

Since January 2020 Elsevier has created a COVID-19 resource centre with

free information in English and Mandarin on the novel coronavirus COVID-

19. The COVID-19 resource centre is hosted on Elsevier Connect, the

company's public news and information website.

Elsevier hereby grants permission to make all its COVID-19-related

research that is available on the COVID-19 resource centre - including this

research content - immediately available in PubMed Central and other

publicly funded repositories, such as the WHO COVID database with rights

for unrestricted research re-use and analyses in any form or by any means

with acknowledgement of the original source. These permissions are

granted for free by Elsevier for as long as the COVID-19 resource centre

remains active.

Computers in Biology and Medicine 143 (2022) 105298

Available online 20 February 2022
0010-4825/Published by Elsevier Ltd.

Detecting COVID-19 from chest computed tomography scans using
AI-driven android application

Aryan Verma a, Sagar B. Amin b, Muhammad Naeem b, Monjoy Saha c,*

a Department of Computer Science and Engineering, National Institute of Technology, Hamirpur, HP, 177005, India
b Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA, 30322, USA
c Department of Biomedical Informatics, Emory University School of Medicine, Atlanta, GA, 30322, USA

A R T I C L E I N F O

Keywords:
COVID-19
Artificial intelligence
Android application
Computed tomography
Lung
Deep learning

A B S T R A C T

The COVID-19 (coronavirus disease 2019) pandemic affected more than 186 million people with over 4 million
deaths worldwide by June 2021. The magnitude of which has strained global healthcare systems. Chest
Computed Tomography (CT) scans have a potential role in the diagnosis and prognostication of COVID-19.
Designing a diagnostic system, which is cost-efficient and convenient to operate on resource-constrained de-
vices like mobile phones would enhance the clinical usage of chest CT scans and provide swift, mobile, and
accessible diagnostic capabilities. This work proposes developing a novel Android application that detects
COVID-19 infection from chest CT scans using a highly efficient and accurate deep learning algorithm. It further
creates an attention heatmap, augmented on the segmented lung parenchyma region in the chest CT scans which
shows the regions of infection in the lungs through an algorithm developed as a part of this work, and verified
through radiologists. We propose a novel selection approach combined with multi-threading for a faster gen-
eration of heatmaps on a Mobile Device, which reduces the processing time by about 93%. The neural network
trained to detect COVID-19 in this work is tested with a F1 score and accuracy, both of 99.58% and sensitivity of
99.69%, which is better than most of the results in the domain of COVID diagnosis from CT scans. This work will
be beneficial in high-volume practices and help doctors triage patients for the early diagnosis of COVID-19
quickly and efficiently.

1. Introduction

After the outbreak in China in December 2019, the World Health
Organization (WHO) identified Severe Acute Respiratory Syndrome
CoronaVirus-2 (SARS-CoV-2) as a new type of coronavirus. COVID-19 is
a disease caused by SARS-CoV-2, which primarily affects the respiratory
system. The coronavirus 2019 breakout was declared a public health
emergency at the international level by the World Health Organization
on 30 January 2020. It was given pandemic status on 11 March 2020
[1]. Economies were ruined by the pandemic and it caused unrivaled
challenges to healthcare and food systems across the globe. The
pandemic has overwhelmed health care systems. As a result, diagnosing
and treating other diseases have been postponed. After multiple waves
of COVID-19, health care workers and society, in general, have become
exhausted. The real-time reverse transcription-polymerase chain reac-
tion (RT-PCR) test is the standard and used for detecting the presence of

COVID-19 in an individual [2]. Due to the high false-negative rates, long
turnaround times, and shortage of RT-PCR kits, chest CT scans were
found to be an effective and fast alternative to diagnosing COVID-19 [3].
CT scans combine a series of X-ray images taken from different angles
around the chest which are then post-processed by computer to create
detailed cross-sectional images Chest CT scanning is valuable in the
diagnosis of COVID-19 disease. In some cases, the RT-PCR gave negative
results and is highly operator dependent, but CT scans confirmed the
diagnosis of COVID-19 [4]. Overall due to the high specificity and fast
diagnosis, chest CT findings can be a better option than RT-PCR [5]. On
chest CT, COVID-19–associated pneumonia usually has a pattern of
ground-glass opacification in a peripheral and lower lobe distribution in
the lungs [6–8]. This common imaging pattern on CT was used as an aid
to observe the COVID-19 in lungs through deep learning [9,10]. In this
work, the neural network was trained to detect this finding with very
high accuracy and specificity, and fewer parameters, as the model is to

* Corresponding author.
E-mail addresses: aryanverma19oct@gmail.com (A. Verma), sagar.b.amin@emory.edu (S.B. Amin), muhammad.naeem@emory.edu (M. Naeem), monjoybme@

gmail.com (M. Saha).

Contents lists available at ScienceDirect

Computers in Biology and Medicine

journal homepage: www.elsevier.com/locate/compbiomed

https://doi.org/10.1016/j.compbiomed.2022.105298
Received 8 November 2021; Received in revised form 1 January 2022; Accepted 21 January 2022

mailto:aryanverma19oct@gmail.com
mailto:sagar.b.amin@emory.edu
mailto:muhammad.naeem@emory.edu
mailto:monjoybme@gmail.com
mailto:monjoybme@gmail.com
www.sciencedirect.com/science/journal/00104825
https://www.elsevier.com/locate/compbiomed
https://doi.org/10.1016/j.compbiomed.2022.105298
https://doi.org/10.1016/j.compbiomed.2022.105298
https://doi.org/10.1016/j.compbiomed.2022.105298
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compbiomed.2022.105298&domain=pdf

Computers in Biology and Medicine 143 (2022) 105298

2

be ported on a mobile device. Most of the devices consisting of the
Android Operating System (OS) consist of mobile phones and tablets.
Given the dire situation caused by COVID-19, a portable, swift, and
completely automated aid for diagnosing the disease on CT scans would
be beneficial. The novel CovCT application proposed in this work can
provide this service on a portable android device. Unlike
time-consuming testing methods such as RT-PCR, the CovCT app would
provide an optimal method of triaging patients with COVID-19. The
CovCT android application is capable of detecting COVID-19 from chest
CT scans and generating heatmaps to further illustrate COVID-19
affected regions in the lung parenchyma. The application is very light-
weight due to fewer parameters in the neural network along with the
best accuracy in the domain. Our results of the infection heatmap are
also verified by expert cardiothoracic radiologists. A novel, swift and
low-cost lung parenchyma segmentation algorithm is a part of the
CovCT application. A novel approach for the faster generation of heat-
maps on android devices is also developed in this work.

2. Related work

Artificial intelligence (AI) is one of the most popular approaches for
automated disease detection. Many articles have been published in
which AI is used to diagnose Covid-19 infection using chest computed
tomography (CT) images. Some of the most important and recent ad-
vancements have been stated in Table 1. To discover COVID-19 related
characteristics from chest CT, some of them employed basic techniques
such as hierarchical and spatial models [11]. Various deep learning
approaches were employed in the direction of better accuracy for
COVID-19 related findings from CT images [7,12–16]. Our group
developed an AI-driven algorithm for detecting ground-glass opacities
(GGOs) in COVID-19 patients’ lung images [7]. In their analysis, they
employed “MosMedData.” The authors segmented lungs and GGOs using
point cloud and PointNet++ architectures. They are the first to deploy
point cloud and PointNet++ architectures for medical image analysis
with 98% evaluation accuracy. Gianchandani et al. proposed an
ensemble method for COVID-19 diagnosis from chest X-rays through an
ensemble of deep transfer learning models for better performance [17].

Hasan et al. proposed the Coronavirus Recognition Network (CVR-Net)
in their work, which uses radiography images to detect COVID-19. The
results from this showed an average accuracy of 78% [18].

Accuracies in models trained with transfer learning were also
observed to be very good. Brunese et al. reported an average accuracy of
97% in their work. They used a pre-trained VGG-16 model and per-
formed transfer learning on the model for automatic detection of
COVID-19 using chest X-Ray images [26]. Jaiswal et al. performed
transfer learning of the DenseNet201 Model for the classification of the
COVID-19 infected patients. It extracted features by using its learned
weights on the ImageNet dataset [27]. T. Anwar et al. used EfficientNet
B4 to distinguish between COVID and normal CT-scan images with a
0.90 F1 score [28].

Many approaches have customized deep learning architectures for
better detection. Ozturk et al. presented DarkCovidNet, which auto-
matically detected COVID-19 using chest X-ray images. The classifica-
tion accuracies obtained from this model were 98.08% for binary cases
[29]. In another work, Mukherjee et al. developed a custom architecture
for CNN which had nine layers for detecting COVID-19 cases. For the
training of the model, they used X-Rays, and CT scans. The network
achieved an overall accuracy of 96.28%, which was better than most of
the CNN-based models [30]. In the Al-Karawi et al., Gabor filters
extracted different texture features from CT images. Then these features
were utilized for training support vector machines, which were further
employed for classifying the COVID-19 cases. This approach got an
average accuracy of 95.37% and a sensitivity of 95.99% [31]. N. Palaru
et al. proposed Anam-Net, which is a CNN architecture based on depth
embeddings. It detected an irregularity in COVID-19 chest CT images.
The Anam-Net architecture was lightweight and can be used for infer-
ence generation in mobile or resource constraint platforms [32]. H.
Alshazly et al. studied various deep network architectures such as
SqueezeNet, Inception, ResNet, Xception, ShuffleNet, and DenseNet and
proposed a transfer learning strategy to achieve the best performance.
As a result, ResNet101 achieved an average accuracy of 99.4%, which is
better than others, and had an average sensitivity of 99.1% [33]. N.
Basantwani et al. used transfer learning on an Inception-V3 model and
ported it to an android application with an accuracy of 94% [34].

