Hence, we have fitted the sequence of behavioral responses generated by each participant

and for each experimental session, with the predicted probability bias predicted by the BBCP
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model with different values of its only free parameter, the hazard rate. To avoid any possible

bias from the fitting procedure, we tested 1600 linearly spaced values of τ from 1 to 1600 trials.

For each, we computed the correlation coefficient with the responses of the BBCP model

parameterized by the value of the hazard rate h ¼ 1

t
. We then extracted different estimates of

haSPEM and hbet, respectively for anticipatory pursuit and the rating scale, by choosing the haz-

ard rate value corresponding to that with maximal correlation coefficient. The scatter plot of

the best fit values for each individual is shown in Fig 5. This figure suggests, in the first place,

that there is some variability in the best fitted value of the hazard rate in both sessions. Overall,

the value of correlation coefficient of the best fit hazard rate was slightly higher than that com-

puted in Fig 3 with r2 = 0.471 ± 0.109 for the eye movement session and r2 = 0.691 ± 0.152 for

the rating scale session. A part of the variability in the estimated hazard rates comes from the

limited length of the data blocks, while another part is due to intra-individual and inter-indi-

vidual variabilities. Overall, the median (with 25% and 75% quantiles) are haSPEM = 0.069

(0.065, 0.080) for the anticipatory pursuit session and hbet = 0.027 (0.012, 0.051) for the rating

scale. We observe that these values are close to the (hidden) ground truth value (h = 1/

40 = 0.025) used to generate the sequence. In addition, the best-fit hazard rate value is higher

for anticipatory pursuit compared to the true value and the rating scale measures. As an

interim summary, this analysis reveals that relaxing the free parameter of the BBCP model

improves the match of the model to the behavioral data, and that individual best-fitting haz-

ard-rates are variable, especially for the Bet task. Future work might provide important insight

about the analysis of these inter-individual differences in terms of each participant’s preference

for exploration versus exploitation across different cognitive tasks.

The distribution of best-fitted values for each individual participant seemed to qualitatively

cluster, but the dataset is still insufficiently large to support the significance of such observation

at a quantitative level. Moreover, there is a difference in the distribution of observed hazard

Fig 5. Analysis of inter-individual differences. (A) We analyzed the behavior of the n = 12 participants individually,

by searching for each participant the best value of the model’s single free parameter, the hazard rate h. Estimates were

performed independently on both experiments, such that we extracted different estimates of haSPEM and hbet

respectively for the anticipatory pursuit velocity and the rating value. The dots correspond to independent estimates of

the hazard rate for each individual participant are shown as dots, while the radius is proportional to the squared

Person’s correlation coefficient. This plot shows that best fit hazard rates have a median value of h�
aSPEM

¼ 1

14
and

h�
bet
¼ 1

36
. The values are in general higher than the ground truth (blue line), and in general higher for eye movements

(below the diagonal). Note that the dispersion of hazard-rate best-fit estimates is narrower for the eye movement

session than for the bet experiment. Such an analysis may suggest that participants ultimately have different

mechanisms at the implicit (anticipatory pursuit) and explicit (ratings) levels for guiding their tendency of exploitation

versus exploration. (B) To illustrate the models corresponding to these best-fitted values of the hazard rates, we show

the predicted probability to the same sequence of TDs, with the lowest ( 1

162
), optimal ( 1

40
) and highest (1

6
) hazard rates

(respectively from top to bottom).

https://doi.org/10.1371/journal.pcbi.1007438.g005
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rates in both experiments. Indeed, we observed that the marginal distribution for each session

is different, with the distribution in the anticipatory pursuit session being narrower than that

observed for the rating scale session. In particular, we also observed the same behavior for

each trial block independently, suggesting that the origin of this variability mainly comes from

inter-individual variability. Second, there is an apparent lack of correlation between the

explicit and the implicit estimates of the hazard rate, yet we would need more empirical evi-

dence to prove that this originates from the experimental setup or rather by separate process-

ing of volatility. Such an analysis would suggest that even though the predictive processes at

work in both sessions may reflect a common origin for the evaluation of volatility, this estima-

tion is then more strongly modulated by individual preferences when a more explicit cognitive

process is at stake.

