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A B S T R A C T   

The COVID-19 (coronavirus disease 2019) pandemic affected more than 186 million people with over 4 million 
deaths worldwide by June 2021. The magnitude of which has strained global healthcare systems. Chest 
Computed Tomography (CT) scans have a potential role in the diagnosis and prognostication of COVID-19. 
Designing a diagnostic system, which is cost-efficient and convenient to operate on resource-constrained de-
vices like mobile phones would enhance the clinical usage of chest CT scans and provide swift, mobile, and 
accessible diagnostic capabilities. This work proposes developing a novel Android application that detects 
COVID-19 infection from chest CT scans using a highly efficient and accurate deep learning algorithm. It further 
creates an attention heatmap, augmented on the segmented lung parenchyma region in the chest CT scans which 
shows the regions of infection in the lungs through an algorithm developed as a part of this work, and verified 
through radiologists. We propose a novel selection approach combined with multi-threading for a faster gen-
eration of heatmaps on a Mobile Device, which reduces the processing time by about 93%. The neural network 
trained to detect COVID-19 in this work is tested with a F1 score and accuracy, both of 99.58% and sensitivity of 
99.69%, which is better than most of the results in the domain of COVID diagnosis from CT scans. This work will 
be beneficial in high-volume practices and help doctors triage patients for the early diagnosis of COVID-19 
quickly and efficiently.   

1. Introduction 

After the outbreak in China in December 2019, the World Health 
Organization (WHO) identified Severe Acute Respiratory Syndrome 
CoronaVirus-2 (SARS-CoV-2) as a new type of coronavirus. COVID-19 is 
a disease caused by SARS-CoV-2, which primarily affects the respiratory 
system. The coronavirus 2019 breakout was declared a public health 
emergency at the international level by the World Health Organization 
on 30 January 2020. It was given pandemic status on 11 March 2020 
[1]. Economies were ruined by the pandemic and it caused unrivaled 
challenges to healthcare and food systems across the globe. The 
pandemic has overwhelmed health care systems. As a result, diagnosing 
and treating other diseases have been postponed. After multiple waves 
of COVID-19, health care workers and society, in general, have become 
exhausted. The real-time reverse transcription-polymerase chain reac-
tion (RT-PCR) test is the standard and used for detecting the presence of 

COVID-19 in an individual [2]. Due to the high false-negative rates, long 
turnaround times, and shortage of RT-PCR kits, chest CT scans were 
found to be an effective and fast alternative to diagnosing COVID-19 [3]. 
CT scans combine a series of X-ray images taken from different angles 
around the chest which are then post-processed by computer to create 
detailed cross-sectional images Chest CT scanning is valuable in the 
diagnosis of COVID-19 disease. In some cases, the RT-PCR gave negative 
results and is highly operator dependent, but CT scans confirmed the 
diagnosis of COVID-19 [4]. Overall due to the high specificity and fast 
diagnosis, chest CT findings can be a better option than RT-PCR [5]. On 
chest CT, COVID-19–associated pneumonia usually has a pattern of 
ground-glass opacification in a peripheral and lower lobe distribution in 
the lungs [6–8]. This common imaging pattern on CT was used as an aid 
to observe the COVID-19 in lungs through deep learning [9,10]. In this 
work, the neural network was trained to detect this finding with very 
high accuracy and specificity, and fewer parameters, as the model is to 
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be ported on a mobile device. Most of the devices consisting of the 
Android Operating System (OS) consist of mobile phones and tablets. 
Given the dire situation caused by COVID-19, a portable, swift, and 
completely automated aid for diagnosing the disease on CT scans would 
be beneficial. The novel CovCT application proposed in this work can 
provide this service on a portable android device. Unlike 
time-consuming testing methods such as RT-PCR, the CovCT app would 
provide an optimal method of triaging patients with COVID-19. The 
CovCT android application is capable of detecting COVID-19 from chest 
CT scans and generating heatmaps to further illustrate COVID-19 
affected regions in the lung parenchyma. The application is very light-
weight due to fewer parameters in the neural network along with the 
best accuracy in the domain. Our results of the infection heatmap are 
also verified by expert cardiothoracic radiologists. A novel, swift and 
low-cost lung parenchyma segmentation algorithm is a part of the 
CovCT application. A novel approach for the faster generation of heat-
maps on android devices is also developed in this work. 

2. Related work 

Artificial intelligence (AI) is one of the most popular approaches for 
automated disease detection. Many articles have been published in 
which AI is used to diagnose Covid-19 infection using chest computed 
tomography (CT) images. Some of the most important and recent ad-
vancements have been stated in Table 1. To discover COVID-19 related 
characteristics from chest CT, some of them employed basic techniques 
such as hierarchical and spatial models [11]. Various deep learning 
approaches were employed in the direction of better accuracy for 
COVID-19 related findings from CT images [7,12–16]. Our group 
developed an AI-driven algorithm for detecting ground-glass opacities 
(GGOs) in COVID-19 patients’ lung images [7]. In their analysis, they 
employed “MosMedData.” The authors segmented lungs and GGOs using 
point cloud and PointNet++ architectures. They are the first to deploy 
point cloud and PointNet++ architectures for medical image analysis 
with 98% evaluation accuracy. Gianchandani et al. proposed an 
ensemble method for COVID-19 diagnosis from chest X-rays through an 
ensemble of deep transfer learning models for better performance [17]. 

Hasan et al. proposed the Coronavirus Recognition Network (CVR-Net) 
in their work, which uses radiography images to detect COVID-19. The 
results from this showed an average accuracy of 78% [18]. 

Accuracies in models trained with transfer learning were also 
observed to be very good. Brunese et al. reported an average accuracy of 
97% in their work. They used a pre-trained VGG-16 model and per-
formed transfer learning on the model for automatic detection of 
COVID-19 using chest X-Ray images [26]. Jaiswal et al. performed 
transfer learning of the DenseNet201 Model for the classification of the 
COVID-19 infected patients. It extracted features by using its learned 
weights on the ImageNet dataset [27]. T. Anwar et al. used EfficientNet 
B4 to distinguish between COVID and normal CT-scan images with a 
0.90 F1 score [28]. 

Many approaches have customized deep learning architectures for 
better detection. Ozturk et al. presented DarkCovidNet, which auto-
matically detected COVID-19 using chest X-ray images. The classifica-
tion accuracies obtained from this model were 98.08% for binary cases 
[29]. In another work, Mukherjee et al. developed a custom architecture 
for CNN which had nine layers for detecting COVID-19 cases. For the 
training of the model, they used X-Rays, and CT scans. The network 
achieved an overall accuracy of 96.28%, which was better than most of 
the CNN-based models [30]. In the Al-Karawi et al., Gabor filters 
extracted different texture features from CT images. Then these features 
were utilized for training support vector machines, which were further 
employed for classifying the COVID-19 cases. This approach got an 
average accuracy of 95.37% and a sensitivity of 95.99% [31]. N. Palaru 
et al. proposed Anam-Net, which is a CNN architecture based on depth 
embeddings. It detected an irregularity in COVID-19 chest CT images. 
The Anam-Net architecture was lightweight and can be used for infer-
ence generation in mobile or resource constraint platforms [32]. H. 
Alshazly et al. studied various deep network architectures such as 
SqueezeNet, Inception, ResNet, Xception, ShuffleNet, and DenseNet and 
proposed a transfer learning strategy to achieve the best performance. 
As a result, ResNet101 achieved an average accuracy of 99.4%, which is 
better than others, and had an average sensitivity of 99.1% [33]. N. 
Basantwani et al. used transfer learning on an Inception-V3 model and 
ported it to an android application with an accuracy of 94% [34]. 

A study by Hammad et al. suggests advancement in the classification 
accuracy of the neural network by introducing a feature extraction stage 
followed by a genetic algorithm which results in an increment of 0.95% 
of classification accuracy, compared to state of art models and ap-
proaches [35]. Another study gave an approach for myocardial infection 
detection using proposed CNN with a special focal loss function; results 
indicate that their approach has increased accuracy by 9% in detecting 
myocardial signals [36]. These both studies have proposed a method for 
improving the accuracy of detecting medical conditions from signals, 
while their focused intermediary steps can be tested for improving the 
accuracy of the deep learning model in COVID-19 detection from CT 
images. 

Most of the models were observed to either have less accuracy or a 
very large number of parameters for the model to be ported to a mobile 
device. Some models were customized for mobile devices, but our 
approach is entirely different from them and outperforms them for a 
perfect blend of accuracy, parameters, and specificity. Fig. 1 shows an 
overall workflow of the proposed deep learning approach. 

3. Overview of approach 

This work is motivated to design a portable and accurate COVID-19 
diagnosis system working on an Android application with a deep 
learning algorithm to analyze the chest CT scans for the presence of 
COVID-19 and further mark the COVID-19 presence in the segmented 
lungs’ region through an attention map. The utmost focus lies in 
designing the deep neural network with high accuracy and fewer pa-
rameters that can be deployed to the Android Operating System (OS) 
using minimal memory, unlike many other works that render the trained 

Table 1 
The Study of various existing machine learning techniques for COVID-19 
detection from chest CT scans and their corresponding results. All of these 
studies are aimed at COVID and Non-COVID classification of CT images.  

S. 
No. 

Method Results Reference 

1 Transfer learning on Inception 
Recurrent Residual Neural 
Network 

Accuracy – 98.78% [19] 

2 Construction of AI model using 
Transfer learning on ShuffleNet 
V2 

The area under the curve 
(AUC), sensitivity of model 
and specificity of model 
were 0.968 9, 90.52% and 
91.58% respectively. 