A study by Hammad et al. suggests advancement in the classification
accuracy of the neural network by introducing a feature extraction stage
followed by a genetic algorithm which results in an increment of 0.95%
of classification accuracy, compared to state of art models and ap-
proaches [35]. Another study gave an approach for myocardial infection
detection using proposed CNN with a special focal loss function; results
indicate that their approach has increased accuracy by 9% in detecting
myocardial signals [36]. These both studies have proposed a method for
improving the accuracy of detecting medical conditions from signals,
while their focused intermediary steps can be tested for improving the
accuracy of the deep learning model in COVID-19 detection from CT
images.

Most of the models were observed to either have less accuracy or a
very large number of parameters for the model to be ported to a mobile
device. Some models were customized for mobile devices, but our
approach is entirely different from them and outperforms them for a
perfect blend of accuracy, parameters, and specificity. Fig. 1 shows an
overall workflow of the proposed deep learning approach.

3. Overview of approach

This work is motivated to design a portable and accurate COVID-19
diagnosis system working on an Android application with a deep
learning algorithm to analyze the chest CT scans for the presence of
COVID-19 and further mark the COVID-19 presence in the segmented
lungs’ region through an attention map. The utmost focus lies in
designing the deep neural network with high accuracy and fewer pa-
rameters that can be deployed to the Android Operating System (OS)
using minimal memory, unlike many other works that render the trained

Table 1
The Study of various existing machine learning techniques for COVID-19
detection from chest CT scans and their corresponding results. All of these
studies are aimed at COVID and Non-COVID classification of CT images.

S.
No.

Method Results Reference

1 Transfer learning on Inception
Recurrent Residual Neural
Network

Accuracy – 98.78% [19]

2 Construction of AI model using
Transfer learning on ShuffleNet
V2

The area under the curve
(AUC), sensitivity of model
and specificity of model
were 0.968 9, 90.52% and
91.58% respectively.

[20]

3 Feature extraction done by
DenseNet121 and bagging
classifier trained on top of
these

Accuracy – 99 ± 0.9% [21]

4 Lesion-attention deep neural
networks, using pretrained
network weights including
VGG16, ResNet18, and
ResNet50

with 0.94 of the AUC score [22]

5 Comprehensive System using
ResNet 50

sensitivity, specificity, and
the AUC score were 94%,
98%, and 0.994 0
respectively

[23]

6 Network based on regression of
multi view point and 3-Dimen-
sional U-Net

accuracy and sensitivity of
94% and 100%

[24]

7 Transfer learning on ResNet18 AUC score – 0.996 5 [25]

A. Verma et al.

Computers in Biology and Medicine 143 (2022) 105298

3

models in hundreds of Megabytes (Mb). Chest CT images were
normalized and converted to Portable Network Graphics (PNG) format
for simple viewing and file storage on an Android smartphone. Then the
image was fed to the lung parenchyma segmentation algorithm devel-
oped in this work using computer vision. The algorithm proposed for
lung parenchyma segmentation is robust and involves very light pro-
cessing on a mobile device. This segmentation algorithm first forms the
contour around the detected regions of lung parenchyma and then
segments the image for the lung region as shown in the blue dashed box
region of Fig. 1. The images are then passed to the EfficientNetB0 deep
learning model. If the prediction result is COVID-19 positive, it is
allowed to move to the next stage, the heatmap generation. The heatmap
is further augmented over segmented lungs, as shown in the red dashed
box region of Fig. 1. This stage requires the output of the last convolu-
tional layer (indicated by the green layer in Fig. 1) along with the model
predictions to generate the heatmap. After testing a few algorithms to
form heatmaps, the Score-CAM algorithm is used to generate the heat
map of the COVID-19 class from the trained neural network due to its
accurate and soft map formations. The algorithm was ported to Android
using the Java programming language. The ScoreCAM algorithm takes a
lot of time (9–10 min) to form the heat map, so a selective approach on
activation maps and Multi-Threading environment in Android, as
explained in this work, is applied before passing the neural network
activations. This approach reduces the time taken to develop the heat-
map to 50–60 s, which is further dependent on the Android device’s
performance. Finally, the heatmap is augmented over the chest CT scan
and masked to show the segmented lungs region for better inference.
The heatmap can be adjusted for its hue values and gradient values using
image processing.

4. Material and methods

4.1. Dataset

In our study, we used the COVID-CT dataset mentioned in reference
[37]. This dataset contains 63849 CT scan images from 377 patients.
15589 CT scan images belong to 95 patients affected with COVID-19 and
48260 CT scan images belonging to 282 non-COVID patients. The CT
scans were gathered from Negin medical center, Sari, Iran. The original
files in the dataset were in Tagged Image File Format (TIFF) format

containing 16-bit grayscale data and did not include the patients’ pri-
vate information. Android devices or regular monitors do not visualize
the 16-bit grayscale TIFF images. There is a separate algorithm for
visualizing these TIFF files, given by the dataset authors. So, to make it
accessible and simply visualize images, TIFF files were converted to 8-bit
PNG images through a normalization process. Converting TIFF image
files to PNG images gave a better view and analysis of these images on
the Android platform. The tonal values of the TIFF image pixels range
from 0 to over 5000, So if each image is scaled based on the maximum
tonal value, it can cause data loss and reduce the performance of the
network. For tackling this issue, we trained the neural network to detect
the COVID-19 related findings not from the TIFF image files but the PNG
images. This approach gave us more satisfactory results as any image
uploaded to the android platform in PNG form was easy to visualize and
process. Five-fold cross-validation was used to find the best
hyper-parameters of the neural network and optimizer. The authors of
the dataset provided training and testing data in five folds for this pur-
pose. In each fold 20% of the data was used for testing. The model was
trained on each fold of the data and tested on the corresponding test data
fold. After searching the hyper-parameters for the best accuracy of the
neural network, the whole dataset was rearranged by combining the five
folds of data that were earlier distributed into train, test, and validation
data. The distribution statics of train, validation and test data are shown
in Table 2.

4.2. Normalization of TIFF images to PNG

The TIFF files contain pixel values ranging from 0 to 5000, which are
rendered as a black image on android mobile phones. This makes the
identification and processing complex. To solve this, a normalization
process is applied to each TIFF image file in the dataset, and all images
are converted into normalized PNG form, which is easily visible and
processed on android OS. The process of normalization used here is the

Fig. 1. The figure shows an overall workflow of the proposed deep learning approach. Three different processing stages of a CT scan have been shown with help of
dashed lines. The blue dashed line is used for denoting the steps of the lung parenchyma segmentation. The red dashed line represents the algorithm for the gen-
eration and augmentation of the infection heatmap. The green layer in the neural network is the last convolutional layer of the deep learning algorithm proposed in
the work and the blue layer is the softmax layer of the deep neural network. The augmented heatmap is visible with the area of infection highlighted with a
different color.

Table 2
The distribution statics of train, validation and test data.

Dataset COVID-19 Images Normal Images

Train 9128 9618
Validation 2282 39 262
Test 2282 2250

A. Verma et al.

Computers in Biology and Medicine 143 (2022) 105298

4

Min-Max Normalization applied with the help of OpenCV Library. Min-
max normalization is applied, being the most common way to normalize
the data. For every location in the TIFF image, the tonal value of the
pixel is normalized according to the formula shown in (1). For this work,
the maximum and minimum of the second function (g) are 65535 and 0,
respectively. The wide range is chosen to enhance the contrast of the
images before converting them to PNG. If the maximum of the second
function is too small, all the images will appear black due to less contrast
and tonal values. Hence, through normalization, the minimum value in
the TIFF image gets transformed into 0, the maximum value gets
changed to 65535, and every other value gets changed into a number
between 0 and 65535, according to the formula in equation (1)

v′

=
v − minf

maxf − minf
(maxg − ming) + ming (1)

where f is the input function and g is the output normalized function.
Here, v is the original value of pixel and v′ is the normalized value [38].
Now, the normalization of the TIFF image produces an output with
values from 0 to 65535, so it is again divided by 255 to convert it into
values between 0 and 255, as shown in Fig. 2.

When saving the image, the output’s decimal data values are
rounded to the nearest integer. This gives us the image intensity values
that can be displayed on standard monitors and Android devices. As a
result, the data can be saved as PNG images. This is done with entire
dataset images, and TIFF files are converted to PNG files before being fed
into the pipelines that will be used to train the model. This process is
useful not only for training, but it also makes it easier to display the files
in PNG format on Android OS-dependent devices.

4.3. Lung parenchyma segmentation

Lung parenchyma refers to the portion of the lungs that is involved in
the gas transfer and includes alveoli, alveolar ducts, bronchioles, and
other essential tissues. The esophagus, trachea, heart, lungs, diaphragm,
thymus gland, aorta, spine, nerves, veins, and arteries are all imaged by
the CT scan. Furthermore, the method proposed in this paper generates a
heatmap only for detecting COVID-19 findings in the lungs. As a result,
the region concerned with COVID-19 diagnosis is the lungs, and the rest
organs must be segmented from the CT scan for a clear view of any
COVID-19-related findings. An annotated image of the chest CT scan is
shown in Fig. 3. This algorithm is proposed to resolve this complex
orientation into a simpler view of the lungs.