Discussion

The capacity to adapt our behavior to the environmental regularities has been investigated in

different research fields, from motor priming and sensory adaptation to reinforcement learn-

ing, machine learning and economics. Several studies have aimed at characterizing the typical

time scale over which such adaptation occurs. However, the pattern of environmental regulari-

ties could very well change in time, thereby making a fixed time-scale for adaptation a subopti-

mal cognitive strategy. In addition, different behaviors are submitted to different constraints

and respond to different challenges, thus it is reasonable to expect some differences in the way

(and time scales) they adapt to the changing environment. This study is an attempt to address

these crucial open questions. We have taken an original approach, by assuming a theoretically-

defined volatility in the properties of the environment (in the specific context of visual motion

tracking) and we have developed an optimal inferential agent, which best captures the hidden

properties of the generative model solely based on the trial sequence of target motion. We have

then compared the optimal agent’s prediction, as well as a more classical forgetful agent, to two

sets of behavioral data, one rooted in the early oculomotor network underlying anticipatory

tracking, and the other related to the explicit estimate of the likelihood of a future event. Our

results point to a flexible adaptation strategy in humans, taking into account the volatility of

the environmental statistics. The time-scale of this dynamic adaptive process would thus vary

across time, but it would also be modulated by the specific behavioral task and by inter-indi-

vidual differences. In this section we discuss the present work and its implications in view of

the existing literature and some general open questions.

Measuring adaptation to volatile environments

The time-varying statistical regularities that characterize the environment are likely to influ-

ence several cognitive functions. In this study, we have made the choice to focus on a simple

and probably mostly unconscious motor behavior (anticipatory pursuit), as well as on the

explicit rating of expectation for the forthcoming motion direction. In contrast, we have not

addressed the question of whether and how statistical learning affects visual motion perception

throughout our model-generated volatile sequences. In an empirical context similar to ours,

Maus et al [10] have recently shown that perceptual adaptation for speed estimation occurs

concurrently to priming-based anticipatory pursuit throughout a sequence of motion tracking

trials with randomly varying speed. They actually found a robust repulsive adaptation effect,

with perceptual judgements biased in favor of faster percepts after seeing stimuli that were

slower and vice-versa. Concurrently, these authors also found a positive effect on anticipatory

pursuit, with faster anticipation after faster stimuli, somehow in agreement with the adaptive

properties of anticipatory pursuit that we report here. Moreover, they quantified the trial-
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history effects on anticipatory pursuit and speed perception by fitting a fixed-size memory

model similar to our forgetful agent. They found that anticipatory pursuit and speed percep-

tion change over different time scales, with the priming effects being maximized for short-

term stimulus history (around 2 trials) and adaptation for longer stimulus history, around 15

trials. Their main conclusion was that perceptual adaptation and oculomotor priming are the

result of two distinct readout processes using the same internal representation of motion regu-

larities. Note that both these history lengths can be considered short in comparison to the sev-

eral hundreds of trials that are commonly used in psychophysics and sensorimotor adaptation

studies and that, similar to the present study, the inferred characteristic times are even shorter

for the buildup of anticipatory eye movements. However, it is also important to note that in

the study by Maus et al [10], the generative model underlying the random sequence of motion

trials was different and much simpler than in the present study: In particular the role of envi-

ronmental volatility was not directly addressed there. This makes a direct comparison between

their results and ours difficult beyond a qualitative level.

