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Abstract

Cardiovascular disease (CVD) and venous thromboembolism (VTE) figure among the main

causes of morbidity and mortality in modern societies. Although associated with distinct

pathogenic mechanisms, epidemiological, experimental and clinical trial data suggest

that the mechanisms responsible for arterial and venous thrombosis are at least partially

overlapped. Herein we aimed to explore shared and discordant pathways involved in the

pathogenesis of VTE and CVD at the transcriptomic level and to validate the results in inde-

pendent cohorts. Five public datasets of gene expression data from VTE and CVD (myocar-

dial infarction, peripheral arterial occlusive disease and stroke) patients were analyzed

using an integrative bioinformatic strategy. A machine/statistical learning method was used

to derive classifiers for the discrimination of VTE and CVD, and tested in independent data-

sets. Two sets of genes that were commonly (n = 472) or divergently (n = 124) expressed in

CVD and VTE were identified. Genes and pathways associated with innate immune function

were over-represented in both conditions, along with pathways associated with complement

and hemostasis. Pathways associated with neutrophil activation and with IL-1 signaling

were also enriched in CVD compared to VTE. The gene expression signature of VTE more

closely resembled the pattern of cardioembolic stroke than the patterns of acute myocardial

infarction, ischemic stroke and peripheral arterial occlusive disease. Classifiers derived

from these gene lists accurately discriminated patients with VTE and CVD from independent

cohorts. In conclusion, our results add a new set of data at the transcriptomic level for future

studies between arterial and venous thrombosis.

Strengths and limitations of this study

• Our results represent the first comparison of venous and arterial thrombosis at the transcrip-

tomic level.

• Our main result was the demonstration that immunothrombosis pathways are important to

the pathophysiology of these conditions, also at the transcriptomic level.
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• A specific signature for venous and arterial thrombosis was described, and validated in inde-

pendent cohorts.

• The limited number of public repositories with gene expression data from patients with

venous thromboembolism limits the representation of these patients in our analyses.

• In order to gather a meaningful number of studies with gene expression data we had to

include patients in different time-points since the index thrombotic event, which might have

increased the heterogeneity of our population.

Introduction

CVD is a generical term that encompasses conditions caused by arterial thrombosis such as

myocardial infarction (MI), ischemic stroke (IS) and peripheral arterial obstructive disease

(PAOD), with the former two representing the most frequent causes of years of life lost in

most regions of the world [1, 2]. Venous thromboembolism (VTE) encompasses deep vein

thrombosis (DVT) and pulmonary embolism (PE), which together represent the third leading

cause of vascular disease in the world [3]. Although it has been long recognized that the patho-

genesis of these two conditions are based on distinct cellular and molecular pathways, the exis-

tence of common pathogenic pathways contributing to both CVD and VTE is suggested by (i)

the sharing of risk factors such as obesity, smoking, hypertriglyceridemia [4]; (ii) the epidemi-

ological association between CVD and VTE illustrated by the higher prevalence of CVD in

patients with VTE even years after the venous event [5–7]; (iii) the fact that some inflammatory

diseases such as sickle cell disease and antiphospholipid syndrome (APS) increase the risk of

both conditions [8, 9]; and, (iv) more recently, the demonstration that treatment strategies

classically used for CVD can also benefit patients with VTE [10, 11], and vice versa [12]. In

this context, a lot remains to be learned about their shared and independent pathological

mechanisms, whose identification could contribute to the identification of new therapeutic

targets for both VTE and CVD [7, 13, 14].