For a proper diagnosis, this segmentation algorithm takes out the
region of the lungs parenchyma for a better view and analysis of the
chest CT Image in an android device and magnifies it to image di-
mensions by a series of image processing operations. This segmented
mask was used to augment the generated heatmap to show COVID-19
affected regions in the lung parenchyma. This algorithm takes a con-
stant amount of time to run on an android device as compared to other
approaches which use complex algorithms [39–43]. The chest CT scan
uploaded by user on the application is read in form of bitmap with alpha,

red, green, and blue channels. This is converted into an OpenCV
n-dimensional array mat using the Utils package for Android. The mat
image is still in ARGB form, is converted to grayscale. This conversion is
necessary for further operations to take place. After converting the
ARGB image to grayscale, the global thresholding algorithm, Otsu [44],
is applied to get a binary image as shown in Fig. 4. A binary image has
either white or black pixels, which determine the foreground and
background, respectively.

As the image is normalized during its conversion to PNG, the area
representing lung parenchyma, diaphragm, and small other areas are
highlighted in the images. Due to which the histogram of the image
shows two clearly expressed peaks. The value which minimizes the
weighted variance of these two clusters of the histogram is taken as the
threshold value.

The thresholded binary image is subjected to some morphological
image processing operations in order to remove impurities from the
foreground objects. Morphological opening with a 3 × 3 pixel kernel is
performed on the binary output of the thresholding algorithm, which
first dilates the image to remove the holes and impurities inside the
foreground mask and then erodes it to keep the size of the foreground
constant. Fig. 5(b) shows the outcome. The resulting foreground mask is
filled with holes but does not cover the lung parenchyma boundary. To
allow the foreground mask to cover the entire region, it is dilated twice
more, as shown in Fig. 5(c). The resulting image is a binary mask with
foreground pixels representing the lung parenchyma, diaphragm, and
possibly 1–2 small findings. Contour detection is now used to segment
the lung parenchyma from the binary mask. The contour finding func-
tion receives a binary mask as an input. A binary mask is provided as an
input to the contour finding function. The function finds the complete
contours of the foreground regions in the binary image along with the
image’s border and makes a tree-like hierarchy. The output of the
function is the list of all detected regions in the foreground.

This list is iterated to find lung contours using a selection construct
that checks each contour for the area and sorts out contours with areas
less than 512 × 512 pixels and greater than 100 × 100 pixels. This
iteration process chooses the lung parenchyma contour from a list, as
shown in Fig. 6. The contour is then used to generate a binary mask that
will be used to segment the lung parenchyma region from the CT image
using the bitwise and operation. Finally, the segmented lung paren-
chyma from the CT scan is enlarged and displayed using a rectangle
approximation from the detected contour. This enlarged view clearly
shows the lung parenchyma, making it easier for radiologists to diagnose
COVID-19.

The asymptotic time complexity of the algorithm is O(1), which is
big-O notation giving upper bound on the running time. Therefore, the
algorithm takes constant time to run, which makes it best in case of time
complexity. The algorithm in steps is provided in the supplementary
material for this work. Implementation of this algorithm can be found at
the code URL in the Data and Code Availability section.

Fig. 2. The conversion process of TIFF image to PNG image using Min-Max normalization and further intensity leveling by division with 255 to make tonal values
between 0 and 255.

A. Verma et al.

Computers in Biology and Medicine 143 (2022) 105298

5

4.4. Deep learning model architecture

This section explains the different approaches used in this work to
find the optimal architecture for the deep learning model. The hyper-
parameters in the neural network are wisely calculated by hit and trial
along with some bilinear interpolation. The size and interim top layers
of the model are also decided by training and testing the model on five
folds of data and cross-validating it. Finally, all the determined and
calculated parameters are used to train the model with all the data
present in five folds. Results from various works are analyzed for the
selection of the best deep learning architecture that must be used as a
base model for transfer learning tasks. Resnet50V2 and EfficientNetB0

deep neural architectures are observed to be best for the classification
task of CT scans in to COVID and No-COVID images [45,46]. After
changing the input layer in both the models to accept the grayscale 512
× 512 pixels CT scan image, both the models are trained and evaluated
on the five folds of data without any hyper-parameter optimization. This
process is done to select one out of these two architectures for final
training and optimization. Observing the results in Table 3, the Effi-
cientNetB0 outperforms the Resnet50V2 model in four out of five folds
of the data. Further, the number of parameters in EfficientNet B0 is 5.3
Million (Approx.), which is significantly less than Resnet50 V2 with 23
Million params (Approx.). Being less in number of parameters and more
accurate, EfficientnetB0 is very suitable for being ported to mobile
devices.

Hence, The deep learning model is built on the top of EfficientNetB0
architecture.

The EfficientnetB0 model was developed for three channels RGB
image, so we make an input layer with our defined shape, i.e., 512 × 512
pixels, and add the base as efficientnetB0 layers without including the
top layers. The top layer is excluded in order to configure model output
for two classes. After adding the Input layer and EfficientNetB0, a global
average pooling layer is added on the top of the base of the classification
model. The average of each of these feature maps is taken, and the vector
which comes as result is fed directly into the dense layer with a dropout
layer in between, as shown in Fig. 7. Now, to select proper dropout from
0 to 1, the EfficientNet model is again passed through a test in which the
same model is trained with different dropouts on the data, and the
dropout of 0.3 is found to be optimum. For preventing the overfitting of
the model, a dropout is placed and is experimentally verified to give
better results in this case.

Fig. 3. A CT image slice from the dataset shows the complex orientation of a regular CT image which makes the diagnosis difficult owing to stressed visibility of
lungs parenchyma.

Fig. 4. Image labeled (a) is the original CT image and image (b) is the result
after Otsu thresholding is applied to the input image.

Fig. 5. Image (a) is the otsu binarisation result and image (b) is the result when morphological opening operation is performed on (a) image, to remove impurities
inside it. Image (c) is the result after dilating the (b) image, which have less number of holes inside lung parenchyma region.

A. Verma et al.

Computers in Biology and Medicine 143 (2022) 105298

6

The dense layer contains the softmax activation function, which
further renders the final output of the classification model to two
probabilities, the first value gives the probability of COVID-19 presence,
and second value gives the probability of no COVID-19.

The algorithm for development and training of the deep neural
network is given in the supplementary material of this work. The
implementation of the algorithm can be found at the code given in the
Data and Code Availability section.

4.5. Model training and testing

Data from the dataset is organized into three data generators (i.e.,
train, test, and validation) which feed the data to the training algorithm
of the model. The data from these generators are sent to the model in the
form of batches. Each batch contains a fixed number of input data
samples. The batch size used for train and validation generators is 10
each, and for test generator is 20. The model is created using Keras ac-
cording to the specified architecture in section 4.4, and weights are
initialized for the base layers as the Imagenet weights. Imagenet weights
are weights of the EfficientNetB0 model after training it on the Imagenet
dataset [47]. These weights are available from Keras itself. The opti-
mizer used for updating the neural network weights to minimize the cost
function used in this work is Nesterov-accelerated Adaptive moment
Estimation or Nadam with a learning rate of 0.0001 [48]. Optimizers
help us in knowing, how to change weights of the model and learning
rate to reduce the occurring loss in training process. Two callbacks are
added before training the model for better accuracy these are, Early
Stopping and Reduce Learning Rate on Plateau. Early stopping callback
is monitored with the validation loss. If validation loss is not decreasing
in 5 continuous epochs, the training is stopped by the callback, and
epochs with the least validation loss are saved. This step is taken to
prevent the model from overfitting the data and further analyze what
can be done to better the model. Reduce Learning rate on the plateau is a
callback that also monitors the validation loss and if it does not decrease
in a fixed number of epochs which is 3 in this work, reduces the model
learning rate by a constant factor F, which is 0.2 in the work.

5. Android implementation

This section explains the android implementation of the approach.
Any requirement other than an Android device is not necessary ac-
cording to the implementation that has been used. The whole approach
has been ported to the android application using the Android Studio.
The algorithm for the implementation of the android features is avail-
able in the supplementary section and the related implementation with
the codes can be found at the URL given in Data and Code Availability
section. Further detailed explanations are listed in the given section.

5.1. Re-scaling and grayscale conversion of CT image

The input image is read in the form of an ARGB (Alpha, Red, Green,
Blue) Bitmap by default, shown in Fig. 8 [49]. The uploaded image is
checked for its dimensions, which, if not square in shape, is rejected and
again prompted for input. This bitmap is processed with the Image
processing module of the OpenCV library to convert it into a grayscale
image with a single channel. This grayscale image is then resized into a
512 × 512 pixels, which is used for further operations (see Fig. 9).

The application activity prompts the user to submit the input as a CT
image. After uploading is completed, a check is run on the input data to
make it in a format acceptable by the further processes, including the
segmentation algorithm and the neural network.

5.2. Lung parenchyma segmentation

For this stage, the processed input image is passed through the al-
gorithm explained in section 4.3. The image processing module of
OpenCV is again put to use. The grayscale single-channel image in the
form of a mat object is run through the application. This algorithm is
processed on a worker thread without the main looper in order to pre-
vent it from interrupting or stopping the User Interface (UI) Thread.
Message from the worker thread is used to indicate that the algorithm
has processed the mat, and upon reception of the message, another
routine call is made to the function which handles the inference gen-
eration from the original CT image as shown in Fig. 10. The process
involves using the Imgproc module and core module of OpenCV

Fig. 6. Image labeled (a) contains the detected contours drawn on the original
CT. Image (b) shows the contour filled and is used for final mask generation of
lung parenchyma.

Table 3
The training and testing results of ResNet50 V2 and EfficientNet B0 models on
five folds data.