In spite of a multitude of existing studies investigating the dynamics of sequential effects on

visual perception (see for example [5, 7]), only few of them have directly addressed the role of

the environmental volatility on the different behavioral outcomes. Meyniel et al [24] have com-

pared the predictions of different models, featuring a dynamic adaptation to the environment’s

volatility (equivalent to our forgetful agent model) versus a fixed belief model, on five sets of

previously acquired data, including reaction time, explicit reports and neurophysiological

measures. Interestingly, they concluded that the estimation of a time-varying transition proba-

bility matrix constitutes a core building block of sequence knowledge in the brain, which then

applies to a variety of sensory modalities and experimental situations. Consequently, sequen-

tial effects in binary sequences would be better explained by learning and updating transition

probabilities compared to the absolute item frequencies (as in the present work) or the fre-

quencies of their alternations. The critical difference lies in the content of what is learned

(transition probabilities versus item frequencies) in an attempt to capture human behavior.

Rather than on transition probabilities, here we focused on the analysis and modeling of

human behavior as a function of the frequency of presentation (and its fluctuations in time) of

a given event in a binary sequence of alternating visual motion direction. We can speculate

that different statistics can play different roles depending on the context, but altogether the

study by Meyniel et al [24] and the present one converge to highlight the importance of a

dynamic estimate of the hierarchical statistical properties of the environment for efficient

behavior. There are also other limits to the agent that we have defined. In this study, we assume

that data is provided as a sequence of discrete steps. A similar approach using a Poisson point

process allows to extend our model to the continuous time domain, such as addressed by

Radillo et al [68]: In their experiments, the authors analyzed the licking behavior of rats in a

dynamic environment. The generalization to the time-continuous case is beyond the scope of

our current protocol, but it would consist in a natural extension of it to more complex and eco-

logical settings.

Our results demonstrate that the BCCP model is relatively good in mimicking the adaptive

changes of both (implicit) anticipatory eye movements and (explicit) ratings of direction

expectation in a volatile context. However, these two different behavioral measures, the

implicit and the explicit one, are not correlated across individuals. This observation is certainly

worth deeper investigation in the future as it raises doubts on the existence of a unique hierar-

chical system for probabilistic inference. The distinction between implicit and explicit pro-

cesses in the adaptation to a volatile environment has also been addressed by previous work,

especially in the field of statistical learning for language processing (see for example [69, 70]).

More related to the present study, Wu et al [71] compared a classical economic decision task
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with a motor decision task: they found that participants were more risk seeking in the motor

task compared to the first one. In addition, Souto et al [72] have recently reported a lack of cor-

relation between the rate of oculomotor adaptation to unexpected jumps of the visual target

and the perceptual uncertainty estimated through an explicit jump direction-discrimination

experiment. Finally, the degree of explicitness of the information provided to the participants

may also play a role in the context of probabilistic learning. In a task similar to ours, where the

behavioral choice was not specifically associated to a reward schedule, Santos and Kowler [51]

found large similarities but also some differences in the anticipatory eye movements depend-

ing on how the information about the probability bias was conveyed, namely through the sim-

ple presentation of a biased sequence versus an explicit probability-cueing procedure. In the

first condition, the authors reported a weak non-linearity in the dependence of anticipatory

pursuit upon the probability of motion direction, yielding an overweight of the extreme values

of probability. In contrast, an opposite non-linearity (underweight) was observed when the

target direction was visually-cued with a given probability of validity. Note that in our data, we

have not found consistent evidence suggesting a clear non-linearity in either sense. Further

work is needed to disentangle the possible specificities (e.g. non linearities, also broadly

reported in the economic literature, such as a generic aversion to risk [73]) and the general

inter-trial and inter-individual correlations across different tasks and different experimental

measures of the cognitive adaptation to the environmental volatility.