[20] 

3 Feature extraction done by 
DenseNet121 and bagging 
classifier trained on top of 
these 

Accuracy – 99 ± 0.9% [21] 

4 Lesion-attention deep neural 
networks, using pretrained 
network weights including 
VGG16, ResNet18, and 
ResNet50 

with 0.94 of the AUC score [22] 

5 Comprehensive System using 
ResNet 50 

sensitivity, specificity, and 
the AUC score were 94%, 
98%, and 0.994 0 
respectively 

[23] 

6 Network based on regression of 
multi view point and 3-Dimen-
sional U-Net 

accuracy and sensitivity of 
94% and 100% 

[24] 

7 Transfer learning on ResNet18 AUC score – 0.996 5 [25]  
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models in hundreds of Megabytes (Mb). Chest CT images were 
normalized and converted to Portable Network Graphics (PNG) format 
for simple viewing and file storage on an Android smartphone. Then the 
image was fed to the lung parenchyma segmentation algorithm devel-
oped in this work using computer vision. The algorithm proposed for 
lung parenchyma segmentation is robust and involves very light pro-
cessing on a mobile device. This segmentation algorithm first forms the 
contour around the detected regions of lung parenchyma and then 
segments the image for the lung region as shown in the blue dashed box 
region of Fig. 1. The images are then passed to the EfficientNetB0 deep 
learning model. If the prediction result is COVID-19 positive, it is 
allowed to move to the next stage, the heatmap generation. The heatmap 
is further augmented over segmented lungs, as shown in the red dashed 
box region of Fig. 1. This stage requires the output of the last convolu-
tional layer (indicated by the green layer in Fig. 1) along with the model 
predictions to generate the heatmap. After testing a few algorithms to 
form heatmaps, the Score-CAM algorithm is used to generate the heat 
map of the COVID-19 class from the trained neural network due to its 
accurate and soft map formations. The algorithm was ported to Android 
using the Java programming language. The ScoreCAM algorithm takes a 
lot of time (9–10 min) to form the heat map, so a selective approach on 
activation maps and Multi-Threading environment in Android, as 
explained in this work, is applied before passing the neural network 
activations. This approach reduces the time taken to develop the heat-
map to 50–60 s, which is further dependent on the Android device’s 
performance. Finally, the heatmap is augmented over the chest CT scan 
and masked to show the segmented lungs region for better inference. 
The heatmap can be adjusted for its hue values and gradient values using 
image processing. 

4. Material and methods 

4.1. Dataset 

In our study, we used the COVID-CT dataset mentioned in reference 
[37]. This dataset contains 63849 CT scan images from 377 patients. 
15589 CT scan images belong to 95 patients affected with COVID-19 and 
48260 CT scan images belonging to 282 non-COVID patients. The CT 
scans were gathered from Negin medical center, Sari, Iran. The original 
files in the dataset were in Tagged Image File Format (TIFF) format 

containing 16-bit grayscale data and did not include the patients’ pri-
vate information. Android devices or regular monitors do not visualize 
the 16-bit grayscale TIFF images. There is a separate algorithm for 
visualizing these TIFF files, given by the dataset authors. So, to make it 
accessible and simply visualize images, TIFF files were converted to 8-bit 
PNG images through a normalization process. Converting TIFF image 
files to PNG images gave a better view and analysis of these images on 
the Android platform. The tonal values of the TIFF image pixels range 
from 0 to over 5000, So if each image is scaled based on the maximum 
tonal value, it can cause data loss and reduce the performance of the 
network. For tackling this issue, we trained the neural network to detect 
the COVID-19 related findings not from the TIFF image files but the PNG 
images. This approach gave us more satisfactory results as any image 
uploaded to the android platform in PNG form was easy to visualize and 
process. Five-fold cross-validation was used to find the best 
hyper-parameters of the neural network and optimizer. The authors of 
the dataset provided training and testing data in five folds for this pur-
pose. In each fold 20% of the data was used for testing. The model was 
trained on each fold of the data and tested on the corresponding test data 
fold. After searching the hyper-parameters for the best accuracy of the 
neural network, the whole dataset was rearranged by combining the five 
folds of data that were earlier distributed into train, test, and validation 
data. The distribution statics of train, validation and test data are shown 
in Table 2. 

4.2. Normalization of TIFF images to PNG 

The TIFF files contain pixel values ranging from 0 to 5000, which are 
rendered as a black image on android mobile phones. This makes the 
identification and processing complex. To solve this, a normalization 
process is applied to each TIFF image file in the dataset, and all images 
are converted into normalized PNG form, which is easily visible and 
processed on android OS. The process of normalization used here is the 

Fig. 1. The figure shows an overall workflow of the proposed deep learning approach. Three different processing stages of a CT scan have been shown with help of 
dashed lines. The blue dashed line is used for denoting the steps of the lung parenchyma segmentation. The red dashed line represents the algorithm for the gen-
eration and augmentation of the infection heatmap. The green layer in the neural network is the last convolutional layer of the deep learning algorithm proposed in 
the work and the blue layer is the softmax layer of the deep neural network. The augmented heatmap is visible with the area of infection highlighted with a 
different color. 

Table 2 
The distribution statics of train, validation and test data.  

Dataset COVID-19 Images Normal Images 

Train 9128 9618 
Validation 2282 39 262 
Test 2282 2250  
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Min-Max Normalization applied with the help of OpenCV Library. Min- 
max normalization is applied, being the most common way to normalize 
the data. For every location in the TIFF image, the tonal value of the 
pixel is normalized according to the formula shown in (1). For this work, 
the maximum and minimum of the second function (g) are 65535 and 0, 
respectively. The wide range is chosen to enhance the contrast of the 
images before converting them to PNG. If the maximum of the second 
function is too small, all the images will appear black due to less contrast 
and tonal values. Hence, through normalization, the minimum value in 
the TIFF image gets transformed into 0, the maximum value gets 
changed to 65535, and every other value gets changed into a number 
between 0 and 65535, according to the formula in equation (1) 

v′

=
v − minf

maxf − minf
(maxg − ming) + ming (1)  

where f is the input function and g is the output normalized function. 
Here, v is the original value of pixel and v′ is the normalized value [38]. 
Now, the normalization of the TIFF image produces an output with 
values from 0 to 65535, so it is again divided by 255 to convert it into 
values between 0 and 255, as shown in Fig. 2. 

When saving the image, the output’s decimal data values are 
rounded to the nearest integer. This gives us the image intensity values 
that can be displayed on standard monitors and Android devices. As a 
result, the data can be saved as PNG images. This is done with entire 
dataset images, and TIFF files are converted to PNG files before being fed 
into the pipelines that will be used to train the model. This process is 
useful not only for training, but it also makes it easier to display the files 
in PNG format on Android OS-dependent devices. 

4.3. Lung parenchyma segmentation 

Lung parenchyma refers to the portion of the lungs that is involved in 
the gas transfer and includes alveoli, alveolar ducts, bronchioles, and 
other essential tissues. The esophagus, trachea, heart, lungs, diaphragm, 
thymus gland, aorta, spine, nerves, veins, and arteries are all imaged by 
the CT scan. Furthermore, the method proposed in this paper generates a 
heatmap only for detecting COVID-19 findings in the lungs. As a result, 
the region concerned with COVID-19 diagnosis is the lungs, and the rest 
organs must be segmented from the CT scan for a clear view of any 
COVID-19-related findings. An annotated image of the chest CT scan is 
shown in Fig. 3. This algorithm is proposed to resolve this complex 
orientation into a simpler view of the lungs. 

For a proper diagnosis, this segmentation algorithm takes out the 
region of the lungs parenchyma for a better view and analysis of the 
chest CT Image in an android device and magnifies it to image di-
mensions by a series of image processing operations. This segmented 
mask was used to augment the generated heatmap to show COVID-19 
affected regions in the lung parenchyma. This algorithm takes a con-
stant amount of time to run on an android device as compared to other 
approaches which use complex algorithms [39–43]. The chest CT scan 
uploaded by user on the application is read in form of bitmap with alpha, 

red, green, and blue channels. This is converted into an OpenCV 
n-dimensional array mat using the Utils package for Android. The mat 
image is still in ARGB form, is converted to grayscale. This conversion is 
necessary for further operations to take place. After converting the 
ARGB image to grayscale, the global thresholding algorithm, Otsu [44], 
is applied to get a binary image as shown in Fig. 4. A binary image has 
either white or black pixels, which determine the foreground and 
background, respectively. 

As the image is normalized during its conversion to PNG, the area 
representing lung parenchyma, diaphragm, and small other areas are 
highlighted in the images. Due to which the histogram of the image 
shows two clearly expressed peaks. The value which minimizes the 
weighted variance of these two clusters of the histogram is taken as the 
threshold value. 

The thresholded binary image is subjected to some morphological 
image processing operations in order to remove impurities from the 
foreground objects. Morphological opening with a 3 × 3 pixel kernel is 
performed on the binary output of the thresholding algorithm, which 
first dilates the image to remove the holes and impurities inside the 
foreground mask and then erodes it to keep the size of the foreground 
constant. Fig. 5(b) shows the outcome. The resulting foreground mask is 
filled with holes but does not cover the lung parenchyma boundary. To 
allow the foreground mask to cover the entire region, it is dilated twice 
more, as shown in Fig. 5(c). The resulting image is a binary mask with 
foreground pixels representing the lung parenchyma, diaphragm, and 
possibly 1–2 small findings. Contour detection is now used to segment 
the lung parenchyma from the binary mask. The contour finding func-
tion receives a binary mask as an input. A binary mask is provided as an 
input to the contour finding function. The function finds the complete 
contours of the foreground regions in the binary image along with the 
image’s border and makes a tree-like hierarchy. The output of the 
function is the list of all detected regions in the foreground. 