Model Fold Training Accuracy Testing Accuracy

ResNet50 V2 Fold 1 96.72 95.88
EfficientNet B0 Fold 1 97.13 96.21
ResNet50 V2 Fold 2 96.32 95.91
EfficientNet B0 Fold 2 97.05 96.00
ResNet50 V2 Fold 3 97.19 96.20
EfficientNet B0 Fold 3 96.73 96.07
ResNet50 V2 Fold 4 97.71 96.23
EfficientNet B0 Fold 4 97.98 97.19
ResNet50 V2 Fold 5 96.85 95.93
EfficientNet B0 Fold 5 97.82 97.01

Fig. 7. Finalized Architecture of the neural network, to be trained for detection
of COVID-19 from PNG images of CT scans. The complete architecture of
EfficientNetB0 is explained in supplementary section.

A. Verma et al.

Computers in Biology and Medicine 143 (2022) 105298

7

Software Development Kit (SDK) for implementation into the android
application.

5.3. Deployment of neural network and inference

The trained model is deployed to the application for offline inference
generation instead of relying on the web servers and API programming.
As the inference is On-device, it ensures no concern for data privacy, and
along with it, fast inference timings are recorded as no data is to be sent
or received over the network. For getting the inference from the Neural
Network API (NNAPI) of Android OS, the model file is to be bundled into
the application. The trained model file is 45 Mb which must be reduced
in size to be bundled into the Android Application Package (APK) as
shown in Fig. 11. For this purpose, the model is converted into a

Tensorflow lite flat buffer file (.tflite). With the use of Tensorflow lite,
not only is the size-reduced, but the model is optimized for speed and
latency on the edge devices, as shown in Table 4. The number of threads
for the generation of inference are tested on multiple devices for optimal
performance in terms of speed and processor efficiency. Starting from 2
threads, the inference timings were reduced till 8 number of threads, but
the reduction in timing between 6 and 8 number of threads was insig-
nificant for real-world so, the optimum number of threads for inference
generation is chosen to be 6.

5.4. Heatmap generation using selective approach and multi-threading

For the generation of the heatmap and saving time and extra
computation, gradient-free Class activation Maps (CAM) based

Fig. 8. The pre-processing algorithm for input image through user before moving to inference generation.

Fig. 9. Image (a) represents the Logo and Splash screen of CovCT Application. Image (b) Is the Home screen and (c) is the upload activity for accepting inputs
from user.

A. Verma et al.

Computers in Biology and Medicine 143 (2022) 105298

8

visualization method Score-CAM is used [50]. Score-CAM is ported into
android using Java in this work. For faster computations, N-Dimensional
Arrays for Java are used. There are 320 activation maps coming as the
output of the convolutional layer to be visualized. Each of these acti-
vation maps has the size 512 × 512 pixels. Processing all of these 320

Fig. 10. The process of lung parenchyma segmentation takes place on a separate worker thread. The handler object is use to send and receive message from runnable
highlighted in yellow and when the task is complete, the inference generation stage is called.

Fig. 11. Graphical representation of deployment and inference generation steps in android application. The tflite model file is teh flatbuffer verison of trained model
file and inference from this are generated using Java API of Tensorflow Lite which interacts with the Neural Network API of Android and processes the inputs. Input
image after conversion to float array is passed to interpreter which process it.

Table 4
The inference timings on four different specification android devices for trained
tensorflow model converted to flatbuffer.

Device Inference Timing
(4 Threads)

Inference Timing
(6 Threads)

Inference Timing
(8 Threads)

Nokia 5.1 Plus 291 ms 273 ms 276 ms
Xiaomi Note4 303 ms 270 ms 270 ms
Samsung A 30 276 ms 253 ms 259 ms
Samsung

Galaxy S2
312 ms 281 ms 282 ms

Table 5
The effect of multi-threading and selection approach on heatmap generation
timings as tested on Xiaomi Note4 android device.

Heatmap Generation Time (Seconds) Multi-threading Selection Approach

950–1020 No No
230–250 No Yes
370–390 Yes No
60–80 Yes Yes

A. Verma et al.

Computers in Biology and Medicine 143 (2022) 105298

9

activation maps by the Scorecam algorithm on the android OS takes
600–700 s (Based on mobile performance), as shown in Table 5. This
processing time is too much for the application to be in proper use. To
reduce the processing time, a combination of selective approach and
multi-threading is used, which significantly reduces the heatmap gen-
eration timings, as seen in Table 5. In the selective approach, the number
of activation maps was decreased from 320 to 80 by selecting every
fourth map starting from the first one, as shown in Fig. 12. This rendered
the activation map quickly, compromising a very little clarity of the heat
map. Choosing every fourth activation map was proven to give the best
and clear results for forming the final heatmap with a reduction of about
74% in heatmap generation timing. Initially the complexity of the
heatmap generation process is θ(n), in which n is the required total
number of operations. After the selection approach the complexity be-
comes θ(n/4), which is evident from the results in Table 5. Still, the
processing time is not suitable for proper usage of the application, as
visible from Table 5. So multi-threading comes in the role.

Eight worker threads are initialized for processing approximately 9
activation maps, which further reduces the time, as shown in Fig. 12.
These threads are run parallel on the android operating system and
maximize the use of resources and computation power. The threads are
separate from the Main looper, which renders a clean working of the UI
thread and keeps the worker thread in the background, reducing about
59% of processing time. Hence, the total average case complexity of the
algorithm is θ(n) which gets reduced to θ(n/4) using the selection
approach and further using combination of multi-threading it is reduced
to θ(n/10). Table 5 shows the experimental results after both the ap-
proaches are used together, resulting in a significant reduction of about
92% in heatmap generation process timing.

5.5. Augmentation of heatmap and gradient changing

This stage involves the augmentation of the generated heatmap over
the grayscale CT image segmented with the help of a binary mask. The
generated heatmap is blended with the grayscale CT image. This
blending operation takes place according to equation (2)

h(x) = (1 − c) ∗ f (x) + c ∗ g(x) (2)

where, f(x) and g(x) are the source images which are to be blended and h
(x) is the final blended image. The c factor is the blending factor in the
equation. After the blending is completed, the resultant image of
blending operation is masked with help of the binary mask generated in
lung segmentation process. This highlights the infected region only on
lung parenchyma and is easy to observe by radiologists. For further

analysis and highlighting the infected regions using different colors, an
option for changing the hue of the resultant image is provided.

A track bar is added for changing the colors in the resultant heatmap
and helps to observe the infection in various colors easily. The
augmented image is converted to the Hue, Saturation, and Value (HSV)
color space. The value from the track bar is added to the hue channel by
scalar addition for color change. An option to augment the heatmap on
the original CT image is also provided, which replaces the masked image
with a full CT image as visible in the image (b) of Fig. 13.

6. Results and discussion

6.1. Results

Some of the results of our trained model are displayed in Fig. 14.
These results are generated directly from the python scripts for a swift
generation. The results generated from the CovCT android application
are also the same (in both position and numerically) but may differ in
the color schemes of the detected region in the heatmap. Being of
importance in medical diagnosis, our results are also verified by two
radiologists, which are discussed in the end of this section. The training
of the model is performed on Google Collaboratory (URL: https://colab.
research.google.com/?utm_source=scs-index) for an uninterrupted
computing and GPU instance. The model is loaded with pre-trained
weights on the Imagenet dataset, and transfer learning is done on the
training dataset of CT scans.

The training accuracy, validation accuracy, training loss, and vali-
dation loss are monitored at each epoch while training the model on CT
scan data. The training accuracy is a fraction of correct classifications
from a total number of classifications. It can also be said as the accuracy
which a model would receive if applied on training data. While, the
validation accuracy is the accuracy which model would receive if
applied to data that is not used for training, therefore, validation data.
The training accuracy in the first epoch itself went to 79.61%, which
increased with each epoch. Fig. 15 shows the graph plotted for the
training and validation accuracy of the model in blue and orange color
respectively. It is observed that the training accuracy increased with
each epoch and went to 99.62% in the fifteenth epoch. Validation ac-
curacy of the model kept on increasing from 73.34% in the first epoch to
99.58% in the fifteenth epoch, as visible from the graph in Fig. 15. The
training loss and validation loss are plotted using blue and orange lines
in Fig. 16, respectively. It is observed that the training loss kept on
decreasing till the 15th epoch to 2.11%. The validation loss is decreasing
from 28.09% to 2.51%, the minimum at the 15th epoch, after which it

Fig. 12. The representation of Selection and multi-threading approach for generation of Heatmap using ScoreCAM algorithm in Android Device. The background
threads keep running without interrupting the Main (UI) thread. The combination of both approaches, reduce the processing time of heatmap significantly and gives
an efficient use of CovCT application.

A. Verma et al.

https://colab.research.google.com/?utm_source=scs-index
https://colab.research.google.com/?utm_source=scs-index

Computers in Biology and Medicine 143 (2022) 105298

10

does not decrease further. The observance and the early stopping call-
backs saved the best-trained model from the 15th epoch, which has the
best validation accuracy of 99.58% and the least validation loss of
2.51%.

The trained neural network is evaluated on a test partition of the
dataset with 4532 images. 2282 images are from COVID-19 class and

2250 images from normal patients. Taking the COVID-19 CT image as a
positive result with class 0 and no-COVID as a negative result with class
1, the model evaluation resulted in 2275 true positives (TP), 12 false
positives (FP), 2238 true negatives (TN), and only 7 false negatives (FN)
as seen through the confusion matrix in Fig. 17. Hence, 4513 images are
correctly classified and 19 images are wrong classified.