Hierarchical Bayesian inference in the brain

When we perceive the physical world, make a decision or take an action to interact with it,

our brain must deal with an ubiquitous property of it, uncertainty. Uncertainty can arise at

different levels and be structured around different characteristic time scales. The theoretical

framework of Bayesian probabilistic inference, which provides a formal account for the role

of uncertainty at multiple levels, has become very popular as a benchmark of optimal behav-

ior in perceptual, sensorimotor and cognitive tasks [74] and, more generally, as a unified

framework for studying the brain [75]. Importantly, plausible hypotheses about the imple-

mentation of Bayesian computations —or approximations of them— in the activity of neuro-

nal populations have been proposed [76–78]. However, one should be careful when

evaluating the quality of fit of Bayesian inference models for behavioral data, and avoid any

over-interpretation of the results. This kind of model fitting aims at evaluating the adequacy

of a specific generative inferential model, not of the probabilistic calculus in its detailed

implementation. Still, there is actually a common confusion around the idea of a “Bayesian

brain”, and we believe that the challenge here is not to validate the hypothesis that the brain

implements or not the Bayes’ theorem, or a more complex hierarchical combinations of

inferential computations, but rather to test hypotheses about the different generative models

that agents may use.

The way expectations act on cognitive processes in general has been investigated in a wide

range of domains such as predictive coding [79], active inference [75], motor control [80] and

reinforcement learning [11, 60, 65]. Non-stationary observations can also explain why both

local and global effects emerge and why local effects persist in the long run even within purely

random sequences [28, 81]. This constant update of a general belief on the world can be a con-

sequence of the constant attempt to learn the non-stationary structure of the environment that

can change at unpredictable times [81]. Many studies have actually already pointed out the

brain’s ability to apprehend non-stationary states in the environment [67, 82]. The relatively

strong correlation between model predictions and data that we have found in this study is sur-

prising at a first sight as the epochs with constant probability bias (between two switches) have
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random lengths, and participants have to adapt to such a volatile environment. However,

adaptivity to a volatile environment is one of the most exquisite human skills: When faced

with some new observations, the observer has to constantly adapt his/her response to either

exploit this information by considering that this observation belongs to the same context of

the previous observations, or to explore a novel hypothesis about the context. This compro-

mise is one of the crucial components that we wished to explore and which is well captured by

the BBCP model. In particular, the model predicts different aspects of the experimental results,

from the variability as a function of the inferred probability, to the dynamics of the behavior

following a (hidden) switch. Future work will be needed to address the amplitude and dynam-

ics of modulations of visual perception and other cognitive functions in a model-based volatile

environment like the one we formally defined in this study, and to compare them to other

implicit and explicit behavioral measures (like anticipatory eye movements and explicit expec-

tation ratings).

The great interest of understanding why and how humans adapt to the fluctuations of the

hierarchical probabilistic context is further highlighted by the fact that such adaptivity may

deviate in some pathological disorders, such as schizophrenia [4, 83], or across the natural

variability of autistic traits [84]. While it was not our original objective, we have analyzed in

this study the individual best-fit parameters (hazard rates) of the BCCP model: despite a con-

sistent variability of such parameters across trial blocks of the experiment, we highlighted

some noteworthy tendencies for participants to cluster around specific properties of the

dynamic adaptation to a volatile probabilistic environment. Most important, this analysis

corroborates and strengthens some recent attempts to realize a computational phenotyping of

human participants. However, more extensive studies should be conducted to be able to

quantitatively titrate inter-individual tendencies and possibly their relation to traits of

personality.

Conclusions

• We have developed a Bayesian model of an agent estimating the probability bias of a volatile

environment with changing points (switches), such that the agent may decide to stay on the

current hypothesis about the environment, or to go for a novel one. This allows to dynami-

cally infer the probability bias across time and directly compare model predictions and

experimental data, such as measures of adaptive human behavior.

• We applied such a framework to the case of a probability bias in a visual motion task where

we manipulated the target direction probability. We observed a good match between antici-

patory smooth eye movements and the predictions of the model, replicating previous find-

ings and providing a novel solid theoretical framework for them [11, 48, 51].

• We also found a good match between model predictions and the explicit rating of the

expected target motion direction, a novel result suggesting that this model captures some of

the brain computations underlying expectancy based motion prediction, at different cogni-

tive levels.

