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Abstract: The brain has been understood as an interconnected neural network generally modeled as a
graph to outline the functional topology and dynamics of brain processes. Classic graph modeling is
based on single-layer models that constrain the traits conveyed to trace brain topologies. Multilayer
modeling, in contrast, makes it possible to build whole-brain models by integrating features of
various kinds. The aim of this work was to analyze EEG dynamics studies while gathering motor
imagery data through single-layer and multilayer network modeling. The motor imagery database
used consists of 18 EEG recordings of four motor imagery tasks: left hand, right hand, feet, and
tongue. Brain connectivity was estimated by calculating the coherence adjacency matrices from each
electrophysiological band (δ, θ, α and β) from brain areas and then embedding them by considering
each band as a single-layer graph and a layer of the multilayer brain models. Constructing a reliable
multilayer network topology requires a threshold that distinguishes effective connections from
spurious ones. For this reason, two thresholds were implemented, the classic fixed (average) one
and Otsu’s version. The latter is a new proposal for an adaptive threshold that offers reliable insight
into brain topology and dynamics. Findings from the brain network models suggest that frontal and
parietal brain regions are involved in motor imagery tasks.

Keywords: adaptive threshold; coherence; functional connectivity; multilayer network; otsu

1. Introduction

The brain is a complex system with spatio-temporal dynamics that can be mapped
by techniques that measure brain activity: electroencephalography (EEG), magnetoen-
cephalography (MEG), and functional magnetic resonance imaging (fMRI) [1]. These
techniques have been widely used to model brain networks that represent the structural
and functional connectivity of the brain. Among all those techniques, EEG is an accessible,
widespread method that measures the electrical activity of the brain on the scalp with
a time resolution in milliseconds [2]. EEG analyses have divided brain waves into five
major frequency bands: delta, δ (0.5–4 Hz); theta, θ (4–8 Hz); alpha, α (8–13 Hz); beta,
β (13–30 Hz); and gamma, γ (30–128 Hz) [3]. Network models based on these frequency
bands have revealed distinctive patterns and brain dynamics that have been used to study
both normal and pathological mental states [4–6]. These network models can be analyzed
using graphs built from an adjacency matrix that results from a brain connectivity analysis.

Brain connectivity analyses estimate the interaction strength among local information
processing areas of the brain. Current state-of-the-art reports three types of connectivity:
structural, based on the anatomical structure of the brain; functional, that measures the
statistical dependence of different brain areas; and effective, which estimates causal re-
lations among brain regions [7]. Concerning functional connectivity, literature describes
various methods of estimation; including correlation (time domain dependence), and coher-
ence (frequency domain dependence) [7]. Coherence measures the statistical relationship
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between two signals in the frequency domain [8] and it has been widely used in cere-
bral activity analyses involving memory [9], mathematical [5,6], and reasoning [10] task
studies. It has also been applied to analyze differences at specific frequencies in patients
with brain disorders [11], such as Parkinson’s [12] and Alzheimer’s diseases [13] and
epilepsy [14]. In this work, adjacency matrices calculated from coherence between brain
areas in electrophysiological bands were used to estimate functional connectivity.

Motor imagery is a cognitive-motor process widely studied by coherence analysis
that has the potential to trigger and control actuators in brain-machine interface systems
without any external motor action. Such systems aim to control a device through the
brain activity of a user. Recent studies have focused on characterizing EEG through graph
analysis to pinpoint not only brain areas but also interactions between them [15].

A graph is a mathematical tool used to describe the brain as a set of nodes (brain
regions) and edges (connections) [16]. In Graph theory, there are different kinds of graphs,
among which we can mention single-layer and multilayer ones. In single-layer networks,
the edges represent the same type of connections between nodes. The associations between
zones depend on a single character, which may be directed or undirected [17]. Some studies
of brain connectivity have examined the brain as a single-layer graph linked by a single
temporal or frequency property [18,19]. In cases where nodes can be linked based on
multiple characters, associations are treated independently to build multiple single-layer
networks that ignore the synergy between characters. Multilayer networks are suitable
for these scenarios because they have the flexibility required to integrate multiple types of
interactions in a single model.

