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ABSTRACT: Several hydride Mn(I) and Re(I) PNP pincer
complexes were applied as catalysts for the homogeneous
chemoselective hydrogenation of aldehydes. Among these,
[Mn(PNP-iPr)(CO)2(H)] was found to be one of the most
efficient base metal catalysts for this process and represents a
rare example which permits the selective hydrogenation of
aldehydes in the presence of ketones and other reducible
functionalities, such as CC double bonds, esters, or nitriles.
The reaction proceeds at room temperature under base-free
conditions with catalyst loadings between 0.1 and 0.05 mol%
and a hydrogen pressure of 50 bar (reaching TONs of up to
2000). A mechanism which involves an outer-sphere hydride transfer and reversible PNP ligand deprotonation/protonation is
proposed. Analogous isoelectronic and isostructural Re(I) complexes were only poorly active.
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■ INTRODUCTION

One environmentally friendly and sustainable method to prepare
alcohols, which are valuable commodities for a large number of
fine and bulk chemicals, is the catalytic hydrogenation of
carbonyl compounds with dihydrogen.1 Over the years, many
highly efficient and active homogeneous catalysts based on
precious but also non-precious metals have been described for
this purpose (Scheme 1).2 Especially catalysts which reveal full
selectivity for aldehydes over ketones and/or alkenes3,4 are of

practical importance for the synthesis of flavors,5 fragrances,3 and
pharmaceuticals.6

In the past couple of years, the development and advancement
of hydrogenation catalysts based on earth-abundant, inexpensive
non-precious metals experienced tremendous progress.7 In
particular, iron- and manganese-based catalysts turned out to
be highly active for the hydrogenation of carbonyl compounds,
imines, and nitriles (Scheme 2).8−11 In the case of manganese,
however, most hydrogenations proceed at relatively high catalyst
loadings and elevated temperatures and, in addition, require large
amounts of strong bases as additives. As yet, only iron-based
systems proved to be reasonably chemoselective for the
reduction of aldehydes, as shown in Scheme 1.12−14 We recently
described the application of [Fe(PNPMe-iPr)(CO)(H)(Br)] and
[Fe(PNPMe-iPr)(H)2(CO)] as highly active catalysts for the
homogeneous hydrogenation of aldehydes (Scheme 1).15,16

In this paper, we describe an experimental and theoretical
investigation of the chemoselective hydrogenation of aldehydes
with dihydrogen using several hydride Mn(I) and Re(I) PNP
pincer complexes as catalysts (Scheme 3). To the best of our
knowledge, this is the first example of an efficient manganese-
based selective hydrogenation of aldehydes which proceeds
under mild and base-free conditions with low catalyst loadings. It
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Scheme 1. Well-Defined Catalysts for the Chemoselective
Hydrogenation of Aldehydes
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has to be noted that Re pincer complexes have rarely been used in
(de)hydrogenation catalysis.17,18

■ RESULTS AND DISCUSSION
The reaction of [M(CO)5X] (M =Mn, X = Br; M = Re, X = Cl)
with the respective PNP pincer ligands in dioxane at elevated
temperatures afforded the neutral biscarbonyl complexes
[M(PNP)(CO)2X] (1−5) (Scheme 4). Treatment of these
intermediates with Na[HBEt3] (1.1 equiv) in toluene afforded
complexes Mn1, Mn2, Mn3, Re1, and Re2. The synthesis of
Mn1 and Mn2 was already reported previously.19 All new
complexes could be isolated in 77−95% isolated yields and were
fully characterized by a combination of elemental analysis, 1H,
13C{1H}, and 31P{1H} NMR, and IR spectroscopy (see
Supporting Information (SI)). In addition, the molecular
structure of Re1 was determined by X-ray crystallography
(Scheme 3, bottom left).
The catalytic performance ofMn1,Mn2,Mn3, Re1, and Re2

was then investigated for the hydrogenation of aldehydes. The
experiments were performed in EtOH as solvent using 4-
fluorobenzaldehyde as model substrate to find the most active
catalyst and optimal hydrogenation reaction conditions (Table
1). No reaction took place in aprotic solvents such as THF or
toluene at 50 bar H2, a catalyst loading of 1.0 mol%, and a
reaction time of 18 h. In the absence of dihydrogen, the