Fig. 13. Figure indicating the last steps of the process of COVID-19 detection from CT scans. (a) image is the processing stage of heatmap generation. (b) is the
heatmap augmented over full CT image using linear blending. (c) is the segmented and augmented image using mask.

Fig. 14. A sample of data given to radiologists for reviewing the results of our trained model. There are two original CT scans (a1) and (a2), the corresponding
heatmaps for detected COVID-19 infection in lung parenchyma is seen in images (b1) and (b2) respectively. Further (c1) and (c2) are their augmented heatmap over
original CT scans.

A. Verma et al.

Computers in Biology and Medicine 143 (2022) 105298

11

To detect the percentage of actual COVID-19 affected people detec-
ted correctly by the model, the sensitivity of the trained model is
calculated. Sensitivity tells us what proportion of the positive class were
correctly classified by our trained model. The sensitivity is also known as
True Positive Rate (TPR) or Recall and it is calculated according to
formula (3). The sensitivity of the model trained in this work comes out
to be 99.69%.

Sensitivity =
TP

TP + FN
(3)

As another metric of performance, the specificity of the model is
calculated which tells us about the proportion of the No-COVID samples
which are correctly classified by our model. In other words, specificity
also known as True Negative Rate (TNR) calculates the proportion of the
negative class which correctly gets classified. It is calculated according
to formula (4) and comes out to be 99.46%.

Specificity =
TN

TN + FP
(4)

The precision of the model is calculated in this work which tells the
ability of a classification model to identify only the relevant samples out
of all samples classified. This metric is calculated according to formula

(5) and comes out to be 99.47%.

Precision =
TP

TP + FP
(5)

To summarize, the precision of the model is calculated to be 99.47%
and a sensitivity of 99.69%. The testing accuracy and specificity of the
model are 99.58 and 99.46, respectively. The whole summary of testing
the model on all five folds of testing unseen data is presented in Table 6.
This concludes that the model is very accurate and efficient while
classifying the CT scans into COVID and No-COVID classes.

In this work the confidence intervals are also calculated which pro-
vides the upper and lower bounds between which our model accuracy
can vary. The selection of a particular confidence level for an interval
determines the probability that the interval will contain the true accu-
racy of the model. The confidence intervals for our trained classifier are
shown in Table 7 which are calculated according to formula (6).

confidence interval = acc ± intervalradius

intervalradius = z ∗
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
acc ∗ (1 − acc)

n

√

where,

z = Number of standard deviations

acc = Accuracy,

n = size of sample

(6)

Three confidence intervals are calculated at 90%, 95%, and 99% for
which the number of standard deviations from the Gaussian distribution
is 1.64, 1.96, 2.58 along with different sizes of samples from the

Fig. 15. A graphical representation of training and validation accuracy of the
deep learning model after training. The x-axis represents the training epochs
and y-axis, the accuracy on a scale of 0–1.

Fig. 16. A graphical representation of training and validation loss of the deep
learning model. The x-axis represents the epochs and the x-axis represents the
loss on a scale of 0–1.

Fig. 17. Confusion Matrix plotted on the result of testing the trained model
with the test partition of dataset containing 4532 images.

Table 6
The summary of testing the model on five folds of unseen testing data with total
4532 images. The average row shows the average of result of all five folds of
data.

Fold Performance Metrics (%)

Accuracy Specificity Sensitivity Precision F1

1 99.12 98.88 99.35 98.92 99.13
2 99.67 99.33 100.0 99.35 99.67
3 99.55 99.33 99.77 99.33 99.55
4 99.88 99.77 100.0 99.78 99.89
5 99.66 100.0 99.33 100.0 99.66
Avg. 99.58 99.46 99.69 99.47 99.58

A. Verma et al.

Computers in Biology and Medicine 143 (2022) 105298

12

validation dataset. The various size of sample is whole validation
dataset, 1000 and 100 observations. The confidence interval at each cell
in Table 7 covers the true classification accuracy of the trained model on
validation dataset, which is unseen data to the model.

A Receiver Operating Characteristic (ROC) curve is plotted for the
trained model. ROC is a graphic plot that demonstrates the diagnostic
ability of a binary classifier system. In this graph the TPR is plotted
against the FPR at various values of classifier thresholds. As our task is
binary classification, ROC is plotted, and the respective Area Under
Curve (AUC) is shown on the graph itself in Fig. 18. The AUC is the
percentage of area under the ROC curve on a scale of 0–1. The more the
AUC, the more the ability of the model to distinguish between positive
and negative classes. Here, in our case the AUC is 0.999843, which
shows that our model is highly able to distinguish COVID-19 from
normal cases in CT scans and is an excellent classifier. Along with this,
the model is working efficiently with the PNG images, which do not have
features as clear as in TIFF images. The model is ported to an android

application and is performing with brilliance on devices with no bugs.
The heatmap generation timing range from 60 to 80 s, which is based on
the device performance.

Two cardiothoracic trained radiologists reviewed the results of our
trained model. They found the model to be very sensitive and accurate in
detecting ground glass opacities (GGOs). The primary false positives
were due to detecting ground glass opacities from non-COVID-19 causes
such as pulmonary edema and partially collapsed airspaces. Given the
high sensitivity, this could be beneficial in high volume practices and/or
resource-poor settings where this application can mitigate delays in
diagnosing and triaging.

6.2. Discussion

This work proposed the development of a novel AI-driven android
application that can not only detect COVID-19 from chest CT scans with
very high accuracy and sensitivity but also identify the regions affected
by the COVID-19 infection in the lungs. This proposed application is the
only work that uses color gradients and visualization algorithms to mark
the regions of COVID-19 infection in the lung parenchyma. The classi-
fication accuracy of the trained AI model is found to be 99.58% along
with a combination of very few parameters. This combination makes the
model file and application installation package very lightweight and
proven to give the best results as compared to the other works in COVID-
19 detection from CT scans. The visualization results for COVID-19
infection, of the application, are also verified through two cardiotho-
racic radiologists who find the application to be a very useful and ac-
curate tool for the doctors to be used in mass settings. At the start of the
application, the lung parenchyma is also segmented through a robust,
swift, and novel image processing algorithm which helps in better
envisioning CT scan and understanding of infection heatmap which is
augmented over this segmented parenchyma. As the CT scans are of high
resolution, the processing time for the heatmap generation from the
neural network layers is very long and impractical. To reduce the pro-
cessing time for generating heatmaps, a novel approach combining se-
lection criteria and multi-threading is proposed which is successful in
reducing the processing time up to 93% and making the process
extremely fast.

The android application is practical due to its high accuracy, speci-
ficity, portability, and easy user interface. There is no need for any
exceptional environment created by the user to utilize the application’s
capabilities. While the algorithm may lead to very few false positive or
false negative results, it should serve as a useful tool for healthcare
workers to identify patients with COVID-19. While some other studies
have classified COVID-19 from chest CT scans with good accuracy and
specificity, in many works results were not verified by a physician or
radiologist.

Sedik A. et al. propose CNN and ConvLSTM models for detection of
COVID-19 from Chest CT and X-Ray images. They use a total of 3000
image datasets in which they have combined both CT and X-Ray images,
which is very less when compared to the dataset used in this work. Also,
there is no verification of their results from any doctor or radiologist.
Their proposed modalities are not deployed to any application for use.
The metrics reported by them are tested on part of augmented data
which is not generalized and their model seem to perform poorly in
some settings owing to its overfitting, as marked by its authors [51].
Another study [52] in the same domain, tries to improve the accuracy
and performance of CNN and convLSTM by proposing a data augmen-
tation framework. They use generative networks and transformations to
augment the dataset up to 100% and the highest accuracy and F1 score
of data augmented deep learning models they achieve is 99% along with
the highest specificity of 98.7%. Our proposed work outperforms their
approach as can be seen from the results. Also, this work does not rely on
generative networks for data augmentation as medical data is crucial,
and using artificially synthesized data to structure the deep neural
network for COVID-19 detection may prove detrimental in practical

Table 7
Confidence intervals on various number of observations for accuracy of trained
model in this work.

Confidence Number of Observations

4532 1000 100

90% 99.43–99.73 99.25–99.91 95.58–100
95% 99.39–99.76 99.18–99.98 98.32–100
99% 99.33–99.82 99.05–100 97.91–100

Fig. 18. Top figure represents the ROC curve of the trained model generated
with the test data as input. The bottom image is the enlarged view of the
top image.

A. Verma et al.

Computers in Biology and Medicine 143 (2022) 105298

13

settings. Our algorithm has an accuracy of 99.58% and specificity of
99.46% and outlines regions of the COVID-19 presence in the lung pa-
renchyma using heatmaps for easier visualization and verified by radi-
ologists. Also in the domain of COVID-19 detection from CT scans using
transfer learning methods, our work proves to be more accurate, effi-
cient and of more utility than other works [19,25–29]. Our application is
also convenient due to its portable nature. It can reach every part of the
globe, helping many doctors and radiologists in the diagnosis of
COVID-19.

As future research, percent lung involvement can be quantified and
help grade patients on severity of disease. Along with this segmentation,
better accuracy and mass data adaptation are the areas where more
research work can be contributed. An interesting follow-up project
would be to see which of these patients developed progressive lung
damage and fibrosis on follow up CT scans. By reviewing this data using
AI, we can identify patients at higher risk and alter treatment plans
accordingly.