Three major frameworks have been used to address differences and similarities between

CVD and VTE: (i) studies in animal models, (ii) histopathological analyses of thrombi, and

(iii) epidemiological data. Studies in animal models identified proteins and cells that contrib-

ute to VTE or CVD [2, 15–17] allowing the development of important therapeutic targets for

each condition. However, these studies have not focused on the relative contribution of these

pathways to CVD, VTE or both conditions in human disease. While histopathological studies

of human thrombin initially supported the classical paradigm of white (platelet-rich) or red

(fibrin- and red blood cell-rich) thrombi in CVD and VTE respectively, these conclusions

were later challenged by several studies showing a much more complex picture, as recently

reviewed [13]. Lastly, epidemiological studies have been instrumental to gain insights into the

association of venous and arterial thrombosis, and clearly demonstrated that VTE and CVD

are indeed associated conditions [18, 19]. However, these studies have not been yet able to

clearly define the mechanism of this association, whether causal (i.e. atherosclerosis leads to

VTE) or driven by common pathogenic mechanisms [7].

In recent years, the availability of large databases of genomic data, along with bioinformat-

ics and machine learning tools capable of performing integrative and functional analyses of

these datasets allowed new strategies for the research about the molecular and cellular patho-

genesis of complex conditions. In particular, publicly available datasets from gene expression

studies, once performed to define specific disease signatures, can now be compared, grouped

PLOS ONE Shared and divergent gene expression signatures in cardiovascular diseases

PLOS ONE | https://doi.org/10.1371/journal.pone.0235501 August 11, 2020 2 / 19

2016 4 and GCRF/UKRI, grant # BB/P027849/1.

The funders had no role in study design, data

collection and analysis, decision to publish, or

preparation of the manuscript.

Competing interests: The authors have declared

that no competing interests exist.

https://doi.org/10.1371/journal.pone.0235501


and meta-analyzed, allowing biases and artefacts to be canceled out between datasets, so that

true relationships are more likely to stand out [20–26]. Herein we used a panel of bioinformat-

ics and machine learning tools to explore the differences and similarities between VTE and

CVD, thus contributing with a new layer of data to our understanding of the common and

divergent pathogenic mechanisms of two conditions of high epidemiological relevance.

Methods

Identification of eligible studies and datasets

Gene expression datasets from microarray studies including human patients with CVD or VTE

were searched in the public repository Gene Expression Omnibus (GEO) [27], maintained by

the NCBI, by May 2018. Search was conducted using the terms “venous thrombosis”, “venous

thromboembolism”, “myocardial infarction”, “stroke”, “coronary ischemia”, “angina”, “athero-

sclerosis”, “peripheral arterial disease” or “thrombosis”. Datasets were included if they met all

the following inclusion criteria: (1) microarray data obtained from human samples using the

same microarray platform; (2) RNA source restricted to whole blood or populations of circulat-

ing blood cells; (3) studies including both affected patients and healthy controls, so that the dif-

ferential expression of each gene was evaluated under the same experimental conditions; (4)

availability of metadata allowing the separation of venous from arterial events; and (5) datasets

from studies published in peer-reviewed journals. In the course of our study, we also restricted

our analysis to studies using the same microarray platform, so as to limit heterogeneity.

Patient and public involvement

No patient involved.

Meta-analysis of gene expression studies

Pre-processing. Microarray raw data were pre-processed using the Robust Multichip
Average (RMA) method [28] implemented in the oligo package [29]. For each dataset, the algo-

rithm performs background subtraction, minimizing the effects of optical noise and non-spe-

cific binding on the estimation of relative gene expression parameters. Later, quantile

normalization was applied, mitigating the effects of technical variables through the estimation

of a common intensity distribution across samples. This stage was followed by a median-polish

step, which summarized the several probe intensity measurements into a single probeset log-

expression quantity, for the downstream meta-analysis step. Using the biomaRt package [30],

we annotated the probesets with their respective Ensembl Gene IDs.

Meta-analysis. To perform the meta-analysis, expression data were organized following

their pre-defined classes and study of origin. Meta-analysis was performed with RankProd
package [31]. The algorithm of this package adapts the rank production method initially

designed to single experiment analysis to integrate multiple origin studies. It is a non-paramet-

ric method that detects genes consistently ranked as DE by comparing patients to healthy con-

trols across datasets. One hundred permutations were performed to compute the p-value and

the false discovery rate (FDR). The gene list was further filtered to include only genes that were

up- or down-regulated in the same direction in all five studies based on a false discovery rate

(FDR) < 0.05.