• Finally, we found that the experimental data of each different participant matched to differ-

ent types of belief about the volatile environment, some being more or less conservative than

others. Interestingly, each of the two experiments (anticipatory eye movements and explicit

rating) provided different distributions, opening the perspective for future computational
phenotyping using such a volatile setting.
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Materials and methods

Participants, visual stimuli and experimental design

Twelve observers (29 years old ±5.15, 7 female) with normal or corrected-to-normal vision

took part in these experiments. They gave their informed consent and the experiments had

received ethical approval from the Aix-Marseille Ethics Committee (approval 2014-12-3-05),

in accordance with the declaration of Helsinki.

Visual stimuli were generated using PsychoPy 1.85.2 [85] on a Mac running OS 10.6.8 and

displayed on a 22” Samsung SyncMaster 2233 monitor with 1680 × 1050 pixels resolution at

100 Hz refresh rate. Experimental routines were also written using PsychoPy and controlled

the stimulus display (see Fig 1). Observers sat 57 cm from the screen in a dark room.

The moving target used in our experiments was a white ring (0.35˚ outer diameter and 0.27˚

inner diameter) with a luminance of 102 cd/m2 that moved horizontally on a grey background

(luminance 42 cd/m2). Each trial started with a central fixation point displayed for a random

duration drawn from a uniform distribution ranging between 400 and 800 ms. Then a fixed-

duration 300 ms gap occurred between the offset of the fixation point and the onset of the mov-

ing target. The target was then presented slightly offset from the fixation location (step-ramp
paradigm [86]), either to the right or to the left, and immediately started moving horizontally

toward the center at a constant speed of 15˚/s, for 1000 ms. The probability p of rightward

motion trials was a time-varying random variable which was constant within an epoch of the

sequence of a given random size (see main text for the description of the generative model).

The paradigm included two experimental sessions performed on two distinct (in general

consecutive) days by each participant. The two sessions involved the presentation of the same

sequence of trials, while collecting a different behavioral response: explicit rating judgments in

the first session (the bet experiment), and eye movement recordings in the second session.

Asked after the experiment, no observer noticed that the same pseudo-random sequence of

target directions was used in both experiments.

Eye movements experiment

Eye movements were recorded continuously with an eye tracking system (Eyelink 1000, SR

Research Ltd., sampled at 1000 Hz), using the Python module Pylink 0.1.0 provided by Psy-

choPy. Horizontal and vertical eye position data were transferred, stored, and analyzed offline

using programs written using Jupyter notebooks. The data analyses were implemented using

the Python libraries numpy, pandas and pylab. All the scripts for data analysis, as well as for

stimulus presentation, data collection, and preparation of figures are available at https://

github.com/chloepasturel/AnticipatorySPEM. To minimize measurement errors, the partici-

pant’s head movements were restrained using a chin and forehead rest, so that the eyes in pri-

mary gaze position were directed towards the center of the screen. In order to enforce

accuracy in gaze position and tracking, we implemented an automatic procedure of fixation

control. If the distance between the gaze position and the central fixation point during the fixa-

tion epoch exceeded 2˚ of visual angles, the fixation point started flickering and the counter

for the fixation duration was reset to 0.

The recorded horizontal and vertical raw gaze position data were numerically differentiated

to obtain velocity measures. We adopted an automatic conjoint acceleration and velocity

threshold method (the default saccade detection implemented by SR Research) to detect ocular

saccades. Saccades and eye-blinks were excluded from eye velocity traces (and replaced by