7. Conclusion

The CovCT Application is developed with a very accurate neural
network at its base and various techniques applied for its smooth and

fast working in this work. The neural network is trained and tested on a
vast and balanced dataset of CT images and found to be more accurate
and having less number of parameters than other works in the domain.
Another feature of the application is the lung parenchyma segmentation
which is deployed to it using the proposed novel and low-cost algorithm
running in O(1), constant time. The lung parenchyma segmentation
removes the outer parts of the lungs and works robustly as tested on the
dataset. Following the classification on CT image, heatmap is also
generated to depict the areas in which COVID-19 infection may be
present in the lungs. This heatmap is augmented over the segmented
part of the lungs which gives a clear view of the infection heatmap. A
novel approach for the reduction in heatmap generation timing is
developed and tested which is successful in reducing running time
complexity from θ(n) to θ(n/10). The results of the heatmap are also
verified by expert cardiothoracic radiologists.

This work has proposed three novel contributions which are, one of
its kind CovCT application with an exceptionally accurate and most
lightweight deep neural network, low cost and swift lung parenchyma
segmentation algorithm, and the combination of selection approach
with multi-threading to reduce the timing of heatmap generation of
mobile phone device.

To analyze the performance of the CovCT application eight different

Fig. 19. Analysis of Application’s segmentation algorithm and deep neural network of eight typical different lung visibility cases from different patients of COVID-19
where in the first case (a1) and second case (a2), lung parenchyma is fully visible, third case (a3) have a blur in upper part of right lung. Fourth case (a4) shows the
lung parenchyma with one lung inflated. Fifth case (a5) is the CT scan with right lung having an organ view in right lung. (a6) image shows right lung inflated,
seventh case (a7) shows both lungs partially visible in the image due to inflation. In eight case (a8) again both lungs are inflated and parenchyma is slightly visible.
The (b) images are corresponding extracted lungs for each case and (c) images are output with highlighted regions showing COVID-19 related findings using
neural network.

A. Verma et al.

Computers in Biology and Medicine 143 (2022) 105298

14

typical cases of lung parenchyma visibility in CT scans from different
patients are taken and processed, results are in Fig. 19. In (a1) and (a2)
Image of Fig. 19, both the lung regions are clearly visible in the CT scan,
which is processed efficiently and perfectly by the segmentation algo-
rithm as seen in (b1) and (b2), and further (c1) and (c2) are the results of
augmentation of heatmap on segmented lungs in which pink shades are
representing the COVID-19 affected region. In (a3) image, there is a blur
region present in the right lung; still, the segmentation algorithm per-
forms well and segments the lung parenchyma carefully, as seen from
resulting image (b3). In images (a4) and (a5), the right lung is seen with
a portion of liver in the CT scan image. Our segmentation algorithm
clearly segments the lung from surrounding structures, as seen in results
(b4) and (b5) respectively, further the deep learned model also treats
that structure as an organ, not opacification, which can be seen in image
result (c4) and (c5). In image (a6) one lung is partially visible for the
high opacification in lung parenchyma due to parenchyma structures.
The prediction of the deep learning model carefully judges the region of
COVID-19 infection as seen in the resulting image (c6). The structures
are not taken as COVID-19 related findings. In image (a7), both the lungs
are partially visible. Still, they are processed equally well by the seg-
mentation algorithm, as visible from the result (b7). Further, the deep
learning model can also detect the affected region in this small portion,
as seen in image (c7). The test case (a8) is of minimal lung parenchyma
visibility and a complex case where the majority of the image contains
non-lung structures. The segmentation algorithm does not get confused
at any point and segments the parenchyma without mixing it with
muscles and fat, as seen in the result (b8). Further, the neural network
also judges the opacification and does not get confused due to other
structures, visible through the result (c8). This analysis of the CT scans
shows that both, the segmentation algorithm and the neural network
perform accurately and efficiently on CT images, including those CT
images which do not contain majority lung parenchyma. Hence, the
application is not only a theoretical research work but a pragmatic
application of verified research which can prove beneficial in mass
screening of COVID-19 patients whenever needed.

Data and Code Availability

For interested scholars and researchers who wish to use this work for
education, research, and improvement purposes, we have maintained an
open-source repository containing the codes of the CovCT android
application and the deep learning scripts used to train and test the
model. The repository contains the implementation of all the novel al-
gorithms proposed in the work. The repositories mentioned in this sec-
tion contain the python implementation of algorithms and also the Java
implementation of all algorithms in application development. The re-
pository contains code files, trained models, deep learning results, and
an android application package (APK). A demonstration video is also
provided in the repository, along with the android test results. A readme
file is embedded into the repository along with the history of whole
version control using git. The repository is located at application code
and results https://github.com/monjoybme/CovCT_application. Along
with it a repository for available datasets and resource code files for
processing the data is available at pre-processing code repositoryhttps
://github.com/monjoybme/CovCT. For researchers and scholars who
wish to use and get insights from the dataset we used in this work, the
authors of the dataset have maintained a well-explained repository
having all data and its reports. It can be reached out to data repository
link https://github.com/mr7495/COVID-CTset.

Declaration of competing interest

The authors declare no conflict of interest.

Acknowledgement

Aryan Verma would like to thank Google Summer of Code (GSoC)
2021 program for funding the work and the organization, Department of
Biomedical Informatics, Emory School of Medicine for selecting him as a
GSoC student and providing constant support, guidance and mentoring
for the work. The details of the organization and work done under GSoC
can be explored at https://summerofcode.withgoogle.com/archive/20
21/projects/6468381577838592/

Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.compbiomed.2022.105298.

References

[1] C.-C. Lai, T.-P. Shih, W.-C. Ko, H.-J. Tang, P.-R. Hsueh, Severe acute respiratory
syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-19):
the epidemic and the challenges, Int. J. Antimicrob. Agents 55 (2020) 105924,
https://doi.org/10.1016/j.ijantimicag.2020.105924.

[2] G.D. Rubin, C.J. Ryerson, L.B. Haramati, N. Sverzellati, J.P. Kanne, S. Raoof, N.
W. Schluger, A. Volpi, J.-J. Yim, I.B. Martin, et al., The role of chest imaging in
patient management during the covid-19 pandemic: a multinational consensus
statement from the fleischner society, Radiology 296 (2020) 172–180.

[3] M.D. Hope, C.A. Raptis, T.S. Henry, Chest Computed Tomography for Detection of
Coronavirus Disease 2019 (Covid-19): Don’t Rush the Science, 2020, https://doi.
org/10.7326/M20-1382.

[4] T. Ai, Z. Yang, H. Hou, C. Zhan, C. Chen, W. Lv, Q. Tao, Z. Sun, L. Xia, Correlation
of chest ct and rt-pcr testing for coronavirus disease 2019 (covid-19) in China: a
report of 1014 cases, Radiology 296 (2020) E32–E40.

[5] C. Long, H. Xu, Q. Shen, X. Zhang, B. Fan, C. Wang, B. Zeng, Z. Li, X. Li, H. Li,
Diagnosis of the coronavirus disease (covid-19): rrt-pcr or ct? Eur. J. Radiol. 126
(2020) 108961.

[6] J.P. Kanne, Chest Ct Findings in 2019 Novel Coronavirus (2019-ncov) Infections
from Wuhan, china: Key Points for the Radiologist, 2020.

[7] M. Saha, S.B. Amin, A. Sharma, T.S. Kumar, R.K. Kalia, AI-driven Quantification of
Ground Glass Opacities in Lungs of Covid-19 Patients Using 3d Computed
Tomography Imaging, medRxiv: the Preprint Server for Health Sciences, 2021,
https://doi.org/10.1101/2021.07.06.21260109.

[8] M. Chung, A. Bernheim, X. Mei, N. Zhang, M. Huang, X. Zeng, J. Cui, W. Xu,
Y. Yang, Z. Fayad, et al., Ct Imaging Features of 2019 Novel Coronavirus (2019-
ncov) Radiology, 2020 apr vol. 295, 2020, pp. 202–207, https://doi.org/10.1148/
radiol.2020200230, 110.1148/radiol. 2020200230.

[9] L. Huang, R. Han, T. Ai, P. Yu, H. Kang, Q. Tao, L. Xia, Serial quantitative chest ct
assessment of covid-19: a deep learning approach, Radiology: Cardiothorac.
Imaging 2 (2020), e200075.

[10] Y. Qiu, Y. Liu, S. Li, J. Xu, Miniseg: an Extremely Minimum Network for Efficient
Covid-19 Segmentation, 2020, 09750 arXiv preprint arXiv:2004.

[11] L. Li, L. Qin, Z. Xu, Y. Yin, X. Wang, B. Kong, J. Bai, Y. Lu, Z. Fang, Q. Song, et al.,
Using artificial intelligence to detect covid-19 and community-acquired pneumonia
based on pulmonary ct: evaluation of the diagnostic accuracy, Radiology 296
(2020) E65–E71.

[12] J. Chen, L. Wu, J. Zhang, L. Zhang, D. Gong, Y. Zhao, Q. Chen, S. Huang, M. Yang,
X. Yang, et al., Deep learning-based model for detecting 2019 novel coronavirus
pneumonia on high-resolution computed tomography, Sci. Rep. 10 (2020) 1–11.

[13] X. Xu, X. Jiang, C. Ma, P. Du, X. Li, S. Lv, L. Yu, Q. Ni, Y. Chen, J. Su, et al., A deep
learning system to screen novel coronavirus disease 2019 pneumonia, Engineering
6 (2020) 1122–1129.

[14] P. Silva, E. Luz, G. Silva, G. Moreira, R. Silva, D. Lucio, D. Menotti, Covid-19
detection in ct images with deep learning: a voting-based scheme and cross-
datasets analysis, Inform. Med. Unlocked 20 (2020) 100427.