Correlation analysis of gene expression levels in CVD and VTE

The correlation between the expression levels of genes identified in the meta-analysis between

VTE and CVD was expressed using the estimated Pearson’s coefficient, and then represented
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in graphical format. Unless otherwise stated, all analyses were performed in the statistical com-

puting environment R version 3.4.4 [32].

Functional gene set analyses

To facilitate the interpretation of the biological significance of the gene list identified by the

meta-analysis, a functional gene set analysis (GSA) was performed using EnrichR, a bioinfor-

matics web-based tool that includes several curated GSA libraries encompassing pathway

enrichment analysis (e.g. KEGG, Reactome, and 18 other libraries), gene ontologies (for cellu-

lar components, biological process, molecular function), among others. Of the list of enriched

terms identified by EnrichR, only pathways that were (i) listed among the 10 most significant

(based on the p-value) for each library, and (ii) identified in at least two libraries from the

same category were considered. For gene ontology terms, the top 5 terms with an adjusted p-

value < 0.0001 were included.

Evaluation of genes with divergent expression between VTE and CVD

A list of genes with divergent expression between VTE and three databases of CVD (IS, AMI

and PAOD) was obtained by selecting all genes with a fold-change higher than 1.5 that were

up-regulated in VTE and down-regulated in IS, AMI and PAOD; as well as genes with a fold-

change lower than 0.8 that were down-regulated in VTE and up-regulated in IS, AMI and

PAOD. The cutoff values are defined as the percentile 25% (0.8) and 75% (1.49~1.5) fold

change to prioritize the most down and up-regulated genes respectively. Similar filtering

approach has been used to avoid the definition of arbitrary threshold [33–35].

These gene lists were used for an additional functional analysis based on FAIME (Func-

tional Analysis of Individual Microarray/RNAseq Expression) scores. The FAIME algorithm is

implemented in seq2pathway package [36] and computes the cumulative quantitative effects of

genes inside differentiated Gene Ontology terms using log2 gene expression of each individual

sample. The result was clustered based on their gene pattern similarities using Euclidean dis-

tances and plotted in a FAIME score heat map.

Validation of gene expression signatures associated with VTE and CVD

In order to validate our results in independent cohorts, we first used Support Vector Machine

(SVM) based methods to identify two subsets of genes capable to more accurately separate

VTE from CVD (validation 1) and VTE (validation 2) as well as AMI and IS (validation 3 and

4) from controls. SVM-based models are based on statistical learning theory [37], and are nor-

mally used to optimize the discriminatory power of complex datasets by identifying subsets of

data with higher discriminatory potential (classifiers) [38, 39]. For validation 1, SVM was

applied to the list of genes that were divergently expressed between VTE and CVD, using the

VTE and AMI patients’ datasets employed for our meta-analysis as training cohorts. The list of

classifiers was then tested in three additional cohorts (validation cohorts) that were not used in

the meta-analysis, constituted of patients with VTE (GSE48000) [40], AMI (GSE59867) [41].

For validation 2, the training cohort consisted of the dataset of VTE patients used in our meta-

analysis (GSE19151), and the validation cohort consisted of a different dataset of VTE patients

(GSE48000) [40]. Finally a training cohort for validation 3 and 4 consisted healthy controls

and patients of the AMI and IS datasets (GSE59867, GSE22255 respectively). Results were then

validated using the cohorts consisted of another AMI and IS datasets (GSE141512 and

GSE16561 respectively) and presented as heat map [42] of normalized expression.
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Results

Studies included in the meta-analysis

Five studies fulfilled the inclusion and exclusion criteria described in methods section, and

were included in the meta-analysis. These studies included data from 163 adult patients and

145 healthy controls. Table 1 provides the details of each study. As shown in Table 1, only one

study include patients with VTE and compared gene expression levels in patients with single

or recurrent VTE (GSE19151) with healthy controls [43]. The other four remaining studies

involve CVD. These CVD studies present gene expression levels of patients with PAOD

(GSE27034) [44], AMI (GSE48060) [45], cardioembolic stroke (GSE58294) [46], and IS

(GSE22255) [47]. All of them have appropriated study-specific paired healthy controls.