This list is iterated to find lung contours using a selection construct 
that checks each contour for the area and sorts out contours with areas 
less than 512 × 512 pixels and greater than 100 × 100 pixels. This 
iteration process chooses the lung parenchyma contour from a list, as 
shown in Fig. 6. The contour is then used to generate a binary mask that 
will be used to segment the lung parenchyma region from the CT image 
using the bitwise and operation. Finally, the segmented lung paren-
chyma from the CT scan is enlarged and displayed using a rectangle 
approximation from the detected contour. This enlarged view clearly 
shows the lung parenchyma, making it easier for radiologists to diagnose 
COVID-19. 

The asymptotic time complexity of the algorithm is O(1), which is 
big-O notation giving upper bound on the running time. Therefore, the 
algorithm takes constant time to run, which makes it best in case of time 
complexity. The algorithm in steps is provided in the supplementary 
material for this work. Implementation of this algorithm can be found at 
the code URL in the Data and Code Availability section. 

Fig. 2. The conversion process of TIFF image to PNG image using Min-Max normalization and further intensity leveling by division with 255 to make tonal values 
between 0 and 255. 
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4.4. Deep learning model architecture 

This section explains the different approaches used in this work to 
find the optimal architecture for the deep learning model. The hyper-
parameters in the neural network are wisely calculated by hit and trial 
along with some bilinear interpolation. The size and interim top layers 
of the model are also decided by training and testing the model on five 
folds of data and cross-validating it. Finally, all the determined and 
calculated parameters are used to train the model with all the data 
present in five folds. Results from various works are analyzed for the 
selection of the best deep learning architecture that must be used as a 
base model for transfer learning tasks. Resnet50V2 and EfficientNetB0 

deep neural architectures are observed to be best for the classification 
task of CT scans in to COVID and No-COVID images [45,46]. After 
changing the input layer in both the models to accept the grayscale 512 
× 512 pixels CT scan image, both the models are trained and evaluated 
on the five folds of data without any hyper-parameter optimization. This 
process is done to select one out of these two architectures for final 
training and optimization. Observing the results in Table 3, the Effi-
cientNetB0 outperforms the Resnet50V2 model in four out of five folds 
of the data. Further, the number of parameters in EfficientNet B0 is 5.3 
Million (Approx.), which is significantly less than Resnet50 V2 with 23 
Million params (Approx.). Being less in number of parameters and more 
accurate, EfficientnetB0 is very suitable for being ported to mobile 
devices. 

Hence, The deep learning model is built on the top of EfficientNetB0 
architecture. 

The EfficientnetB0 model was developed for three channels RGB 
image, so we make an input layer with our defined shape, i.e., 512 × 512 
pixels, and add the base as efficientnetB0 layers without including the 
top layers. The top layer is excluded in order to configure model output 
for two classes. After adding the Input layer and EfficientNetB0, a global 
average pooling layer is added on the top of the base of the classification 
model. The average of each of these feature maps is taken, and the vector 
which comes as result is fed directly into the dense layer with a dropout 
layer in between, as shown in Fig. 7. Now, to select proper dropout from 
0 to 1, the EfficientNet model is again passed through a test in which the 
same model is trained with different dropouts on the data, and the 
dropout of 0.3 is found to be optimum. For preventing the overfitting of 
the model, a dropout is placed and is experimentally verified to give 
better results in this case. 

Fig. 3. A CT image slice from the dataset shows the complex orientation of a regular CT image which makes the diagnosis difficult owing to stressed visibility of 
lungs parenchyma. 

Fig. 4. Image labeled (a) is the original CT image and image (b) is the result 
after Otsu thresholding is applied to the input image. 

Fig. 5. Image (a) is the otsu binarisation result and image (b) is the result when morphological opening operation is performed on (a) image, to remove impurities 
inside it. Image (c) is the result after dilating the (b) image, which have less number of holes inside lung parenchyma region. 
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The dense layer contains the softmax activation function, which 
further renders the final output of the classification model to two 
probabilities, the first value gives the probability of COVID-19 presence, 
and second value gives the probability of no COVID-19. 

The algorithm for development and training of the deep neural 
network is given in the supplementary material of this work. The 
implementation of the algorithm can be found at the code given in the 
Data and Code Availability section. 

4.5. Model training and testing 

Data from the dataset is organized into three data generators (i.e., 
train, test, and validation) which feed the data to the training algorithm 
of the model. The data from these generators are sent to the model in the 
form of batches. Each batch contains a fixed number of input data 
samples. The batch size used for train and validation generators is 10 
each, and for test generator is 20. The model is created using Keras ac-
cording to the specified architecture in section 4.4, and weights are 
initialized for the base layers as the Imagenet weights. Imagenet weights 
are weights of the EfficientNetB0 model after training it on the Imagenet 
dataset [47]. These weights are available from Keras itself. The opti-
mizer used for updating the neural network weights to minimize the cost 
function used in this work is Nesterov-accelerated Adaptive moment 
Estimation or Nadam with a learning rate of 0.0001 [48]. Optimizers 
help us in knowing, how to change weights of the model and learning 
rate to reduce the occurring loss in training process. Two callbacks are 
added before training the model for better accuracy these are, Early 
Stopping and Reduce Learning Rate on Plateau. Early stopping callback 
is monitored with the validation loss. If validation loss is not decreasing 
in 5 continuous epochs, the training is stopped by the callback, and 
epochs with the least validation loss are saved. This step is taken to 
prevent the model from overfitting the data and further analyze what 
can be done to better the model. Reduce Learning rate on the plateau is a 
callback that also monitors the validation loss and if it does not decrease 
in a fixed number of epochs which is 3 in this work, reduces the model 
learning rate by a constant factor F, which is 0.2 in the work. 

5. Android implementation 

This section explains the android implementation of the approach. 
Any requirement other than an Android device is not necessary ac-
cording to the implementation that has been used. The whole approach 
has been ported to the android application using the Android Studio. 
The algorithm for the implementation of the android features is avail-
able in the supplementary section and the related implementation with 
the codes can be found at the URL given in Data and Code Availability 
section. Further detailed explanations are listed in the given section. 

5.1. Re-scaling and grayscale conversion of CT image 

The input image is read in the form of an ARGB (Alpha, Red, Green, 
Blue) Bitmap by default, shown in Fig. 8 [49]. The uploaded image is 
checked for its dimensions, which, if not square in shape, is rejected and 
again prompted for input. This bitmap is processed with the Image 
processing module of the OpenCV library to convert it into a grayscale 
image with a single channel. This grayscale image is then resized into a 
512 × 512 pixels, which is used for further operations (see Fig. 9). 

The application activity prompts the user to submit the input as a CT 
image. After uploading is completed, a check is run on the input data to 
make it in a format acceptable by the further processes, including the 
segmentation algorithm and the neural network. 

5.2. Lung parenchyma segmentation 

For this stage, the processed input image is passed through the al-
gorithm explained in section 4.3. The image processing module of 
OpenCV is again put to use. The grayscale single-channel image in the 
form of a mat object is run through the application. This algorithm is 
processed on a worker thread without the main looper in order to pre-
vent it from interrupting or stopping the User Interface (UI) Thread. 
Message from the worker thread is used to indicate that the algorithm 
has processed the mat, and upon reception of the message, another 
routine call is made to the function which handles the inference gen-
eration from the original CT image as shown in Fig. 10. The process 
involves using the Imgproc module and core module of OpenCV 

Fig. 6. Image labeled (a) contains the detected contours drawn on the original 
CT. Image (b) shows the contour filled and is used for final mask generation of 
lung parenchyma. 

Table 3 
The training and testing results of ResNet50 V2 and EfficientNet B0 models on 
five folds data.  

Model Fold Training Accuracy Testing Accuracy 

ResNet50 V2 Fold 1 96.72 95.88 
EfficientNet B0 Fold 1 97.13 96.21 
ResNet50 V2 Fold 2 96.32 95.91 
EfficientNet B0 Fold 2 97.05 96.00 
ResNet50 V2 Fold 3 97.19 96.20 
EfficientNet B0 Fold 3 96.73 96.07 
ResNet50 V2 Fold 4 97.71 96.23 
EfficientNet B0 Fold 4 97.98 97.19 
ResNet50 V2 Fold 5 96.85 95.93 
EfficientNet B0 Fold 5 97.82 97.01  

Fig. 7. Finalized Architecture of the neural network, to be trained for detection 
of COVID-19 from PNG images of CT scans. The complete architecture of 
EfficientNetB0 is explained in supplementary section. 
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Software Development Kit (SDK) for implementation into the android 
application. 