The brain is currently considered a multilayer network [20]. As it was pointed out
by [21], brain networks are intrinsically multilayers. There is not a single neuronal con-
nectivity pattern able to fully represent brain functioning. Then, a multilayer framework
is suitable for analyzing brain connectivity without either throwing away or combining
different information. This focus improves understanding of brain complexity and interac-
tion spectra with no need to discard electrophysiological data. This approach has proved
to be a powerful tool in describing the complex organization and evolution of the human
brain and its relationship to cognition [22]. Multilayer networks have been applied in brain
analyses [23] using fMRI [24,25], MEG [4,26], gene expression [27] and EEG [20,21,28,29]
techniques. The range of topological properties to be explored is, therefore, wider than
in classic single-layer modeling [30]. Here, the efficiency of information flow results from
multilayer interdependence within the network, rather than being an effect of each layer
individually [31].

In the workflow of graph analysis, a common practice consists of thresholding net-
works to eliminate spurious connections [32]. That is because functional connectivity
analysis, through measuring the statistical dependence among brain areas, yields a con-
tinuous weight range for interaction strength. Since some of these interactions should be
labeled as spurious by the randomness of the signal, it is critical to exclude them from the
brain connectivity analysis.

In this study, two thresholds were tested: the fixed (average) threshold, which is
widely used in the literature, and a recently proposed threshold called Otsu. The fixed
threshold method establishes a single, absolute threshold value over the entire network,
typically fixed by averaging the adjacency matrices [33]. Values above this average are
considered connections and are assigned a value of 1, while values below the average are
discarded and receive a value of 0 that results in a binarized adjacency matrix. The main
disadvantage of this approach is that a fixed threshold based on averages is conditioned
by the weight distribution in the adjacency matrices, but this means that it will behave
unreliably in the presence of outliers and non-normal distributions.

In contrast to the fixed threshold, Otsu’s approach involves optimizing the threshold
value by evaluating how well the binarization process identifies two types of data (i.e.,
pixels, voxels, etc.) [34]. Some applications of Otsu’s methodology include structural
segmentation in fMRI [35–38], and noise removal in EEG recordings using wavelet decom-
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position [39]. In our case, Otsu’s methodology was implemented for image segmentation
and binarization [40]. To the best of our knowledge, and after an exhaustive literature
search, Otsu’s method has not been applied to estimate the threshold of adjacency matrices
in brain connectivity analyses. In this context, and considering the adjacency matrices as
images that contain information about brain connectivity gathered from EEG recordings,
this work proposes to apply Otsu’s threshold to these matrices to estimate an optimal
threshold for brain connectivity analyses.

In light of the foregoing, this study aimed to analyze EEG dynamics by classical single-
layer and multilayer network models for a motor imagery dataset. This was conducted to
feature the movement and its dynamics, and thus pinpoint patterns capable of feeding a
BCI system. The coherence adjacency matrices for each electrophysiological band (δ, θ, α
and β) of the brain areas were analyzed individually on a single-layer approach, and then
integrated, considering each band as a layer, to build a brain network model following the
multilayer approach. Both approaches were built with fixed and Otsu’s thresholds.

Our results show that multigraph models cluster the four studied movements and
lead to pinpointing the key electrodes for the motor imagery task that are located mainly
on the frontal and parietal cortex. These brain zones coincide with the results presented
in [15,41–44]. These works model brain connectivity with single-layer approach and a
known threshold. However, our work explores a proof-of-concept EEG multilayer brain
connectivity with an adaptative threshold. For this purpose, the paper is organized as
follows: Section 2 addresses the material and methods, including the database description,
the EEG signal preprocessing, and the connectivity estimation; in Section 3 the threshold,
and single-layer and multilayer networks approaches are introduced, concluding with
the results and discussion of the single-layer and the multilayer brain models with both
thresholds in Section 4. The paper ends with the conclusions.

2. Materials and Methods
2.1. Database

In this study, the open access BNCI Horizon 2020 dataset (2a of BCI Competition
IV) [45] was retrieved to pinpoint patterns of motor imagery. This dataset consists of
18 EEG recordings (Figure 1a) taken from 9 subjects (recorded in two sessions on different
days) for four different motor imagery tasks (Figure 1b): left hand (class 1), right hand
(class 2), feet (class 3), and tongue (class 4). The signals were recorded at a 250 Hz sampling
rate and then band-pass filtered between 0.5–100 Hz. Electrodes were placed according
to the 10–10 International System at Fz, Fc3, Fc1, Fcz, Fc2, Fc4, C5, C3, C1, Cz, C2, C4, C6,
Cp3, Cp1, Cpz Cp2, Cp4, P1, Pz, P2, and POz.