[15] A.M. Sebdani, A. Mostafavi, Medical image processing and deep learning to
diagnose covid-19 with ct images, in: 2021 5th International Conference on Pattern
Recognition and Image Analysis (IPRIA), IEEE, 2021, pp. 1–6, https://doi.org/
10.1109/IPRIA53572.2021.9483563.

[16] M.A. Elaziz, K.M. Hosny, A. Salah, M.M. Darwish, S. Lu, A.T. Sahlol, New machine
learning method for image-based diagnosis of covid-19, PLoS One 15 (2020),
e0235187.

[17] N. Gianchandani, A. Jaiswal, D. Singh, V. Kumar, M. Kaur, Rapid covid-19
diagnosis using ensemble deep transfer learning models from chest radiographic
images, J. Ambient Intell. Hum. Comput. (2020) 1–13.

[18] M. Hasan, M. Alam, M. Elahi, E. Toufick, S. Roy, S.R. Wahid, et al., Cvr-net: A Deep
Convolutional Neural Network for Coronavirus Recognition from Chest
Radiography Images, 2020 arXiv preprint arXiv:2007.11993.

[19] M.Z. Alom, M. Rahman, M.S. Nasrin, T.M. Taha, V.K. Asari, Covid_mtnet: Covid-19
Detection with Multi-Task Deep Learning Approaches, 2020, 03747 arXiv preprint
arXiv:2004.

[20] R. Hu, G. Ruan, S. Xiang, M. Huang, Q. Liang, J. Li, Automated Diagnosis of Covid-
19 Using Deep Learning and Data Augmentation on Chest Ct, medRxiv, 2020.

A. Verma et al.

https://github.com/monjoybme/CovCT_application
https://github.com/monjoybme/CovCT
https://github.com/monjoybme/CovCT
https://github.com/mr7495/COVID-CTset
https://summerofcode.withgoogle.com/archive/2021/projects/6468381577838592/
https://summerofcode.withgoogle.com/archive/2021/projects/6468381577838592/
https://doi.org/10.1016/j.compbiomed.2022.105298
https://doi.org/10.1016/j.compbiomed.2022.105298
https://doi.org/10.1016/j.ijantimicag.2020.105924
http://refhub.elsevier.com/S0010-4825(22)00090-7/sref2
http://refhub.elsevier.com/S0010-4825(22)00090-7/sref2
http://refhub.elsevier.com/S0010-4825(22)00090-7/sref2
http://refhub.elsevier.com/S0010-4825(22)00090-7/sref2
https://doi.org/10.7326/M20-1382
https://doi.org/10.7326/M20-1382
http://refhub.elsevier.com/S0010-4825(22)00090-7/sref4
http://refhub.elsevier.com/S0010-4825(22)00090-7/sref4
http://refhub.elsevier.com/S0010-4825(22)00090-7/sref4
http://refhub.elsevier.com/S0010-4825(22)00090-7/sref5
http://refhub.elsevier.com/S0010-4825(22)00090-7/sref5
http://refhub.elsevier.com/S0010-4825(22)00090-7/sref5
http://refhub.elsevier.com/S0010-4825(22)00090-7/sref6
http://refhub.elsevier.com/S0010-4825(22)00090-7/sref6
https://doi.org/10.1101/2021.07.06.21260109
https://doi.org/10.1148/radiol.2020200230
https://doi.org/10.1148/radiol.2020200230
http://refhub.elsevier.com/S0010-4825(22)00090-7/sref9
http://refhub.elsevier.com/S0010-4825(22)00090-7/sref9
http://refhub.elsevier.com/S0010-4825(22)00090-7/sref9
http://refhub.elsevier.com/S0010-4825(22)00090-7/sref10
http://refhub.elsevier.com/S0010-4825(22)00090-7/sref10
http://refhub.elsevier.com/S0010-4825(22)00090-7/sref11
http://refhub.elsevier.com/S0010-4825(22)00090-7/sref11
http://refhub.elsevier.com/S0010-4825(22)00090-7/sref11
http://refhub.elsevier.com/S0010-4825(22)00090-7/sref11
http://refhub.elsevier.com/S0010-4825(22)00090-7/sref12
http://refhub.elsevier.com/S0010-4825(22)00090-7/sref12
http://refhub.elsevier.com/S0010-4825(22)00090-7/sref12
http://refhub.elsevier.com/S0010-4825(22)00090-7/sref13
http://refhub.elsevier.com/S0010-4825(22)00090-7/sref13
http://refhub.elsevier.com/S0010-4825(22)00090-7/sref13
http://refhub.elsevier.com/S0010-4825(22)00090-7/sref14
http://refhub.elsevier.com/S0010-4825(22)00090-7/sref14
http://refhub.elsevier.com/S0010-4825(22)00090-7/sref14
https://doi.org/10.1109/IPRIA53572.2021.9483563
https://doi.org/10.1109/IPRIA53572.2021.9483563
http://refhub.elsevier.com/S0010-4825(22)00090-7/sref16
http://refhub.elsevier.com/S0010-4825(22)00090-7/sref16
http://refhub.elsevier.com/S0010-4825(22)00090-7/sref16
http://refhub.elsevier.com/S0010-4825(22)00090-7/sref17
http://refhub.elsevier.com/S0010-4825(22)00090-7/sref17
http://refhub.elsevier.com/S0010-4825(22)00090-7/sref17
http://refhub.elsevier.com/S0010-4825(22)00090-7/sref18
http://refhub.elsevier.com/S0010-4825(22)00090-7/sref18
http://refhub.elsevier.com/S0010-4825(22)00090-7/sref18
http://refhub.elsevier.com/S0010-4825(22)00090-7/sref19
http://refhub.elsevier.com/S0010-4825(22)00090-7/sref19
http://refhub.elsevier.com/S0010-4825(22)00090-7/sref19
http://refhub.elsevier.com/S0010-4825(22)00090-7/sref20
http://refhub.elsevier.com/S0010-4825(22)00090-7/sref20

Computers in Biology and Medicine 143 (2022) 105298

15

[21] S.H. Kassania, P.H. Kassanib, M.J. Wesolowskic, K.A. Schneidera, R. Detersa,
Automatic detection of coronavirus disease (covid-19) in x-ray and ct images: a
machine learning based approach, Biocybernet. Biomed. Eng. 41 (2021) 867–879.

[22] B. Liu, X. Gao, M. He, L. Liu, G. Yin, A fast online covid-19 diagnostic system with
chest ct scans, in: Proceedings of KDD, vol. 2020, 2020.

[23] O. Gozes, M. Frid-Adar, H. Greenspan, P.D. Browning, H. Zhang, W. Ji,
A. Bernheim, E. Siegel, Rapid Ai Development Cycle for the Coronavirus (Covid-19)
Pandemic: Initial Results for Automated Detection & Patient Monitoring Using
Deep Learning Ct Image Analysis, 2020, 05037 arXiv preprint arXiv:2003.

[24] Q. Ni, Z.Y. Sun, L. Qi, W. Chen, Y. Yang, L. Wang, X. Zhang, L. Yang, Y. Fang,
Z. Xing, et al., A deep learning approach to characterize 2019 coronavirus disease
(covid-19) pneumonia in chest ct images, Eur. Radiol. 30 (2020) 6517–6527.

[25] S. Ahuja, B.K. Panigrahi, N. Dey, V. Rajinikanth, T.K. Gandhi, Deep transfer
learning-based automated detection of covid-19 from lung ct scan slices, Appl.
Intell. 51 (2021) 571–585.

[26] L. Brunese, F. Martinelli, F. Mercaldo, A. Santone, Machine learning for
coronavirus covid-19 detection from chest x-rays, Procedia Comput. Sci. 176
(2020) 2212–2221.

[27] A. Jaiswal, N. Gianchandani, D. Singh, V. Kumar, M. Kaur, Classification of the
covid-19 infected patients using densenet201 based deep transfer learning,
J. Biomol. Struct. Dyn. (2020) 1–8.

[28] T. Anwar, S. Zakir, Deep learning based diagnosis of covid-19 using chest ct-scan
images, in: 2020 IEEE 23rd International Multitopic Conference (INMIC), 2020,
pp. 1–5, https://doi.org/10.1109/INMIC50486.2020.9318212. IEEE.

[29] T. Ozturk, M. Talo, et al., Automated detection of covid-19 cases using deep neural
networks with x-ray images, Comput. Biol. Med. (2020) 103792, https://doi.org/
10.1016/j.compbiomed.2020.103792.

[30] H. Mukherjee, S. Ghosh, A. Dhar, S.M. Obaidullah, K. Santosh, K. Roy, Deep neural
network to detect covid-19: one architecture for both ct scans and chest x-rays,
Appl. Intell. 51 (2021) 2777–2789.

[31] D. Al-Karawi, S. Al-Zaidi, N. Polus, S. Jassim, Machine Learning Analysis of Chest
Ct Scan Images as a Complementary Digital Test of Coronavirus (Covid-19)
Patients, MedRxiv, 2020.

[32] N. Paluru, A. Dayal, H.B. Jenssen, T. Sakinis, L.R. Cenkeramaddi, J. Prakash, P.
K. Yalavarthy, Anam-net: anamorphic depth embedding-based lightweight cnn for
segmentation of anomalies in covid-19 chest ct images, IEEE Transact. Neural
Networks Learn. Syst. 32 (2021) 932–946.