5.3. Deployment of neural network and inference 

The trained model is deployed to the application for offline inference 
generation instead of relying on the web servers and API programming. 
As the inference is On-device, it ensures no concern for data privacy, and 
along with it, fast inference timings are recorded as no data is to be sent 
or received over the network. For getting the inference from the Neural 
Network API (NNAPI) of Android OS, the model file is to be bundled into 
the application. The trained model file is 45 Mb which must be reduced 
in size to be bundled into the Android Application Package (APK) as 
shown in Fig. 11. For this purpose, the model is converted into a 

Tensorflow lite flat buffer file (.tflite). With the use of Tensorflow lite, 
not only is the size-reduced, but the model is optimized for speed and 
latency on the edge devices, as shown in Table 4. The number of threads 
for the generation of inference are tested on multiple devices for optimal 
performance in terms of speed and processor efficiency. Starting from 2 
threads, the inference timings were reduced till 8 number of threads, but 
the reduction in timing between 6 and 8 number of threads was insig-
nificant for real-world so, the optimum number of threads for inference 
generation is chosen to be 6. 

5.4. Heatmap generation using selective approach and multi-threading 

For the generation of the heatmap and saving time and extra 
computation, gradient-free Class activation Maps (CAM) based 

Fig. 8. The pre-processing algorithm for input image through user before moving to inference generation.  

Fig. 9. Image (a) represents the Logo and Splash screen of CovCT Application. Image (b) Is the Home screen and (c) is the upload activity for accepting inputs 
from user. 
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visualization method Score-CAM is used [50]. Score-CAM is ported into 
android using Java in this work. For faster computations, N-Dimensional 
Arrays for Java are used. There are 320 activation maps coming as the 
output of the convolutional layer to be visualized. Each of these acti-
vation maps has the size 512 × 512 pixels. Processing all of these 320 

Fig. 10. The process of lung parenchyma segmentation takes place on a separate worker thread. The handler object is use to send and receive message from runnable 
highlighted in yellow and when the task is complete, the inference generation stage is called. 

Fig. 11. Graphical representation of deployment and inference generation steps in android application. The tflite model file is teh flatbuffer verison of trained model 
file and inference from this are generated using Java API of Tensorflow Lite which interacts with the Neural Network API of Android and processes the inputs. Input 
image after conversion to float array is passed to interpreter which process it. 

Table 4 
The inference timings on four different specification android devices for trained 
tensorflow model converted to flatbuffer.  

Device Inference Timing 
(4 Threads) 

Inference Timing 
(6 Threads) 

Inference Timing 
(8 Threads) 

Nokia 5.1 Plus 291 ms 273 ms 276 ms 
Xiaomi Note4 303 ms 270 ms 270 ms 
Samsung A 30 276 ms 253 ms 259 ms 
Samsung 

Galaxy S2 
312 ms 281 ms 282 ms  

Table 5 
The effect of multi-threading and selection approach on heatmap generation 
timings as tested on Xiaomi Note4 android device.  

Heatmap Generation Time (Seconds) Multi-threading Selection Approach 

950–1020 No No 
230–250 No Yes 
370–390 Yes No 
60–80 Yes Yes  
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activation maps by the Scorecam algorithm on the android OS takes 
600–700 s (Based on mobile performance), as shown in Table 5. This 
processing time is too much for the application to be in proper use. To 
reduce the processing time, a combination of selective approach and 
multi-threading is used, which significantly reduces the heatmap gen-
eration timings, as seen in Table 5. In the selective approach, the number 
of activation maps was decreased from 320 to 80 by selecting every 
fourth map starting from the first one, as shown in Fig. 12. This rendered 
the activation map quickly, compromising a very little clarity of the heat 
map. Choosing every fourth activation map was proven to give the best 
and clear results for forming the final heatmap with a reduction of about 
74% in heatmap generation timing. Initially the complexity of the 
heatmap generation process is θ(n), in which n is the required total 
number of operations. After the selection approach the complexity be-
comes θ(n/4), which is evident from the results in Table 5. Still, the 
processing time is not suitable for proper usage of the application, as 
visible from Table 5. So multi-threading comes in the role. 

Eight worker threads are initialized for processing approximately 9 
activation maps, which further reduces the time, as shown in Fig. 12. 
These threads are run parallel on the android operating system and 
maximize the use of resources and computation power. The threads are 
separate from the Main looper, which renders a clean working of the UI 
thread and keeps the worker thread in the background, reducing about 
59% of processing time. Hence, the total average case complexity of the 
algorithm is θ(n) which gets reduced to θ(n/4) using the selection 
approach and further using combination of multi-threading it is reduced 
to θ(n/10). Table 5 shows the experimental results after both the ap-
proaches are used together, resulting in a significant reduction of about 
92% in heatmap generation process timing. 

5.5. Augmentation of heatmap and gradient changing 

This stage involves the augmentation of the generated heatmap over 
the grayscale CT image segmented with the help of a binary mask. The 
generated heatmap is blended with the grayscale CT image. This 
blending operation takes place according to equation (2) 

h(x) = (1 − c) ∗ f (x) + c ∗ g(x) (2)  

where, f(x) and g(x) are the source images which are to be blended and h 
(x) is the final blended image. The c factor is the blending factor in the 
equation. After the blending is completed, the resultant image of 
blending operation is masked with help of the binary mask generated in 
lung segmentation process. This highlights the infected region only on 
lung parenchyma and is easy to observe by radiologists. For further 

analysis and highlighting the infected regions using different colors, an 
option for changing the hue of the resultant image is provided. 

A track bar is added for changing the colors in the resultant heatmap 
and helps to observe the infection in various colors easily. The 
augmented image is converted to the Hue, Saturation, and Value (HSV) 
color space. The value from the track bar is added to the hue channel by 
scalar addition for color change. An option to augment the heatmap on 
the original CT image is also provided, which replaces the masked image 
with a full CT image as visible in the image (b) of Fig. 13. 

6. Results and discussion 

6.1. Results 

Some of the results of our trained model are displayed in Fig. 14. 
These results are generated directly from the python scripts for a swift 
generation. The results generated from the CovCT android application 
are also the same (in both position and numerically) but may differ in 
the color schemes of the detected region in the heatmap. Being of 
importance in medical diagnosis, our results are also verified by two 
radiologists, which are discussed in the end of this section. The training 
of the model is performed on Google Collaboratory (URL: https://colab. 
research.google.com/?utm_source=scs-index) for an uninterrupted 
computing and GPU instance. The model is loaded with pre-trained 
weights on the Imagenet dataset, and transfer learning is done on the 
training dataset of CT scans. 

The training accuracy, validation accuracy, training loss, and vali-
dation loss are monitored at each epoch while training the model on CT 
scan data. The training accuracy is a fraction of correct classifications 
from a total number of classifications. It can also be said as the accuracy 
which a model would receive if applied on training data. While, the 
validation accuracy is the accuracy which model would receive if 
applied to data that is not used for training, therefore, validation data. 
The training accuracy in the first epoch itself went to 79.61%, which 
increased with each epoch. Fig. 15 shows the graph plotted for the 
training and validation accuracy of the model in blue and orange color 
respectively. It is observed that the training accuracy increased with 
each epoch and went to 99.62% in the fifteenth epoch. Validation ac-
curacy of the model kept on increasing from 73.34% in the first epoch to 
99.58% in the fifteenth epoch, as visible from the graph in Fig. 15. The 
training loss and validation loss are plotted using blue and orange lines 
in Fig. 16, respectively. It is observed that the training loss kept on 
decreasing till the 15th epoch to 2.11%. The validation loss is decreasing 
from 28.09% to 2.51%, the minimum at the 15th epoch, after which it 

Fig. 12. The representation of Selection and multi-threading approach for generation of Heatmap using ScoreCAM algorithm in Android Device. The background 
threads keep running without interrupting the Main (UI) thread. The combination of both approaches, reduce the processing time of heatmap significantly and gives 
an efficient use of CovCT application. 
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does not decrease further. The observance and the early stopping call-
backs saved the best-trained model from the 15th epoch, which has the 
best validation accuracy of 99.58% and the least validation loss of 
2.51%. 

The trained neural network is evaluated on a test partition of the 
dataset with 4532 images. 2282 images are from COVID-19 class and 

2250 images from normal patients. Taking the COVID-19 CT image as a 
positive result with class 0 and no-COVID as a negative result with class 
1, the model evaluation resulted in 2275 true positives (TP), 12 false 
positives (FP), 2238 true negatives (TN), and only 7 false negatives (FN) 
as seen through the confusion matrix in Fig. 17. Hence, 4513 images are 
correctly classified and 19 images are wrong classified. 

Fig. 13. Figure indicating the last steps of the process of COVID-19 detection from CT scans. (a) image is the processing stage of heatmap generation. (b) is the 
heatmap augmented over full CT image using linear blending. (c) is the segmented and augmented image using mask. 

Fig. 14. A sample of data given to radiologists for reviewing the results of our trained model. There are two original CT scans (a1) and (a2), the corresponding 
heatmaps for detected COVID-19 infection in lung parenchyma is seen in images (b1) and (b2) respectively. Further (c1) and (c2) are their augmented heatmap over 
original CT scans. 

A. Verma et al.                                                                                                                                                                                                                                  



Computers in Biology and Medicine 143 (2022) 105298

11

To detect the percentage of actual COVID-19 affected people detec-
ted correctly by the model, the sensitivity of the trained model is 
calculated. Sensitivity tells us what proportion of the positive class were 
correctly classified by our trained model. The sensitivity is also known as 
True Positive Rate (TPR) or Recall and it is calculated according to 
formula (3). The sensitivity of the model trained in this work comes out 
to be 99.69%. 

Sensitivity =
TP

TP + FN
(3) 

As another metric of performance, the specificity of the model is 
calculated which tells us about the proportion of the No-COVID samples 
which are correctly classified by our model. In other words, specificity 
also known as True Negative Rate (TNR) calculates the proportion of the 
negative class which correctly gets classified. It is calculated according 
to formula (4) and comes out to be 99.46%. 