Figure 1. Time and scheme paradigm.

The experimental paradigm for each trial is illustrated in Figure 1c [46]. On the trials,
subjects began by focusing their eyes on a black screen (t = 0 s). After two seconds t = 2 s,
an arrow image pointing left, right, down, or up (representing one of the four classes)
appeared and remained on the screen for 1.25 s. Subjects then carried out the corresponding
motor imagery task until the arrow image on the screen disappeared at t = 6 s, indicating a
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brief pause before the beginning the next trial. The time window corresponding to motor
imagery (MI) onset) t = 3.5–5.5 s of the experimental paradigm was analyzed.

2.2. Preprocessing

Each EEG recording was composed of 6 runs (Figure 2a) separated by a short break.
Each run consisted of 48 trials (12 for each class), resulting in 288 total trials of 2 s each (72
for each class).

Figure 2. Schematic flowchart of the study methodology. Here, (a) correspond to the acquisition paradigm of all four classes
of motor imagery, (b) data prepossessing, while (c–f) outline the stages of the connectivity graph analysis.

To reduce the EEG spatial interference, a Common Average Reference (CAR) filter
(Equation (1)) was applied for each of the 288 two-second EEG windows.

VCAR
i = VCR

i − 1
N ∑

j=1
VCR

j (1)

where VCR
i represents the potential between electrode i and the reference electrode, and N

is the total number of electrodes.
Once the 288 windows filtered, each two-second window was transformed into the

frequency domain. The power spectral for the 72 windows of each motion class was
averaged to obtain 4 two-second frequency-averaged EEG windows. This process was
carried out on each of the 18 recordings (Figure 2b).

2.3. Connectivity Estimation

The coherence index values between two signals range from 0 to 1. A value close
to 1 indicates a strong relationship, while a value close to 0 represents weak interactions
between signals. Coherence index is defined as (Equation (2)):

Cxy( f ) =

∣∣Sxy( f )
∣∣2

Sxx( f )Syy( f )
, (2)
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where x and y are two signals or channels, Cxy( f ) is the coherence spectrum matrix as
a function of a given frequency f , Sxy( f ) is the cross-power spectrum, and Sxx( f ) and
Syy( f ) are the auto-power spectra of x and y, respectively [47].

3. EEG Processing
3.1. Layers Construction

To generate the single- and multilayer network models for the used motor imagery
dataset, four layers were estimated, each corresponding to the main electrophysiological
bands (δ, θ, α and β). Each layer was built by estimating the coherence among the EEG
electrodes, then averaging the magnitude of the frequencies that comprised each band.
This approach generated an adjacency matrix for each band (Figure 2c).

As mentioned above, four two-second averaged windows were obtained from the
18 EEG recordings for each MI class. After that, functional brain connectivity was estimated
in each window by calculating the pairwise coherence indices among the 22 electrodes.
This allowed us to obtain 22 × 22 weighted adjacency matrices for each class as a layer.
Figure 3 shows an example of a β band-coherence adjacency matrix for the left-hand
IM. Red indicates a high coherence value, while blue represents weakly connected areas.
These layers were evaluated by the approaches of a single layer, where the layers of
electrophysiological bands were analyzed separately; and the multilayer, where each class
layer was integrated to build a multiple network model.
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Figure 3. Example of a coherence adjacency matrix in the β electrophysiological band (13–30 Hz) for
the IM of the left-hand.

3.2. Threshold Estimation

The threshold stage (Figure 2d) is a key step in graph analysis that provides reliable
estimates of the network topology [48] and preserves the local topological features of the
network measures [16,49]. In this study, the adjacency matrices were thresholded to build
the connectivity networks using two methods: the widely used fixed threshold approach
(i.e., average degree across the network) [33], and a proposal for a novel method based on
image segmentation the Otsu’s method [40].
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Otsu’s Threshold

This threshold uses the adjacency matrix data to calculate data distribution represented
as a histogram Figure 4). In brain networks, histograms such as this one correspond to
the scores of the weighted adjacency matrix. In our case, the matrices consisted of 22 × 22
values from 0 to 1 (coherence range values).

0.92 0.93 0.94 0.95 0.96 0.97 0.98 0.99

1

1.5

2

2.5

3

Threshold

Fr
eq

ue
nc

y

Figure 4. An adjacency matrix weight histogram for use in Otsu’s method. The data correspond to
the β band (13–30 Hz) for the IM of the left-hand.