hydrogenation of 4-fluorobenzaldehyde to yield 4-fluorobenzyl
alcohol was not observedno reaction took place. Thus, a
possible transfer-hydrogenation mechanism in EtOH could be
excluded. It has to be further emphasized that ketones, e.g.,
acetophenone and 4-fluoroacetophenone, did not react with any
of the catalysts tested under the same reaction conditions
described below.
When Mn1 (0.1 mol%) was used as catalyst, complete

conversion was observed after 4 h under a hydrogen pressure of
30 bar (Table 1, entry 4). By lowering the catalyst loading to 0.05
mol%, quantitative conversion was achieved after 18 h at a
hydrogen pressure of 50 bar (Table 1, entry 5). If the reaction
was performed in the presence of 3 equiv of DBU (1,8-diaza-
bicyclo[5.4.0]undec-7-ene) as external base, 4-fluorobenzyl
alcohol was obtained in 52% yield after 48 h under a hydrogen
pressure of 50 bar and a catalyst loading of 0.005 mol% (Table 1,
entry 6). This corresponds to a turnover number (TON) of
10400. ComplexesMn2 andMn3 showed no or poor reactivity,
even with a catalyst loading of 1 mol% (Table 1, entries 7 and 8).
Surprisingly, the Re(I) complexes Re1 and Re2 with 1 mol%
catalyst loadings were poorly active, affording only 45 and 76%,
respectively, of 4-fluorobenzyl alcohol (Table 1, entries 9 and
11). At 50 °C, 4-fluorobenzyl alcohol was obtained in 95% yield
(Table 1, entry 10).
OnceMn1 was determined to be the most active catalyst and

its general applicability proved, various substrates were been
tested to establish scope and limitations (Table 2). The catalytic
experiments were conducted in the presence of 0.1−0.05 mol%
of catalyst at 25 °C and 50 bar hydrogen pressure, for a reaction
time of 18 h, without addition of any additives. The best results
could be obtained for aromatic aldehydes bearing electron-
withdrawing halogen substituents as well as electron-donating
groups such as 4-anisaldehyde and 4-tolylaldehyde on the phenyl
ring (Table 2, A1−A5) where catalyst loadings of 0.05 mol%
were employed. Heteroaromatic substrates as well as aliphatic
aldehydes could be reduced quantitatively under the same
reaction conditions but with a catalyst loading of 0.1 mol%
(Table 2, A6−A17). Substrates with conjugated and non-
conjugated CC double bonds were also selectively hydro-
genated. For instance, citronellal or lyral, which are used in the
flavor and fragrance industry (Table 2, A14−17), as well as the
more challenging α,β-unsaturated substrate cinnamaldehyde
(Table 2, A12) were not hydrogenated. In order to investigate
the catalyst’s selectivity toward substrates with other unsaturated
functionalities which can be easily hydrogenated, additional

Scheme 2. Manganese Catalysts for the Hydrogenation of
Ketones and Aldehydes

Scheme 3. PNP Pincer Complexes Tested as Catalysts for the
Hydrogenation of Aldehydes (R = iPr) and Structural View of
Re1 Showing 30% Thermal Ellipsoidsa

aSelected bond lengths (Å) and angles (°): Re1−P1 2.347(3), Re1−
P2 2.342(3), Re1−N2 2.162(8), Re1−C18 1.87(1), Re1−C19
1.94(1), Re1−H1 1.91(5), P1−Re1−P2 158.2(1).