Specificity =
TN

TN + FP
(4)  

The precision of the model is calculated in this work which tells the 
ability of a classification model to identify only the relevant samples out 
of all samples classified. This metric is calculated according to formula 

(5) and comes out to be 99.47%. 

Precision =
TP

TP + FP
(5) 

To summarize, the precision of the model is calculated to be 99.47% 
and a sensitivity of 99.69%. The testing accuracy and specificity of the 
model are 99.58 and 99.46, respectively. The whole summary of testing 
the model on all five folds of testing unseen data is presented in Table 6. 
This concludes that the model is very accurate and efficient while 
classifying the CT scans into COVID and No-COVID classes. 

In this work the confidence intervals are also calculated which pro-
vides the upper and lower bounds between which our model accuracy 
can vary. The selection of a particular confidence level for an interval 
determines the probability that the interval will contain the true accu-
racy of the model. The confidence intervals for our trained classifier are 
shown in Table 7 which are calculated according to formula (6). 

confidence interval = acc ± intervalradius

intervalradius = z ∗
̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅̅
acc ∗ (1 − acc)

n

√

where,

z = Number of standard deviations

acc = Accuracy,

n = size of sample

(6) 

Three confidence intervals are calculated at 90%, 95%, and 99% for 
which the number of standard deviations from the Gaussian distribution 
is 1.64, 1.96, 2.58 along with different sizes of samples from the 

Fig. 15. A graphical representation of training and validation accuracy of the 
deep learning model after training. The x-axis represents the training epochs 
and y-axis, the accuracy on a scale of 0–1. 

Fig. 16. A graphical representation of training and validation loss of the deep 
learning model. The x-axis represents the epochs and the x-axis represents the 
loss on a scale of 0–1. 

Fig. 17. Confusion Matrix plotted on the result of testing the trained model 
with the test partition of dataset containing 4532 images. 

Table 6 
The summary of testing the model on five folds of unseen testing data with total 
4532 images. The average row shows the average of result of all five folds of 
data.  

Fold Performance Metrics (%) 

Accuracy Specificity Sensitivity Precision F1 

1 99.12 98.88 99.35 98.92 99.13 
2 99.67 99.33 100.0 99.35 99.67 
3 99.55 99.33 99.77 99.33 99.55 
4 99.88 99.77 100.0 99.78 99.89 
5 99.66 100.0 99.33 100.0 99.66 
Avg. 99.58 99.46 99.69 99.47 99.58  
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validation dataset. The various size of sample is whole validation 
dataset, 1000 and 100 observations. The confidence interval at each cell 
in Table 7 covers the true classification accuracy of the trained model on 
validation dataset, which is unseen data to the model. 

A Receiver Operating Characteristic (ROC) curve is plotted for the 
trained model. ROC is a graphic plot that demonstrates the diagnostic 
ability of a binary classifier system. In this graph the TPR is plotted 
against the FPR at various values of classifier thresholds. As our task is 
binary classification, ROC is plotted, and the respective Area Under 
Curve (AUC) is shown on the graph itself in Fig. 18. The AUC is the 
percentage of area under the ROC curve on a scale of 0–1. The more the 
AUC, the more the ability of the model to distinguish between positive 
and negative classes. Here, in our case the AUC is 0.999843, which 
shows that our model is highly able to distinguish COVID-19 from 
normal cases in CT scans and is an excellent classifier. Along with this, 
the model is working efficiently with the PNG images, which do not have 
features as clear as in TIFF images. The model is ported to an android 

application and is performing with brilliance on devices with no bugs. 
The heatmap generation timing range from 60 to 80 s, which is based on 
the device performance. 

Two cardiothoracic trained radiologists reviewed the results of our 
trained model. They found the model to be very sensitive and accurate in 
detecting ground glass opacities (GGOs). The primary false positives 
were due to detecting ground glass opacities from non-COVID-19 causes 
such as pulmonary edema and partially collapsed airspaces. Given the 
high sensitivity, this could be beneficial in high volume practices and/or 
resource-poor settings where this application can mitigate delays in 
diagnosing and triaging. 

6.2. Discussion 

This work proposed the development of a novel AI-driven android 
application that can not only detect COVID-19 from chest CT scans with 
very high accuracy and sensitivity but also identify the regions affected 
by the COVID-19 infection in the lungs. This proposed application is the 
only work that uses color gradients and visualization algorithms to mark 
the regions of COVID-19 infection in the lung parenchyma. The classi-
fication accuracy of the trained AI model is found to be 99.58% along 
with a combination of very few parameters. This combination makes the 
model file and application installation package very lightweight and 
proven to give the best results as compared to the other works in COVID- 
19 detection from CT scans. The visualization results for COVID-19 
infection, of the application, are also verified through two cardiotho-
racic radiologists who find the application to be a very useful and ac-
curate tool for the doctors to be used in mass settings. At the start of the 
application, the lung parenchyma is also segmented through a robust, 
swift, and novel image processing algorithm which helps in better 
envisioning CT scan and understanding of infection heatmap which is 
augmented over this segmented parenchyma. As the CT scans are of high 
resolution, the processing time for the heatmap generation from the 
neural network layers is very long and impractical. To reduce the pro-
cessing time for generating heatmaps, a novel approach combining se-
lection criteria and multi-threading is proposed which is successful in 
reducing the processing time up to 93% and making the process 
extremely fast. 

The android application is practical due to its high accuracy, speci-
ficity, portability, and easy user interface. There is no need for any 
exceptional environment created by the user to utilize the application’s 
capabilities. While the algorithm may lead to very few false positive or 
false negative results, it should serve as a useful tool for healthcare 
workers to identify patients with COVID-19. While some other studies 
have classified COVID-19 from chest CT scans with good accuracy and 
specificity, in many works results were not verified by a physician or 
radiologist. 

Sedik A. et al. propose CNN and ConvLSTM models for detection of 
COVID-19 from Chest CT and X-Ray images. They use a total of 3000 
image datasets in which they have combined both CT and X-Ray images, 
which is very less when compared to the dataset used in this work. Also, 
there is no verification of their results from any doctor or radiologist. 
Their proposed modalities are not deployed to any application for use. 
The metrics reported by them are tested on part of augmented data 
which is not generalized and their model seem to perform poorly in 
some settings owing to its overfitting, as marked by its authors [51]. 
Another study [52] in the same domain, tries to improve the accuracy 
and performance of CNN and convLSTM by proposing a data augmen-
tation framework. They use generative networks and transformations to 
augment the dataset up to 100% and the highest accuracy and F1 score 
of data augmented deep learning models they achieve is 99% along with 
the highest specificity of 98.7%. Our proposed work outperforms their 
approach as can be seen from the results. Also, this work does not rely on 
generative networks for data augmentation as medical data is crucial, 
and using artificially synthesized data to structure the deep neural 
network for COVID-19 detection may prove detrimental in practical 

Table 7 
Confidence intervals on various number of observations for accuracy of trained 
model in this work.  

Confidence Number of Observations 

4532 1000 100 

90% 99.43–99.73 99.25–99.91 95.58–100 
95% 99.39–99.76 99.18–99.98 98.32–100 
99% 99.33–99.82 99.05–100 97.91–100  

Fig. 18. Top figure represents the ROC curve of the trained model generated 
with the test data as input. The bottom image is the enlarged view of the 
top image. 
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settings. Our algorithm has an accuracy of 99.58% and specificity of 
99.46% and outlines regions of the COVID-19 presence in the lung pa-
renchyma using heatmaps for easier visualization and verified by radi-
ologists. Also in the domain of COVID-19 detection from CT scans using 
transfer learning methods, our work proves to be more accurate, effi-
cient and of more utility than other works [19,25–29]. Our application is 
also convenient due to its portable nature. It can reach every part of the 
globe, helping many doctors and radiologists in the diagnosis of 
COVID-19. 

As future research, percent lung involvement can be quantified and 
help grade patients on severity of disease. Along with this segmentation, 
better accuracy and mass data adaptation are the areas where more 
research work can be contributed. An interesting follow-up project 
would be to see which of these patients developed progressive lung 
damage and fibrosis on follow up CT scans. By reviewing this data using 
AI, we can identify patients at higher risk and alter treatment plans 
accordingly. 

7. Conclusion 

The CovCT Application is developed with a very accurate neural 
network at its base and various techniques applied for its smooth and 

fast working in this work. The neural network is trained and tested on a 
vast and balanced dataset of CT images and found to be more accurate 
and having less number of parameters than other works in the domain. 
Another feature of the application is the lung parenchyma segmentation 
which is deployed to it using the proposed novel and low-cost algorithm 
running in O(1), constant time. The lung parenchyma segmentation 
removes the outer parts of the lungs and works robustly as tested on the 
dataset. Following the classification on CT image, heatmap is also 
generated to depict the areas in which COVID-19 infection may be 
present in the lungs. This heatmap is augmented over the segmented 
part of the lungs which gives a clear view of the infection heatmap. A 
novel approach for the reduction in heatmap generation timing is 
developed and tested which is successful in reducing running time 
complexity from θ(n) to θ(n/10). The results of the heatmap are also 
verified by expert cardiothoracic radiologists. 

This work has proposed three novel contributions which are, one of 
its kind CovCT application with an exceptionally accurate and most 
lightweight deep neural network, low cost and swift lung parenchyma 
segmentation algorithm, and the combination of selection approach 
with multi-threading to reduce the timing of heatmap generation of 
mobile phone device. 