For example, if we fix the threshold at T = 0.01, then adjacency values below T can be
classified as class C1 and correspond to spurious connections. Values above T are classified
as class C2 and correspond to effective connections. Thus, connections in C1 are counted
and divided by the total number of connections, N (22× 22), to obtain the intensity w1,
and, likewise, for C2 to estimate the intensity, w2. The means, µ1 and µ2, and variances, σ2

1
and σ2

2 , of these intensity values are also estimated, and the procedure is repeated for each
increment of T until the range of values is completed. Obviously, all connections for C2
are 1.

Next, the “Within-Class Variance (WCV)” (Equation (3)) and the “Between-Class
Variance (BCV)” (Equation (4)) were computed in this threshold.

WCV = w1σ2
1 + w2σ2

2 (3)

BCV = w1w2(µ1 − µ2)
2 (4)

The optimal threshold is the value that minimizes WCV while maximizing BCV.
Figure 5 shows an example of the distributions for an adjacency matrix with a maximum
BCV and a minimum WCV. As can be seen, the optimal threshold is T = 0.9698. Once
calculated, the weighted adjacency matrix is binarized. An example of this procedure is
shown in Figure 5.
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Figure 5. WCV and BCV histograms for the β band (13–30 Hz) for the IM right-hand. The optimum
threshold value is T = 0.9698, indicating the minimum WCV value and the maximum BCV value.
(a) Within-Class Variance (WCV) with the minimum value of 8.61× 10−05 at threshold position
T = 0.9698. (b) Between-Class Variance (BCV) with the maximum value of 1.62× 10−04 at threshold
position T = 0.9698.

Comparing the values of the thresholds obtained by the fixed (T = 0.9747) and Otsu’s
methods (T = 0.9698) we find that they tend to be similar. Therefore, the binarized matrices
obtained from these thresholds (Figure 6) are close related. This suggests that both methods
could generate similar topologies. However, as mentioned above, Otsu’s threshold has the
advantage of estimating an optimized threshold based on the distribution of the weights
in the adjacency matrix, while the fixed threshold average is sensitive to outliers and
non-normal distributions.
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Figure 6. Example of the binarized adjacency matrix from Figure 3; (a) fixed threshold (0.9809) and
(b) Otsu’s threshold (0.9750) for the β band (13–30 Hz) for the IM right-hand. (a) Example of the
binarized adjacency matrix by a fixed threshold (0.9747), in the β band (13–30 Hz) for the IM of the
left-hand. (b) Example of the binarized adjacency matrix by the Otsu’s threshold (0.9698), in the β

band (13–30 Hz) for the IM of the left-hand.

3.3. Single-Layer Network Estimation

To model brain dynamics in motor imaginary tasks by the single-layer approach,
multiple single-layer graphs were built for each class for all 18 EEG recordings. Each graph
corresponds to a band network representation (δ, θ, α, and β) of the 22 EEG electrodes
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as the graph nodes, and the brain wiring or graph edges corresponding to the effective
band-coherence score between electrodes. Notice that such graphs are independent one of
another, despite in nature, the brain oscillome is not compartmentalized but modulates
electrophysiological bands as a whole. Then, 72 graphs were obtained for each MI class
that corresponds to the four frequency bands of the 18 EEG MI recordings.

Then, four graph metrics were estimated: degree (Equation (5)), that measures the elec-
trode neighborhood by adding all j-column aij adjacency matrix coefficients for the i-node v;
eigenvector centrality xv (Equation (6)), that evaluates the neighborhood (M(v)) integration
by estimating the eigenvalues λ and their eigenvector xt; k-core number (Equation (7)), that
represents the electrode coreness level where each node’s score k is the subgraph G(C) to
which it belongs with degree nodes dG(C)(v) greater than k; and PageRank (Equation (8)),
that ranks the node importance by averaging the ratio of its neighbors’ pagerank PR(v)
and their degree d(v).

d(v) = ∑
i,j∈V

aij (5)

xv =
1
λ ∑

t∈M(v)
xt (6)

∀v ∈ C : dG(C)(v) ≥ k (7)

PR(v) = ∑
u∈Bv

PR(u)
d(u)

(8)

3.4. Multilayer Network Estimation

For the multilayer approach, the layers that correspond to each electrophysiological
band were retrieve, and then integrated into multi-level graph models for each class
of all 18 EEG recordings. For these graphs, the intra-layer edges were considered to
be present between the nodes themselves, since all electrophysiological bands operate
simultaneously. In the next step, multilayer metrics were estimated (Figure 2e,f) using the
MuxViz framework in R language [50].