Scheme 4. Synthesis of Hydride Mn(I) and Re(I) PNP Pincer
Complexes
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studies were carried out. Competitive experiments were carried
out using equimolar mixtures of 4-fluorobenzaldehyde and the
respective co-substrates at a catalyst-to-substrate ratio of 1:1000
with respect to the aldehyde. These studies showed that ketones,
esters, alkynes, and nitrile groups were not hydrogenated.
Moreover, these functionalities also did not interfere with the
hydrogenation of the aldehyde moieties.
Stoichiometric experiments show thatMn1 reacts readily with

aldehydes, even in aprotic solvents such as benzene or THF. The
addition of 1 equiv of 4-fluorobenzaldehyde to a solution of the
Mn(I) hydrideMn1 in C6D6 revealed the formation of a new but
minor manganese species (Scheme 5). The concentration of this
compound did not change over time but grew with increasing
amount of added substrate. Thus, addition of up to 20 equiv of
aldehyde was required to observe complete conversion of the
manganese hydride complex. The new compound was
tentatively assigned as the alkoxide complex 6, generated by

insertion of the aldehyde into the metal hydride bond of Mn1.
Compound 6 could not be isolated and exhibited singlet
resonances at 115.8 and 140.9 ppm in the 19F{1H} and 31P{1H}
NMR spectra, respectively (free 4-fluorobenzyl alcohol exhibits a
singlet at 116.1 ppm in the 19F{1H} NMR spectrum). In the IR

Table 1. Hydrogenation of 4-Fluorobenzaldehyde with Several Manganese and Rhenium Catalystsa

entry cat. solvent S/C P (bar) t (h) conversion (%)b TON

1 Mn1 THF 1000 50 18
2 Mn1 toluene 1000 50 18
3 Mn1 EtOH 1000 30 1 54 540
4 Mn1 EtOH 1000 30 4 >99 1000
5 Mn1 EtOH 2000 50 18 >99 2000
6c Mn1 EtOH 20000 50 48 52 10400
7 Mn2 EtOH 100 50 18
8 Mn3 EtOH 100 50 18 21 21
9 Re1 EtOH 100 50 18 86 86
10d Re1 EtOH 100 50 18 95 95
11 Re2 EtOH 100 50 18 76 76

aReaction conditions: catalysts (0.4−20.0 μmol), 4-fluorobenzaldehyde (2.0 mmol), EtOH (4 mL), 50 bar H2, 25 °C. bDetermined by 19F NMR
spectroscopy. cIn the presence of DBU (1.2 μmol, 3 equiv). dPerformed at 50 °C.

Table 2. Hydrogenation of Aldehydes A1−A17 with Catalyst Mn1a,b

aReaction conditions: A1−A5 (1.0 μmol, 0.05 mol% Mn1), A6−A17 (2.0 μmol, 0.1 mol% Mn1), aldehyde (2 mmol), EtOH (4 mL), 50 bar H2, 25
°C, 18 h. bYields (in parentheses) based on integration of 1H spectra using mesitylene as internal standard.

Scheme 5. Reaction of Mn1 with 4-Fluorobenzaldehyde and
4-Fluoroacetophenone in C6D6
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spectrum, 6 displays the expected two signals of the symmetric
and asymmetric CO stretching frequency at 1925 and 1848 cm−1

(cf. 1873 and 1790 cm−1 inMn1). However, no further reaction
took place when a benzene (or THF) solution of the in situ-
generated alkoxide complex 6 was exposed to dihydrogen. There
was also no catalytic reaction if a 3:1 mixture of THF/EtOH was
used. Accordingly, EtOH as solvent is not required for the
insertion step but obviously plays a crucial role in the subsequent
dihydrogen activation step. Moreover,Mn1 did not react with 4-
fluoroacetophenone in both aprotic and protic solvents.
The reaction mechanism was explored in detail by means of

DFT calculations.20 Benzaldehyde was taken as substrate and
Mn1 (A in the calculations) as active catalyst. An explicit ethanol
molecule (solvent) was considered, providing a proton shuttle
and H-bond stabilization of the intermediates. Two different
paths were considered, as shown in a simplified manner in
Scheme 6. The more likely one proceeds via participation of the

acidic N−H bond of the PNP ligand in a bifunctional mechanism
(path I). This is supported by the fact that catalystMn2, bearing
NMe linkers, is catalytically inactive and Mn3, featuring CH2
linkers which are less acidic than the NH linkers inMn1, is only
poorly active (Table 1, entry 8).
A reasonable mechanism has been established by means of