[33] H. Alshazly, C. Linse, E. Barth, T. Martinetz, Explainable covid-19 detection using
chest ct scans and deep learning, Sensors 21 (2021) 455.

[34] N. Basantwani, A. Kumar, S. Gangwar, A. Olkha, G. Mathur, et al., Covid-19
detection android app based on chest x-rays & ct scans, INFOCOMP J. Comput. Sci.
20 (2021).

[35] M. Hammad, A.M. Iliyasu, A. Subasi, E.S.L. Ho, A.A.A. El-Latif, A multitier deep
learning model for arrhythmia detection, IEEE Trans. Instrum. Meas. 70 (2021)
1–9, https://doi.org/10.1109/TIM.2020.3033072.

[36] M. Hammad, M.H. Alkinani, B.B. Gupta, A.A.A. El-Latif, Myocardial infarction
detection based on deep neural network on imbalanced data, Multimed. Syst.
(2021), https://doi.org/10.1007/s00530-020-00728-8.

[37] M. Rahimzadeh, A. Attar, S.M. Sakhaei, A fully automated deep learning-based
network for detecting covid-19 from a new and large lung ct scan dataset, Biomed.
Signal Process Control 68 (2021) 102588.

[38] J. Han, J. Pei, M. Kamber, Data Mining: Concepts and Techniques, Elsevier, 2011.
[39] Y. Wei, G. Shen, J.-j. Li, A fully automatic method for lung parenchyma

segmentation and repairing, J. Digit. Imag. 26 (2013) 483–495.
[40] S. Armato III, H. MacMahon, Automated lung segmentation and computer-aided

diagnosis for thoracic ct scans, in: International Congress Series, vol. 1256,
Elsevier, 2003, pp. 977–982, https://doi.org/10.1016/S0531-5131(03)00388-1.

[41] S. Tan, Segmentationoflunglesionson CT scans using watershed, active contours,
and Markov randomfield, Med. Phys. 40 (2013), 043502, https://doi.org/
10.1118/1.4793409.

[42] G. De Nunzio, E. Tommasi, A. Agrusti, R. Cataldo, I. De Mitri, M. Favetta, S. Maglio,
A. Massafra, M. Quarta, M. Torsello, et al., Automatic lung segmentation in ct
images with accurate handling of the hilar region, J. Digit. Imag. 24 (2011) 11–27,
https://doi.org/10.1007/s10278-009-9229-1.

[43] J. Lai, Q. Wei, Automatic lung fields segmentation in ct scans using morphological
operation and anatomical information, Bio Med. Mater. Eng. 24 (2014) 335–340.

[44] N. Otsu, A threshold selection method from gray-level histograms, in: IEEE
transactions on systems, man, and cybernetics 25, 2006, 417–4.

[45] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
2016, pp. 770–778.

[46] M. Tan, Q. Le, Efficientnet: rethinking model scaling for convolutional neural
networks, in: International Conference on Machine Learning, PMLR, 2019,
pp. 6105–6114.

[47] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, L. Fei-Fei, Imagenet: a large-scale
hierarchical image database, in: 2009 IEEE Conference on Computer Vision and
Pattern Recognition, 2009, pp. 248–255, https://doi.org/10.1109/
CVPR.2009.5206848.

[48] D.P. Kingma, J. Ba, Adam: A Method for Stochastic Optimization, arXiv e-prints,
2014 arXiv:1412.6980.

[49] Handling Bitmaps android developers, URL: https://developer.android.com/top
ic/performance/graphics, 2021, 21-10-07.

[50] H. Wang, Z. Wang, M. Du, F. Yang, Z. Zhang, S. Ding, P. Mardziel, X. Hu, Score-
CAM: Score-Weighted Visual Explanations for Convolutional Neural Networks,
arXiv e-prints, 2019 arXiv:1910.01279.

[51] A. Sedik, M. Hammad, F.E. Abd El-Samie, B.B. Gupta, A.A. Abd El-Latif, Efficient
deep learning approach for augmented detection of coronavirus disease, Neural
Comput. Appl. (2021) 1–18, https://doi.org/10.1007/s00521-020-05410-8.

[52] A. Sedik, A.M. Iliyasu, A. El-Rahiem, M.E. Abdel Samea, A. Abdel-Raheem,
M. Hammad, J. Peng, A. El-Samie, E. Fathi, A. El-Latif, et al., Deploying machine
and deep learning models for efficient data-augmented detection of covid-19
infections, Viruses 12 (2020) 769, https://doi.org/10.3390/v12070769.

A. Verma et al.

http://refhub.elsevier.com/S0010-4825(22)00090-7/sref21
http://refhub.elsevier.com/S0010-4825(22)00090-7/sref21
http://refhub.elsevier.com/S0010-4825(22)00090-7/sref21
http://refhub.elsevier.com/S0010-4825(22)00090-7/sref22
http://refhub.elsevier.com/S0010-4825(22)00090-7/sref22
http://refhub.elsevier.com/S0010-4825(22)00090-7/sref23
http://refhub.elsevier.com/S0010-4825(22)00090-7/sref23
http://refhub.elsevier.com/S0010-4825(22)00090-7/sref23
http://refhub.elsevier.com/S0010-4825(22)00090-7/sref23
http://refhub.elsevier.com/S0010-4825(22)00090-7/sref24
http://refhub.elsevier.com/S0010-4825(22)00090-7/sref24
http://refhub.elsevier.com/S0010-4825(22)00090-7/sref24
http://refhub.elsevier.com/S0010-4825(22)00090-7/sref25
http://refhub.elsevier.com/S0010-4825(22)00090-7/sref25
http://refhub.elsevier.com/S0010-4825(22)00090-7/sref25
http://refhub.elsevier.com/S0010-4825(22)00090-7/sref26
http://refhub.elsevier.com/S0010-4825(22)00090-7/sref26
http://refhub.elsevier.com/S0010-4825(22)00090-7/sref26
http://refhub.elsevier.com/S0010-4825(22)00090-7/sref27
http://refhub.elsevier.com/S0010-4825(22)00090-7/sref27
http://refhub.elsevier.com/S0010-4825(22)00090-7/sref27
https://doi.org/10.1109/INMIC50486.2020.9318212
https://doi.org/10.1016/j.compbiomed.2020.103792
https://doi.org/10.1016/j.compbiomed.2020.103792
http://refhub.elsevier.com/S0010-4825(22)00090-7/sref30
http://refhub.elsevier.com/S0010-4825(22)00090-7/sref30
http://refhub.elsevier.com/S0010-4825(22)00090-7/sref30
http://refhub.elsevier.com/S0010-4825(22)00090-7/sref31
http://refhub.elsevier.com/S0010-4825(22)00090-7/sref31
http://refhub.elsevier.com/S0010-4825(22)00090-7/sref31
http://refhub.elsevier.com/S0010-4825(22)00090-7/sref32
http://refhub.elsevier.com/S0010-4825(22)00090-7/sref32
http://refhub.elsevier.com/S0010-4825(22)00090-7/sref32
http://refhub.elsevier.com/S0010-4825(22)00090-7/sref32
http://refhub.elsevier.com/S0010-4825(22)00090-7/sref33
http://refhub.elsevier.com/S0010-4825(22)00090-7/sref33
http://refhub.elsevier.com/S0010-4825(22)00090-7/sref34
http://refhub.elsevier.com/S0010-4825(22)00090-7/sref34
http://refhub.elsevier.com/S0010-4825(22)00090-7/sref34
https://doi.org/10.1109/TIM.2020.3033072
https://doi.org/10.1007/s00530-020-00728-8
http://refhub.elsevier.com/S0010-4825(22)00090-7/sref37
http://refhub.elsevier.com/S0010-4825(22)00090-7/sref37
http://refhub.elsevier.com/S0010-4825(22)00090-7/sref37
http://refhub.elsevier.com/S0010-4825(22)00090-7/sref38
http://refhub.elsevier.com/S0010-4825(22)00090-7/sref39
http://refhub.elsevier.com/S0010-4825(22)00090-7/sref39
https://doi.org/10.1016/S0531-5131(03)00388-1
https://doi.org/10.1118/1.4793409
https://doi.org/10.1118/1.4793409
https://doi.org/10.1007/s10278-009-9229-1
http://refhub.elsevier.com/S0010-4825(22)00090-7/sref43
http://refhub.elsevier.com/S0010-4825(22)00090-7/sref43
http://refhub.elsevier.com/S0010-4825(22)00090-7/sref44
http://refhub.elsevier.com/S0010-4825(22)00090-7/sref44
http://refhub.elsevier.com/S0010-4825(22)00090-7/sref45
http://refhub.elsevier.com/S0010-4825(22)00090-7/sref45
http://refhub.elsevier.com/S0010-4825(22)00090-7/sref45
http://refhub.elsevier.com/S0010-4825(22)00090-7/sref46
http://refhub.elsevier.com/S0010-4825(22)00090-7/sref46
http://refhub.elsevier.com/S0010-4825(22)00090-7/sref46
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1109/CVPR.2009.5206848
http://refhub.elsevier.com/S0010-4825(22)00090-7/sref48
http://refhub.elsevier.com/S0010-4825(22)00090-7/sref48
https://developer.android.com/topic/performance/graphics
https://developer.android.com/topic/performance/graphics
http://refhub.elsevier.com/S0010-4825(22)00090-7/sref50
http://refhub.elsevier.com/S0010-4825(22)00090-7/sref50
http://refhub.elsevier.com/S0010-4825(22)00090-7/sref50
https://doi.org/10.1007/s00521-020-05410-8
https://doi.org/10.3390/v12070769