The metrics considered were degree, PageRank, eigenvector centrality, and k-core.
The degree (Equation (9)) is the number of links through the layers, ignoring the interlayer
link nodes themselves. PageRank (Equation (10)) is the probability of a node reaching any
other node (1−r)

NL , so it ranks the nodes based on the latter probability [51]. As in a single-
layer model, those probabilities are uniform, uiα

jβ, through all nodes, and are interactively

updated. However, in the multilayer case, the probabilities. uiα
jβ, are considered to be the

initial values of the next layer. For eigenvector centrality (Equation (11)), the suprajacency
matrix is encoded into an aggregate matrix, Miα

jβ via an eigentensor Θjα. The eigenvector

centrality is the dot product of the leading eigenvector, λ−1
1 and the neighborhood of each

node [52]. Finally, k-core (Equation (12)) represents the ratio of the coreness nk−core for the
probability of specific degree-node nk(q) through all the layers [53].

ki = Miα
jβUβ

α uj (9)

Riα
jβ = rTiα

jβ +
(1− r)

NL
uiα

jβ (10)

Θjβ = λ−1
1 Miα

jβΘiα (11)

Pk(q) =
nk(q)

nk−core
(12)
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4. Results and Discussion
4.1. Single-Layer Network

Statistical analysis for each band was performed to evaluate which electrode metric
differs among the MI classes. Thus, the electrode metric distributions for each MI class
were considered to be dependent variables of such class. Thereafter, a MANOVA was
performed to determine the significative electrodes and followed by a post hoc test on
each electrode.

MANOVA post hoc test consists of applying a one-way ANOVA on the significative
electrodes and a posterior Games-Howell post hoc test, to locate the motions that have a
significant difference at these electrodes.

The single-layer network results presented in Table 1 and Figure 7 show that the
significant electrodes correspond to the frontal and parietal cortex in β band (Figure 7c).
Post hoc analysis points that the significant electrodes on these brain areas corresponding to
each graph metrics are: degree—C3, FC4, POZ, CP2 and CP3 (Figure 7d); eigenvector—C3,
POZ, CP2 and CP4 (Figure 7e); k-core and PageRank metrics were not significative for the
MANOVA. From these results, and considering those electrodes that were significative in
at least two metrics, we first labeled as key electrodes: C3, POZ and CP2. Later, from these
electrodes, we identified which were higher than the fixed and Otsu’s thresholds. Thus,
the fixed threshold retrieved the C3, POZ and CP2 electrodes (Figure 7b), while Otsu’s
threshold only retained C3 and POZ electrodes (Figure 7a).

Table 1. p-values < 0.05 for the post hoc Games-Howell test in single layer of the fixed and Otsu’s
threshold.

Metric Band Electrode Movement Movement Threshold
1 2 Fixed Otsu

Degree Beta

C3 Foot Right Hand ∗ ∗
POz Right Hand Tongue ∗ ∗
CP2 Left Hand Right Hand ∗ −
CP3 Right Hand Tongue ∗ −
FC4 Right Hand Tongue ∗ −

Eigenvector Beta

C3 Foot Right Hand ∗ ∗
POz Right Hand Tongue ∗ ∗
CP2 Left Hand Right Hand ∗ −
CP4 Foot Left Hand ∗ −

Entries ‘−’ indicate no data according to threshold (average or Otsu); ‘∗’ indicates significant data found in either
the same threshold individually, or in both with the same threshold (fixed or Otsu).

Our results support that the frontal and parietal brain areas drive MI, as reported by
Shenoy and Vinod [54]. In the latter study, the authors analyzed the same database for the
four MI movements as in the present work. The common electrodes in both studies are C3,
FC4, CP3 and CP4. These areas have been reported as the main MI electrodes in several
connectivity analyses [15,41–44]. Most of these works are subject-wise analyzed, and their
findings slightly deviate. However, all coincided with the brain zones (frontal and parietal)
and the electrophysiological bands and sub-bands (mainly α and β) involved in MI.