To analyze the performance of the CovCT application eight different 

Fig. 19. Analysis of Application’s segmentation algorithm and deep neural network of eight typical different lung visibility cases from different patients of COVID-19 
where in the first case (a1) and second case (a2), lung parenchyma is fully visible, third case (a3) have a blur in upper part of right lung. Fourth case (a4) shows the 
lung parenchyma with one lung inflated. Fifth case (a5) is the CT scan with right lung having an organ view in right lung. (a6) image shows right lung inflated, 
seventh case (a7) shows both lungs partially visible in the image due to inflation. In eight case (a8) again both lungs are inflated and parenchyma is slightly visible. 
The (b) images are corresponding extracted lungs for each case and (c) images are output with highlighted regions showing COVID-19 related findings using 
neural network. 
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typical cases of lung parenchyma visibility in CT scans from different 
patients are taken and processed, results are in Fig. 19. In (a1) and (a2) 
Image of Fig. 19, both the lung regions are clearly visible in the CT scan, 
which is processed efficiently and perfectly by the segmentation algo-
rithm as seen in (b1) and (b2), and further (c1) and (c2) are the results of 
augmentation of heatmap on segmented lungs in which pink shades are 
representing the COVID-19 affected region. In (a3) image, there is a blur 
region present in the right lung; still, the segmentation algorithm per-
forms well and segments the lung parenchyma carefully, as seen from 
resulting image (b3). In images (a4) and (a5), the right lung is seen with 
a portion of liver in the CT scan image. Our segmentation algorithm 
clearly segments the lung from surrounding structures, as seen in results 
(b4) and (b5) respectively, further the deep learned model also treats 
that structure as an organ, not opacification, which can be seen in image 
result (c4) and (c5). In image (a6) one lung is partially visible for the 
high opacification in lung parenchyma due to parenchyma structures. 
The prediction of the deep learning model carefully judges the region of 
COVID-19 infection as seen in the resulting image (c6). The structures 
are not taken as COVID-19 related findings. In image (a7), both the lungs 
are partially visible. Still, they are processed equally well by the seg-
mentation algorithm, as visible from the result (b7). Further, the deep 
learning model can also detect the affected region in this small portion, 
as seen in image (c7). The test case (a8) is of minimal lung parenchyma 
visibility and a complex case where the majority of the image contains 
non-lung structures. The segmentation algorithm does not get confused 
at any point and segments the parenchyma without mixing it with 
muscles and fat, as seen in the result (b8). Further, the neural network 
also judges the opacification and does not get confused due to other 
structures, visible through the result (c8). This analysis of the CT scans 
shows that both, the segmentation algorithm and the neural network 
perform accurately and efficiently on CT images, including those CT 
images which do not contain majority lung parenchyma. Hence, the 
application is not only a theoretical research work but a pragmatic 
application of verified research which can prove beneficial in mass 
screening of COVID-19 patients whenever needed. 

Data and Code Availability 

For interested scholars and researchers who wish to use this work for 
education, research, and improvement purposes, we have maintained an 
open-source repository containing the codes of the CovCT android 
application and the deep learning scripts used to train and test the 
model. The repository contains the implementation of all the novel al-
gorithms proposed in the work. The repositories mentioned in this sec-
tion contain the python implementation of algorithms and also the Java 
implementation of all algorithms in application development. The re-
pository contains code files, trained models, deep learning results, and 
an android application package (APK). A demonstration video is also 
provided in the repository, along with the android test results. A readme 
file is embedded into the repository along with the history of whole 
version control using git. The repository is located at application code 
and results https://github.com/monjoybme/CovCT_application. Along 
with it a repository for available datasets and resource code files for 
processing the data is available at pre-processing code repositoryhttps 
://github.com/monjoybme/CovCT. For researchers and scholars who 
wish to use and get insights from the dataset we used in this work, the 
authors of the dataset have maintained a well-explained repository 
having all data and its reports. It can be reached out to data repository 
link https://github.com/mr7495/COVID-CTset. 

Declaration of competing interest 

The authors declare no conflict of interest. 

Acknowledgement 

Aryan Verma would like to thank Google Summer of Code (GSoC) 
2021 program for funding the work and the organization, Department of 
Biomedical Informatics, Emory School of Medicine for selecting him as a 
GSoC student and providing constant support, guidance and mentoring 
for the work. The details of the organization and work done under GSoC 
can be explored at https://summerofcode.withgoogle.com/archive/20 
21/projects/6468381577838592/ 

Appendix A. Supplementary data 

Supplementary data to this article can be found online at https://doi. 
org/10.1016/j.compbiomed.2022.105298. 

References 

[1] C.-C. Lai, T.-P. Shih, W.-C. Ko, H.-J. Tang, P.-R. Hsueh, Severe acute respiratory 
syndrome coronavirus 2 (SARS-CoV-2) and coronavirus disease-2019 (COVID-19): 
the epidemic and the challenges, Int. J. Antimicrob. Agents 55 (2020) 105924, 
https://doi.org/10.1016/j.ijantimicag.2020.105924. 

[2] G.D. Rubin, C.J. Ryerson, L.B. Haramati, N. Sverzellati, J.P. Kanne, S. Raoof, N. 
W. Schluger, A. Volpi, J.-J. Yim, I.B. Martin, et al., The role of chest imaging in 
patient management during the covid-19 pandemic: a multinational consensus 
statement from the fleischner society, Radiology 296 (2020) 172–180. 

[3] M.D. Hope, C.A. Raptis, T.S. Henry, Chest Computed Tomography for Detection of 
Coronavirus Disease 2019 (Covid-19): Don’t Rush the Science, 2020, https://doi. 
org/10.7326/M20-1382. 

[4] T. Ai, Z. Yang, H. Hou, C. Zhan, C. Chen, W. Lv, Q. Tao, Z. Sun, L. Xia, Correlation 
of chest ct and rt-pcr testing for coronavirus disease 2019 (covid-19) in China: a 
report of 1014 cases, Radiology 296 (2020) E32–E40. 

[5] C. Long, H. Xu, Q. Shen, X. Zhang, B. Fan, C. Wang, B. Zeng, Z. Li, X. Li, H. Li, 
Diagnosis of the coronavirus disease (covid-19): rrt-pcr or ct? Eur. J. Radiol. 126 
(2020) 108961. 

[6] J.P. Kanne, Chest Ct Findings in 2019 Novel Coronavirus (2019-ncov) Infections 
from Wuhan, china: Key Points for the Radiologist, 2020. 

[7] M. Saha, S.B. Amin, A. Sharma, T.S. Kumar, R.K. Kalia, AI-driven Quantification of 
Ground Glass Opacities in Lungs of Covid-19 Patients Using 3d Computed 
Tomography Imaging, medRxiv: the Preprint Server for Health Sciences, 2021, 
https://doi.org/10.1101/2021.07.06.21260109. 

[8] M. Chung, A. Bernheim, X. Mei, N. Zhang, M. Huang, X. Zeng, J. Cui, W. Xu, 
Y. Yang, Z. Fayad, et al., Ct Imaging Features of 2019 Novel Coronavirus (2019- 
ncov) Radiology, 2020 apr vol. 295, 2020, pp. 202–207, https://doi.org/10.1148/ 
radiol.2020200230, 110.1148/radiol. 2020200230. 

[9] L. Huang, R. Han, T. Ai, P. Yu, H. Kang, Q. Tao, L. Xia, Serial quantitative chest ct 
assessment of covid-19: a deep learning approach, Radiology: Cardiothorac. 
Imaging 2 (2020), e200075. 

[10] Y. Qiu, Y. Liu, S. Li, J. Xu, Miniseg: an Extremely Minimum Network for Efficient 
Covid-19 Segmentation, 2020, 09750 arXiv preprint arXiv:2004. 

[11] L. Li, L. Qin, Z. Xu, Y. Yin, X. Wang, B. Kong, J. Bai, Y. Lu, Z. Fang, Q. Song, et al., 
Using artificial intelligence to detect covid-19 and community-acquired pneumonia 
based on pulmonary ct: evaluation of the diagnostic accuracy, Radiology 296 
(2020) E65–E71. 

[12] J. Chen, L. Wu, J. Zhang, L. Zhang, D. Gong, Y. Zhao, Q. Chen, S. Huang, M. Yang, 
X. Yang, et al., Deep learning-based model for detecting 2019 novel coronavirus 
pneumonia on high-resolution computed tomography, Sci. Rep. 10 (2020) 1–11. 

[13] X. Xu, X. Jiang, C. Ma, P. Du, X. Li, S. Lv, L. Yu, Q. Ni, Y. Chen, J. Su, et al., A deep 
learning system to screen novel coronavirus disease 2019 pneumonia, Engineering 
6 (2020) 1122–1129. 

[14] P. Silva, E. Luz, G. Silva, G. Moreira, R. Silva, D. Lucio, D. Menotti, Covid-19 
detection in ct images with deep learning: a voting-based scheme and cross- 
datasets analysis, Inform. Med. Unlocked 20 (2020) 100427. 

[15] A.M. Sebdani, A. Mostafavi, Medical image processing and deep learning to 
diagnose covid-19 with ct images, in: 2021 5th International Conference on Pattern 
Recognition and Image Analysis (IPRIA), IEEE, 2021, pp. 1–6, https://doi.org/ 
10.1109/IPRIA53572.2021.9483563. 

[16] M.A. Elaziz, K.M. Hosny, A. Salah, M.M. Darwish, S. Lu, A.T. Sahlol, New machine 
learning method for image-based diagnosis of covid-19, PLoS One 15 (2020), 
e0235187. 