Not-a-Number values in the numerical arrays) before trial averaging and data fitting for the

extraction of the oculomotor parameters of interest. In order to extract the relevant parameters
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of the oculomotor responses, we developed new tools based on a best-fitting procedure of pre-

defined oculomotor patterns and in particular the typical smooth pursuit velocity profile that

was recorded in our experiment. A piecewise-defined function was fitted to the different

phases of the eye velocity traces: a constant function during fixation, a ramp-like linear func-

tion during smooth pursuit anticipation, an increasing sigmoid function during the initiation

of visually-guided smooth pursuit, reaching its saturating value during the pursuit steady-

state. This analysis was applied to each trial individually and it allowed in particular to estimate

the velocity of anticipatory pursuit as the best-fit value of the modeled eye velocity at the

moment where the visually-guided pursuit is initiated. Note that this method for estimating

anticipatory velocity led to qualitatively identical results to the estimation of the mean eye

velocity within an arbitrary temporal window of anticipation, a more classical method that we

implemented for instance in a previous study [11]. Some trials were excluded from the analysis

as the proportion of missing data-points, due to eye blinks or saccades was considered too

large, namely when the missing data exceeded 45 ms during the gap or one third of the total

target motion epoch (4.36% of all trials). In addition, trials were also excluded when the eye-

movement fitting procedure did not converge, after visual inspection, to a satisfactory match

with the data (3.25% of all trials). The python scripts used to analyze eye movements are avail-

able at https://github.com/invibe/ANEMO.

The Bet experiment

The aim of the Bet experiment was to collect data related to the individual explicit estimates of

the probability for the next outcome of a target motion direction. At the beginning of each

trial, before the presentation of the moving target, participants had to answer to the question

“How sure are you that the target will go left or right”. This was performed by adjusting a cursor

on the screen using the mouse (see Fig 1C). The cursor could be placed at any point along a

horizontal segment representing a linear rating scale with three ticks labeled as “Left”, “Right”
(at the extreme left and right end of the segment respectively), and “Unsure” in the middle.

Participants had to validate their choice by clicking on the mouse left-button and the actual

target motion was shown thereafter. The rationale to collect rating responses on a continuous

scale instead of a simple binary prediction (Right/Left) was to be able to infer the individual

estimate of the direction bias at the single trial scale (in analogy to the continuous interval for

the anticipatory pursuit velocity). We called this experiment the “Bet” experiment, as partici-

pants were explicitly encouraged to make reasonable rating estimates, just like if they had to

bet money on the next trial outcome. Every 50 trials, a “score” was displayed on the screen, cor-

responding to the proportion of correct direction predictions (Right or Left of the “Unsure”
tick) and weighted by the confidence attributed to each answer (the distance of the cursor

from the center).

Supporting information

S1 Algorithm. Detailed explanation of the BBCP algorithm.

(PDF)
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85. Peirce J, Gray JR, Simpson S, MacAskill M, Höchenberger R, Sogo H, et al. PsychoPy2: Experiments

in Behavior Made Easy. Behavior Research Methods. 2019; 51(1):195–203. https://doi.org/10.3758/

s13428-018-01193-y PMID: 30734206

86. Rashbass C. The relationship between saccadic and smooth tracking eye movements. The Journal of

Physiology. 1961; 159(2):326–338. https://doi.org/10.1113/jphysiol.1961.sp006811 PMID: 14490422

PLOS COMPUTATIONAL BIOLOGY Adapting anticipatory eye movements to the volatility of visual motion

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1007438 April 13, 2020 28 / 28

https://doi.org/10.1016/j.cub.2013.04.039
https://doi.org/10.1016/j.cub.2013.04.039
http://www.ncbi.nlm.nih.gov/pubmed/23684972
https://doi.org/10.1038/ncomms14218
http://www.ncbi.nlm.nih.gov/pubmed/28139642
https://doi.org/10.7554/eLife.34115
https://doi.org/10.7554/eLife.34115
http://www.ncbi.nlm.nih.gov/pubmed/29757142
https://doi.org/10.3758/s13428-018-01193-y
https://doi.org/10.3758/s13428-018-01193-y
http://www.ncbi.nlm.nih.gov/pubmed/30734206
https://doi.org/10.1113/jphysiol.1961.sp006811
http://www.ncbi.nlm.nih.gov/pubmed/14490422
https://doi.org/10.1371/journal.pcbi.1007438