The aforementioned picture suggests that an integrative analysis for all electrophysio-
logical bands can retrieve the driver nodes on the MI brain dynamics. Multilayer network
analysis is a model that meets the above-mentioned constraints.
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Figure 7. The electrodes with significative differences according to the post hoc MANOVA. In (a) all electrodes obtained
with the post hoc analysis; (b,c) display the significative electrodes for the single-layer metrics with significative differences,
while (d,e) identify the electrodes that were significative for both thresholds.

4.2. Multilayer Network

To analyze the dynamics of MI in EEG recordings through a multilayer network model,
a one-way ANOVA was performed to evaluate the multilayer metrics estimated for both
thresholds. The metric distributions for each movement were obtained independently of
its associated electrode; that is, all the metrics per electrode were concatenated. In this
analysis, PageRank, Eigenvector and k-core were significatives (p < 0.05) for the Otsu’s
threshold, while the fixed threshold in k-core was only significative (Table 2). This points
to a difference between movements in the topology of the brain nucleus. Figure 8 shows
the metric distribution for each movement.

To eliminate familywise errors, a post hoc paired t-test was performed using Benjamin-
Hochberg FDR correction. This resulted in significative differences between the left-hand
movement when k-core distributions were compared to the other movements for both
thresholds (Figure 9).

Next, two analyses were conducted, a clustering to verify whether the movements
are distinguishable based on all multilayer metrics, and statistical analysis to unveil the
significant electrodes between imaginary movements.
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Figure 8. Multilayer graph metric distributions for all four MI classes. After applying a one-way ANOVA test, Otsu’s
threshold showed significant values (p < 0.05) for k-core and degree, while fixed threshold only k-core was significantly
different (p < 0.05).

Figure 9. Post hoc test scores in k-core for Otsu’s threshold on window 3.5–5.5 s.

4.2.1. Clustering

To assess whether the imaginary movements diverged between them by multilayer
metrics, an unsupervised approach was performed for the evaluated window data, i.e.,
the time from 3.5–5.5 s. Thus, all electrode metrics were concatenated and linear discrimi-
nant analysis (LDA) was carried out to lower the data dimensionality into a 3D mapping
(Figure 10).

Afterward, k-means clustering was developed with four clusters, assuming that each
cluster will depict each of the four movements. To evaluate the intersection between the
estimated k-means cluster and the real targets (the imagery movements), the completeness
score was calculated yielding a score equal to one of both thresholds.

For each threshold, the clusters mapped differently for movements. For the fixed
threshold, cluster 1 (red) represents the left hand, cluster 2 (green) the right hand, cluster
3 (blue) the foot, and cluster 4 (black) the tongue. Meanwhile, for the Otsu’s threshold,
cluster 1 (red) maps to the foot movement, cluster 2 (green) to the left hand, cluster 3 (blue)
to the tongue, and cluster 4 (black) to the right hand. This finding points out that the
multilayer graph metrics despite the threshold do illustrate the topological connectivity
dynamics all during imaginary movements.
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Figure 10. 4-cluster k-means for a low dimensionality representation (LDA) of multilayer graph metrics, on the left for the
fixed threshold and right for the Otsu’s threshold. The four estimated clusters mapped to the imaginary movements in the
window 3.5–5.5 s studied in the present work.

4.2.2. Key Electrodes

To elucidate the electrodes most likely associated with the movements, an electrode-
wise statistical analysis was conducted for all multilayer metrics among the four move-
ments. This was evaluated by considering that the electrodes in brain dynamics are the
dependent variable among the movements. In this case, a multivariate analysis of variance
(MANOVA) was performed for both thresholds. The k-core metric was discarded in both
cases since it did not comply with the MANOVA assumption that the data must be normally
distributed between groups. The three remaining metrics showed significant differences
(Table 3). Table 3 shows significative p for the eigenvector, PageRank, and degree metrics
for both thresholds. This can illustrate that brain topology during imaginary movement is
driven by key brain electrodes that switch to control distinct movements.

Table 2. p-values from the ANOVA test on window 3.5–5.5 s.

Fixed Otsu

Degree 9.42× 10−01 9.83× 10−01

PageRank 2.29× 10−02 3.3× 10−03

Eigenvector 8.72× 10−02 1.77× 10−02

Kcore 2.7× 10−03 3.7× 10−03

Table 3. p-values from the MANOVA test of the average and Otsu’s thresholds on window 3.5–5.5 s.