[17] N. Gianchandani, A. Jaiswal, D. Singh, V. Kumar, M. Kaur, Rapid covid-19 
diagnosis using ensemble deep transfer learning models from chest radiographic 
images, J. Ambient Intell. Hum. Comput. (2020) 1–13. 

[18] M. Hasan, M. Alam, M. Elahi, E. Toufick, S. Roy, S.R. Wahid, et al., Cvr-net: A Deep 
Convolutional Neural Network for Coronavirus Recognition from Chest 
Radiography Images, 2020 arXiv preprint arXiv:2007.11993. 

[19] M.Z. Alom, M. Rahman, M.S. Nasrin, T.M. Taha, V.K. Asari, Covid_mtnet: Covid-19 
Detection with Multi-Task Deep Learning Approaches, 2020, 03747 arXiv preprint 
arXiv:2004. 

[20] R. Hu, G. Ruan, S. Xiang, M. Huang, Q. Liang, J. Li, Automated Diagnosis of Covid- 
19 Using Deep Learning and Data Augmentation on Chest Ct, medRxiv, 2020. 

A. Verma et al.                                                                                                                                                                                                                                  

https://github.com/monjoybme/CovCT_application
https://github.com/monjoybme/CovCT
https://github.com/monjoybme/CovCT
https://github.com/mr7495/COVID-CTset
https://summerofcode.withgoogle.com/archive/2021/projects/6468381577838592/
https://summerofcode.withgoogle.com/archive/2021/projects/6468381577838592/
https://doi.org/10.1016/j.compbiomed.2022.105298
https://doi.org/10.1016/j.compbiomed.2022.105298
https://doi.org/10.1016/j.ijantimicag.2020.105924
http://refhub.elsevier.com/S0010-4825(22)00090-7/sref2
http://refhub.elsevier.com/S0010-4825(22)00090-7/sref2
http://refhub.elsevier.com/S0010-4825(22)00090-7/sref2
http://refhub.elsevier.com/S0010-4825(22)00090-7/sref2
https://doi.org/10.7326/M20-1382
https://doi.org/10.7326/M20-1382
http://refhub.elsevier.com/S0010-4825(22)00090-7/sref4
http://refhub.elsevier.com/S0010-4825(22)00090-7/sref4
http://refhub.elsevier.com/S0010-4825(22)00090-7/sref4
http://refhub.elsevier.com/S0010-4825(22)00090-7/sref5
http://refhub.elsevier.com/S0010-4825(22)00090-7/sref5
http://refhub.elsevier.com/S0010-4825(22)00090-7/sref5
http://refhub.elsevier.com/S0010-4825(22)00090-7/sref6
http://refhub.elsevier.com/S0010-4825(22)00090-7/sref6
https://doi.org/10.1101/2021.07.06.21260109
https://doi.org/10.1148/radiol.2020200230
https://doi.org/10.1148/radiol.2020200230
http://refhub.elsevier.com/S0010-4825(22)00090-7/sref9
http://refhub.elsevier.com/S0010-4825(22)00090-7/sref9
http://refhub.elsevier.com/S0010-4825(22)00090-7/sref9
http://refhub.elsevier.com/S0010-4825(22)00090-7/sref10
http://refhub.elsevier.com/S0010-4825(22)00090-7/sref10
http://refhub.elsevier.com/S0010-4825(22)00090-7/sref11
http://refhub.elsevier.com/S0010-4825(22)00090-7/sref11
http://refhub.elsevier.com/S0010-4825(22)00090-7/sref11
http://refhub.elsevier.com/S0010-4825(22)00090-7/sref11
http://refhub.elsevier.com/S0010-4825(22)00090-7/sref12
http://refhub.elsevier.com/S0010-4825(22)00090-7/sref12
http://refhub.elsevier.com/S0010-4825(22)00090-7/sref12
http://refhub.elsevier.com/S0010-4825(22)00090-7/sref13
http://refhub.elsevier.com/S0010-4825(22)00090-7/sref13
http://refhub.elsevier.com/S0010-4825(22)00090-7/sref13
http://refhub.elsevier.com/S0010-4825(22)00090-7/sref14
http://refhub.elsevier.com/S0010-4825(22)00090-7/sref14
http://refhub.elsevier.com/S0010-4825(22)00090-7/sref14
https://doi.org/10.1109/IPRIA53572.2021.9483563
https://doi.org/10.1109/IPRIA53572.2021.9483563
http://refhub.elsevier.com/S0010-4825(22)00090-7/sref16
http://refhub.elsevier.com/S0010-4825(22)00090-7/sref16
http://refhub.elsevier.com/S0010-4825(22)00090-7/sref16
http://refhub.elsevier.com/S0010-4825(22)00090-7/sref17
http://refhub.elsevier.com/S0010-4825(22)00090-7/sref17
http://refhub.elsevier.com/S0010-4825(22)00090-7/sref17
http://refhub.elsevier.com/S0010-4825(22)00090-7/sref18
http://refhub.elsevier.com/S0010-4825(22)00090-7/sref18
http://refhub.elsevier.com/S0010-4825(22)00090-7/sref18
http://refhub.elsevier.com/S0010-4825(22)00090-7/sref19
http://refhub.elsevier.com/S0010-4825(22)00090-7/sref19
http://refhub.elsevier.com/S0010-4825(22)00090-7/sref19
http://refhub.elsevier.com/S0010-4825(22)00090-7/sref20
http://refhub.elsevier.com/S0010-4825(22)00090-7/sref20


Computers in Biology and Medicine 143 (2022) 105298

15

[21] S.H. Kassania, P.H. Kassanib, M.J. Wesolowskic, K.A. Schneidera, R. Detersa, 
Automatic detection of coronavirus disease (covid-19) in x-ray and ct images: a 
machine learning based approach, Biocybernet. Biomed. Eng. 41 (2021) 867–879. 

[22] B. Liu, X. Gao, M. He, L. Liu, G. Yin, A fast online covid-19 diagnostic system with 
chest ct scans, in: Proceedings of KDD, vol. 2020, 2020. 

[23] O. Gozes, M. Frid-Adar, H. Greenspan, P.D. Browning, H. Zhang, W. Ji, 
A. Bernheim, E. Siegel, Rapid Ai Development Cycle for the Coronavirus (Covid-19) 
Pandemic: Initial Results for Automated Detection & Patient Monitoring Using 
Deep Learning Ct Image Analysis, 2020, 05037 arXiv preprint arXiv:2003. 

[24] Q. Ni, Z.Y. Sun, L. Qi, W. Chen, Y. Yang, L. Wang, X. Zhang, L. Yang, Y. Fang, 
Z. Xing, et al., A deep learning approach to characterize 2019 coronavirus disease 
(covid-19) pneumonia in chest ct images, Eur. Radiol. 30 (2020) 6517–6527. 

[25] S. Ahuja, B.K. Panigrahi, N. Dey, V. Rajinikanth, T.K. Gandhi, Deep transfer 
learning-based automated detection of covid-19 from lung ct scan slices, Appl. 
Intell. 51 (2021) 571–585. 

[26] L. Brunese, F. Martinelli, F. Mercaldo, A. Santone, Machine learning for 
coronavirus covid-19 detection from chest x-rays, Procedia Comput. Sci. 176 
(2020) 2212–2221. 

[27] A. Jaiswal, N. Gianchandani, D. Singh, V. Kumar, M. Kaur, Classification of the 
covid-19 infected patients using densenet201 based deep transfer learning, 
J. Biomol. Struct. Dyn. (2020) 1–8. 

[28] T. Anwar, S. Zakir, Deep learning based diagnosis of covid-19 using chest ct-scan 
images, in: 2020 IEEE 23rd International Multitopic Conference (INMIC), 2020, 
pp. 1–5, https://doi.org/10.1109/INMIC50486.2020.9318212. IEEE. 

[29] T. Ozturk, M. Talo, et al., Automated detection of covid-19 cases using deep neural 
networks with x-ray images, Comput. Biol. Med. (2020) 103792, https://doi.org/ 
10.1016/j.compbiomed.2020.103792. 

[30] H. Mukherjee, S. Ghosh, A. Dhar, S.M. Obaidullah, K. Santosh, K. Roy, Deep neural 
network to detect covid-19: one architecture for both ct scans and chest x-rays, 
Appl. Intell. 51 (2021) 2777–2789. 

[31] D. Al-Karawi, S. Al-Zaidi, N. Polus, S. Jassim, Machine Learning Analysis of Chest 
Ct Scan Images as a Complementary Digital Test of Coronavirus (Covid-19) 
Patients, MedRxiv, 2020. 

[32] N. Paluru, A. Dayal, H.B. Jenssen, T. Sakinis, L.R. Cenkeramaddi, J. Prakash, P. 
K. Yalavarthy, Anam-net: anamorphic depth embedding-based lightweight cnn for 
segmentation of anomalies in covid-19 chest ct images, IEEE Transact. Neural 
Networks Learn. Syst. 32 (2021) 932–946. 

[33] H. Alshazly, C. Linse, E. Barth, T. Martinetz, Explainable covid-19 detection using 
chest ct scans and deep learning, Sensors 21 (2021) 455. 

[34] N. Basantwani, A. Kumar, S. Gangwar, A. Olkha, G. Mathur, et al., Covid-19 
detection android app based on chest x-rays & ct scans, INFOCOMP J. Comput. Sci. 
20 (2021). 