DFT calculations. The free energy profile for path I is depicted in
Figure 1. The first step is the attack of the hydride ligand in
complex A to the carbonyl C-atom of a free benzaldehyde
molecule. The result is intermediate B, a species with the
resulting alkoxide weakly bonded to the metal by one C−H
bond. This is a fairly easy step with a barrier of 11 kcal/mol and a
free energy balance of ΔG = 6 kcal/mol, indicating that B is less
stable than the initial reactants. The alkoxide in B can easily leave
the metal following a dissociative path, through intermediate C.
From here, the alkoxide may coordinate the metal by the O-
atom, forming D through an easy process involving proton
exchange with the solvent (SI, Figure S1). Importantly, the
alkoxide complex D is 13 kcal/mol more stable than the initial
reagents and represents the catalyst resting state. Naturally, there

can be proton exchange between the solvent, EtOH, and benzyl
alkoxide. Thus, the subsequent species may be either one.
Following the profile in Figure 1, the coordinated alkoxide inD is
protonated by the N−H proton of the PNP arm, with assistance
of the ethanol molecule, fromD to E. This process has a barrier of
13 kcal/mol and is endergonic, with ΔG = 7 kcal/mol.
Intermediate F is 3 kcal/mol more stable than the reactants
and features a dearomatized PNP ligand. The HOMO and
LUMO of complex F are depicted in Figure 2. The HOMO
corresponds to the ligand π-system, with a significant
contribution of the lone pair of the deprotonated N-atom. The
LUMO is essentially metal z2 pointing toward the empty
coordination position.
The reaction continues along the profile represented in Figure

3, F′ being equivalent to F with a different relative orientation of
the three molecules. Exchange of benzyl alcohol by one H2
molecule produces intermediate G. Dihydrogen coordination is
facile, with a barrier of only 1 kcal/mol (TSGH) in a clearly
exergonic step,ΔG =−9 kcal/mol. The resulting intermediateH
is an η2-H2 complex, which is 14 kcal/mol more stable than the
initial reagents. Rearrangement of the H-bond network between
the H2 complex and the nearby ethanol molecule changesH into
I. In the final step, there is splitting of the H−H bond with re-
protonation of the PNP N-atom and regeneration of the hydride
ligand in J, corresponding to the initial reactant A and an ethanol
molecule. The last step is exergonic, with J being 25 kcal/mol
more stable than A. Despite the presence of an ethanol molecule
acting as a proton shuttle, the associated barrier is significant
(ΔG⧧ = 21 kcal/mol). The highest barrier along path I is 25 kcal/
mol, corresponding to the difference between intermediate H,
the most stable one, and transition state TSIJ.
For comparison, the first step of the mechanism was also

calculated for acetophenone as substrate. The barrier for the
attack of the hydride ligand in complex A to the carbonyl C-atom
of a free acetophenone molecule is significantly higher than the
one calculated for benzaldehyde (18 vs 11 kcal/mol, respectively;
SI, Figure S2). This trend is in accordance with the fact that
ketones are not hydrogenated under the same reaction
conditions. The remarkable substrate selectivity was recently
also explained by the relative stability of alkoxide intermediates
formed upon aldehyde insertion into the metal−H bond in the
case of related iron PNP pincer complexes based on DFT
calculations.21 It has to be noted that the related Mn(I) PNP
pincer complex [Mn(PNP-iPr)(CO)3]Br (Scheme 2) was
shown to act as a catalyst for the hydrogenation of ketones but
at a catalyst loading of 5 mol%, a temperature of 130 °C in the
presence of 10 mol% base, and a hydrogen pressure of 50 bar in
toluene as solvent.10d

The alternative mechanism (path II) shares the first part in
Figure 1 until formation of the cationic intermediate C.
Following the profile represented in Figure 4, addition of H2 to
C yields intermediate K. From here, coordination of dihydrogen
is easy, with a barrier of merely 1 kcal/mol (TSKL) in an exergonic
step (ΔG = −8 kcal/mol). The difference between the two
mechanisms is that while here H2 coordinates to complex
[Mn(PNP)(CO)2]