Fixed Otsu

Degree 3.72× 10−01 9.56× 10−01

PageRank 5.94× 10−02 6.2× 10−02

Eigenvector 3.48× 10−02 1.71× 10−02

Kcore Error Error

After the MANOVA analysis, a one-way ANOVA for each of the 22 electrodes was
performed to identify the key electrodes that contributed to the significant differences
found in the MANOVA.

These 22 one-way ANOVAs were applied for the metrics with significant p-value
of Table 3; that is, degree, eigenvector and PageRank for both thresholds. After the one-
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way ANOVAs, a post hoc Games-Howell test was conducted to determine the electrodes
involved in the changes in brain dynamics for the four movements. Results of this analysis
are presented in Table 4.

Table 4. p-values < 0.05 for the post hoc Games-Howell test in multilayer of the fixed and Otsu’s
threshold on window 3.5–5.5 s.

Electrode
Movement Movement Metric Threshold

1 2 Degree Eigenvector PageRank Fixed Otsu

CP2 Left Hand Tongue − ∗ − ∗ −
P2 Foot Left Hand − ∗ − − ∗

Entries ‘−’ indicate no data according to the metric (degree, eigenvector or PageRank) or threshold (average or
Otsu); ‘∗’ indicates significative data found in either the same graph metric individually, or in both with the same
threshold (fixed or Otsu).

Table 4 shows that 2 electrodes most likely drive the brain dynamics of the MI dataset
analyzed. These electrodes are P2 and CP2 (Figure 11a). Among these electrodes, multilayer
eigenvector metric point that the significant ones are: P2 and CP2 (Figure 11d). Degree,
k-core and PageRank metrics were not significative for the MANOVA.

The key nodes that the fixed threshold gather the P2 (Figure 11c) electrode, while the
Otsu threshold identified the electrode CP2 (Figure 11b).

These results suggests that both Fixed and Otsu’s thresholds are selective to yield the
pivotal electrodes from the multilayer network. Despite that the electrodes imaged by both
thresholds differ, these electrodes are neighbors and localized over the same brain area.
Thus, it suggests that the Otsu threshold can recognize the underlying dynamics which
widely tested thresholds as Fixed have also distinguished. Figure 12 shows an example of
a multilayer graph.

The multilayer approach outlined in this study allowed us to cluster the dynamics
linked to all the studied imaginary movements. Based on this finding, we pinpointed
the key electrodes for such dynamics. Our results are congruent with the state-of-the-art
analyses [15,41–44] that reported the frontal and parietal areas as the main brain areas in MI.
In more detail, Babiloni et al. [55] indicated that sensorimotor events are correlated via the
coherence with a functional coupling between parietal and central areas. All these works
applied a single-layer approach for different frequency bands. To the best of our knowledge
in the literature, there was not reported MI analysis based on multilayer graph models.
For future work, our multilayer workflow will be tested in practical BCI applications.
Our proposal, which couples an adaptive threshold with a multilayer network model,
shall be cross-validated on new databases to validate its advantages over the widespread
single-layer analysis.
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Figure 11. The electrodes with significative differences according to the post hoc MANOVA. In (a) all electrodes obtained
with the post hoc analysis; (b,c) display the significative electrodes for the multilayer metrics with significative differences,
while (d) identify the electrodes that were significatives for both thresholds.

Figure 12. Multilayer graph for right-hand movement intention. Each electrophysiological band
is a layer of the graph. Those electrodes with significative difference identified (CP2 and P2) are
highlighted in red in the present study. Cross-layer edges are found for all nodes, yet only those
corresponding to the significant electrodes are plotted. Each individual layer is shown separately to
provide a more detailed picture of the intra-layer connectivity.
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5. Conclusions

In this study, we modeled single-layer and multilayer network models to analyze MI
in EEG recordings. Our analysis shows that the regions activated in MI tasks are located
mainly in the frontal and parietal cortex for the single-layer approach and in the parietal
cortex for the multilayer approach. To pinpoint the effective connections in MI graphs
a proof-of-concept threshold approach known as Otsu was proposed. The present work
illustrates that combining an adaptive threshold, such as Otsu, together with integrative
graph models, such as multilayer networks, produces a more reliable approximation of
both the topology and dynamics associated with cognitive and motor brain functions.

Finally, future work should aim to implement this methodology to study brain con-
nectivity in other kinds of EEG databases.
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