[35] M. Hammad, A.M. Iliyasu, A. Subasi, E.S.L. Ho, A.A.A. El-Latif, A multitier deep 
learning model for arrhythmia detection, IEEE Trans. Instrum. Meas. 70 (2021) 
1–9, https://doi.org/10.1109/TIM.2020.3033072. 

[36] M. Hammad, M.H. Alkinani, B.B. Gupta, A.A.A. El-Latif, Myocardial infarction 
detection based on deep neural network on imbalanced data, Multimed. Syst. 
(2021), https://doi.org/10.1007/s00530-020-00728-8. 

[37] M. Rahimzadeh, A. Attar, S.M. Sakhaei, A fully automated deep learning-based 
network for detecting covid-19 from a new and large lung ct scan dataset, Biomed. 
Signal Process Control 68 (2021) 102588. 

[38] J. Han, J. Pei, M. Kamber, Data Mining: Concepts and Techniques, Elsevier, 2011. 
[39] Y. Wei, G. Shen, J.-j. Li, A fully automatic method for lung parenchyma 

segmentation and repairing, J. Digit. Imag. 26 (2013) 483–495. 
[40] S. Armato III, H. MacMahon, Automated lung segmentation and computer-aided 

diagnosis for thoracic ct scans, in: International Congress Series, vol. 1256, 
Elsevier, 2003, pp. 977–982, https://doi.org/10.1016/S0531-5131(03)00388-1. 

[41] S. Tan, Segmentationoflunglesionson CT scans using watershed, active contours, 
and Markov randomfield, Med. Phys. 40 (2013), 043502, https://doi.org/ 
10.1118/1.4793409. 

[42] G. De Nunzio, E. Tommasi, A. Agrusti, R. Cataldo, I. De Mitri, M. Favetta, S. Maglio, 
A. Massafra, M. Quarta, M. Torsello, et al., Automatic lung segmentation in ct 
images with accurate handling of the hilar region, J. Digit. Imag. 24 (2011) 11–27, 
https://doi.org/10.1007/s10278-009-9229-1. 

[43] J. Lai, Q. Wei, Automatic lung fields segmentation in ct scans using morphological 
operation and anatomical information, Bio Med. Mater. Eng. 24 (2014) 335–340. 

[44] N. Otsu, A threshold selection method from gray-level histograms, in: IEEE 
transactions on systems, man, and cybernetics 25, 2006, 417–4. 

[45] K. He, X. Zhang, S. Ren, J. Sun, Deep residual learning for image recognition, in: 
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, 
2016, pp. 770–778. 

[46] M. Tan, Q. Le, Efficientnet: rethinking model scaling for convolutional neural 
networks, in: International Conference on Machine Learning, PMLR, 2019, 
pp. 6105–6114. 

[47] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, L. Fei-Fei, Imagenet: a large-scale 
hierarchical image database, in: 2009 IEEE Conference on Computer Vision and 
Pattern Recognition, 2009, pp. 248–255, https://doi.org/10.1109/ 
CVPR.2009.5206848. 

[48] D.P. Kingma, J. Ba, Adam: A Method for Stochastic Optimization, arXiv e-prints, 
2014 arXiv:1412.6980. 

[49] Handling Bitmaps android developers, URL: https://developer.android.com/top 
ic/performance/graphics, 2021, 21-10-07. 

[50] H. Wang, Z. Wang, M. Du, F. Yang, Z. Zhang, S. Ding, P. Mardziel, X. Hu, Score- 
CAM: Score-Weighted Visual Explanations for Convolutional Neural Networks, 
arXiv e-prints, 2019 arXiv:1910.01279. 

[51] A. Sedik, M. Hammad, F.E. Abd El-Samie, B.B. Gupta, A.A. Abd El-Latif, Efficient 
deep learning approach for augmented detection of coronavirus disease, Neural 
Comput. Appl. (2021) 1–18, https://doi.org/10.1007/s00521-020-05410-8. 

[52] A. Sedik, A.M. Iliyasu, A. El-Rahiem, M.E. Abdel Samea, A. Abdel-Raheem, 
M. Hammad, J. Peng, A. El-Samie, E. Fathi, A. El-Latif, et al., Deploying machine 
and deep learning models for efficient data-augmented detection of covid-19 
infections, Viruses 12 (2020) 769, https://doi.org/10.3390/v12070769. 

A. Verma et al.                                                                                                                                                                                                                                  

http://refhub.elsevier.com/S0010-4825(22)00090-7/sref21
http://refhub.elsevier.com/S0010-4825(22)00090-7/sref21
http://refhub.elsevier.com/S0010-4825(22)00090-7/sref21
http://refhub.elsevier.com/S0010-4825(22)00090-7/sref22
http://refhub.elsevier.com/S0010-4825(22)00090-7/sref22
http://refhub.elsevier.com/S0010-4825(22)00090-7/sref23
http://refhub.elsevier.com/S0010-4825(22)00090-7/sref23
http://refhub.elsevier.com/S0010-4825(22)00090-7/sref23
http://refhub.elsevier.com/S0010-4825(22)00090-7/sref23
http://refhub.elsevier.com/S0010-4825(22)00090-7/sref24
http://refhub.elsevier.com/S0010-4825(22)00090-7/sref24
http://refhub.elsevier.com/S0010-4825(22)00090-7/sref24
http://refhub.elsevier.com/S0010-4825(22)00090-7/sref25
http://refhub.elsevier.com/S0010-4825(22)00090-7/sref25
http://refhub.elsevier.com/S0010-4825(22)00090-7/sref25
http://refhub.elsevier.com/S0010-4825(22)00090-7/sref26
http://refhub.elsevier.com/S0010-4825(22)00090-7/sref26
http://refhub.elsevier.com/S0010-4825(22)00090-7/sref26
http://refhub.elsevier.com/S0010-4825(22)00090-7/sref27
http://refhub.elsevier.com/S0010-4825(22)00090-7/sref27
http://refhub.elsevier.com/S0010-4825(22)00090-7/sref27
https://doi.org/10.1109/INMIC50486.2020.9318212
https://doi.org/10.1016/j.compbiomed.2020.103792
https://doi.org/10.1016/j.compbiomed.2020.103792
http://refhub.elsevier.com/S0010-4825(22)00090-7/sref30
http://refhub.elsevier.com/S0010-4825(22)00090-7/sref30
http://refhub.elsevier.com/S0010-4825(22)00090-7/sref30
http://refhub.elsevier.com/S0010-4825(22)00090-7/sref31
http://refhub.elsevier.com/S0010-4825(22)00090-7/sref31
http://refhub.elsevier.com/S0010-4825(22)00090-7/sref31
http://refhub.elsevier.com/S0010-4825(22)00090-7/sref32
http://refhub.elsevier.com/S0010-4825(22)00090-7/sref32
http://refhub.elsevier.com/S0010-4825(22)00090-7/sref32
http://refhub.elsevier.com/S0010-4825(22)00090-7/sref32
http://refhub.elsevier.com/S0010-4825(22)00090-7/sref33
http://refhub.elsevier.com/S0010-4825(22)00090-7/sref33
http://refhub.elsevier.com/S0010-4825(22)00090-7/sref34
http://refhub.elsevier.com/S0010-4825(22)00090-7/sref34
http://refhub.elsevier.com/S0010-4825(22)00090-7/sref34
https://doi.org/10.1109/TIM.2020.3033072
https://doi.org/10.1007/s00530-020-00728-8
http://refhub.elsevier.com/S0010-4825(22)00090-7/sref37
http://refhub.elsevier.com/S0010-4825(22)00090-7/sref37
http://refhub.elsevier.com/S0010-4825(22)00090-7/sref37
http://refhub.elsevier.com/S0010-4825(22)00090-7/sref38
http://refhub.elsevier.com/S0010-4825(22)00090-7/sref39
http://refhub.elsevier.com/S0010-4825(22)00090-7/sref39
https://doi.org/10.1016/S0531-5131(03)00388-1
https://doi.org/10.1118/1.4793409
https://doi.org/10.1118/1.4793409
https://doi.org/10.1007/s10278-009-9229-1
http://refhub.elsevier.com/S0010-4825(22)00090-7/sref43
http://refhub.elsevier.com/S0010-4825(22)00090-7/sref43
http://refhub.elsevier.com/S0010-4825(22)00090-7/sref44
http://refhub.elsevier.com/S0010-4825(22)00090-7/sref44
http://refhub.elsevier.com/S0010-4825(22)00090-7/sref45
http://refhub.elsevier.com/S0010-4825(22)00090-7/sref45
http://refhub.elsevier.com/S0010-4825(22)00090-7/sref45
http://refhub.elsevier.com/S0010-4825(22)00090-7/sref46
http://refhub.elsevier.com/S0010-4825(22)00090-7/sref46
http://refhub.elsevier.com/S0010-4825(22)00090-7/sref46
https://doi.org/10.1109/CVPR.2009.5206848
https://doi.org/10.1109/CVPR.2009.5206848
http://refhub.elsevier.com/S0010-4825(22)00090-7/sref48
http://refhub.elsevier.com/S0010-4825(22)00090-7/sref48
https://developer.android.com/topic/performance/graphics
https://developer.android.com/topic/performance/graphics
http://refhub.elsevier.com/S0010-4825(22)00090-7/sref50
http://refhub.elsevier.com/S0010-4825(22)00090-7/sref50
http://refhub.elsevier.com/S0010-4825(22)00090-7/sref50
https://doi.org/10.1007/s00521-020-05410-8
https://doi.org/10.3390/v12070769