+, producing the cationic dihydrogen com-
plex [Mn(PNP)(η2-H2)(CO)2]

+, in path I that process occurs
with the neutral metallic species [Mn(PNP′)(CO)2], featuring a
deprotonated PNP ligand (PNP′), and yields the corresponding
neutral H2 complex: [Mn(PNP′)(η2-H2)(CO)2]. The mecha-
nism proceeds from L with protonation of the free alkoxide by
means of the coordinated H2. The associated barrier (TSLM) is
negligible (1 kcal/mol), and the resulting species (M) is 13 kcal/

Scheme 6. Simplified Catalytic Cycles for Benzaldehyde
Hydrogenation with Mn1a

aFree energies in kcal/mol are referred to A (Mn1 + EtOH +
benzaldehyde); transition state energies are given in italics; R = iPr).
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mol more stable than A. The highest barrier in path II is 26 kcal/
mol, measured between the O-coordinated alkoxide complex D
and the highest following transition state TSKL. This is the

transition state associated with H2 coordination and formation of
the dihydrogen complex in L. It has to be noted that the same
reaction pathway was recently established for the chemoselective
hydrogenation of aldehydes catalyzed by [Fe(PNPMe-iPr)(CO)-
(H)(Br)], where metal−ligand cooperation was not possible due
NMe linkers.15

In path I, alkoxide protonation is accomplished by the N−H
proton in the PNP ligand, yielding a metallic fragment with a
dearomatized PNP ligand. This corresponds to a bifunctional
mechanism with participation of the PNP ligand that is further
regenerated by the coordinated H2 molecule. In path II, there is
no participation of the PNP ligand, and alkoxide protonation is
made directly by the coordinated H2 molecule. The difference
between the highest barriers calculated for the twomechanisms is

Figure 1. Free energy profile calculated for the hydrogenation of benzaldehyde catalyzed by the hydride complex A with ligand N−H bond participation.
Free energies (kcal/mol) are referred to the initial reactants (A), and relevant distances (Å) are presented.

Figure 2.HOMO and LUMO of deprotonatedMn1 (F in calculations).

Figure 3. Free energy profile calculated for the hydrogenation of benzaldehyde catalyzed by the hydride complex A in a bifunctional mechanism with
ligand N−H bond participation. The free energy values (kcal/mol) are referred to the initial reactants (A), and relevant distances (Å) are presented.
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only 1 kcal/mol (25 kcal/mol for path I, 26 kcal/mol for path II);
thus, in principle, both could occur under the experimental
conditions. If entropy corrections for non-standard conditions
are considered, the total barrier for path I rises to 26.5 kcal/mol
due to the lower molecularity of TSIJ when compared to TSKL
and to the reaction conditions. This makes path I slightly less
favorable than path II.

■ CONCLUSION

Several hydride Mn(I) and Re(I) PNP pincer complexes were
prepared and tested as catalysts for the homogeneous chemo-
selective hydrogenation of aldehydes. [Mn(PNP-iPr)-
(CO)2(H)] (Mn1), based on the 2,6-diaminopyridine scaffold,
where the PiPr2 moieties of the PNP ligand connect to the
pyridine ring via NH linkers, was found to be the most efficient
catalyst for this process. The reaction is highly chemoselective
also in the presence of other functional groups which can be
hydrogenated, such as ketones, esters, alkynes, olefins, nitriles,
and α,β-unsaturated double bonds. The low catalyst loadings
(0.1−0.05 mol%), mild and base-free reaction conditions (25 °C,
50 bar H2), and broad applicability make this catalyst interesting
for the syntheses of fine and bulk chemicals. The catalysis works
also with lower catalyst loadings (0.005 mol%) but requires then
the addition of an external base. Based on experimental and
computational studies, a bifunctional mechanism with partic-
ipation of the PNP ligand (deprotonation/protonation) is
proposed. An alternative mechanism without participation of
the PNP ligand cannot be fully dismissed but seems to be less
likely. Surprisingly, analogous isoelectronic and isostructural
Re(I) complexes turned out to be only poorly active.
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