Similarities in gene expression profiles of arterial and venous thrombosis

The meta-analysis of all studies identified 168 up-regulated and 304 down-regulated DE genes

(S1 Table). The top 10 up- and down-regulated genes are shown in Table 2. Since the four

studies of CVD included patients in the acute or chronic phases of their disease courses, we

also present separate meta-analyses of acute (AMI and CS) and chronic (IS and PAOD) CVD

(S2 and S3 Tables).

Next, we assessed the correlation of gene expression levels across all five studies using all

472 DE genes. As shown in Fig 1. VTE presented numerically lower correlation coefficient

with IS and PAOD than those observed between all studies involving arterial thrombosis. We

also evaluated the correlation of VTE with studies of CVD that included patients in acute and

chronic phases separately (S1 Fig).

Based on the lower correlation of gene expression changes between VTE and CVD we

interrogated whether an unsupervised cluster analysis using the fold-change of the 472 genes

identified in the meta-analysis could provide additional information on differences and simi-

larities between VTE and CVD at a transcriptomic level. As shown in Fig 2 AMI, PAOD and

IS were clustered together while the pattern of VTE was closer to CS than to this cluster (AMI.

PAOD and IS).

Table 1. Characteristics of individual studies included in our analyses.

GEO access

number

Sample characteristics

Characteristics of patients/disease included in each dataset Size (Pt:

Ctl)

RNA

source

GSE19151 Adult with one or more prior VTE or warfarin; APS and cancer excluded 70:63 Whole

blood

GSE27034 Peripheral arterial occlusive disease, defined as ankle:brachial

index < 0.9

19:18 PBMC

GSE48060 Adults with 1st time acute myocardial infarction�; inflammatory diseases

and cancer excluded.

31:21 Whole

blood

GSE58294 Adults with cardioembolic stroke (i.e. at least one source of cardiac

embolus and exclusion of strokes from other etiologies) †

23:23 Whole

blood

GSE22255 Adults with history of one ischemic stroke more than 6 months prior to

sample collection; anemia and allergies excluded

20:20 PBMC

GEO: Gene Expression Omnibus, Pt:Ctl: patients:controls; PBMC: peripheral blood mononuclear cells; WBC: white

blood cells; VTE: Venous thromboembolism; APS: antiphospholipid syndrome.

� Samples were collected with 48h from the acute event

† subset of patients recruited for the Clear Stroke Trial [48]; samples were collected within 3h from the acute event,

prior to any pharmacological treatment. All studies used the Affymetrix Human Genome U133 Plus 2.0 as a

microarray platform. References for published studies that used these datasets are indicated in the main text.

https://doi.org/10.1371/journal.pone.0235501.t001
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The shared gene expression signature between VTE and CVD is markedly

associated with innate immunity

To evaluate which pathways and biological processes were associated with the gene expression

signature shared between VTE and CVD (472 DEG) we performed a functional analysis using

stringent criteria for the call of potentially relevant pathways and gene ontology terms. As

shown in Table 3, pathways associated with hemostasis and innate immunity were consistently

identified in these analyses.

Evaluation of genes that were divergently expressed between VTE and CVD

While the meta-analysis allowed us to gain insights on the similarities of VTE and CVD, we

also wanted to identify the most relevant differences between these two conditions at the gene

expression level. In order to do so we obtained a list of all genes whose direction of expression

were divergent between venous and arterial thrombosis. In this analysis, CS–which clustered

with VTE in the similarity analysis—was not included, so as to sensitize the analysis for differ-

ences between venous and arterial thrombosis. In total 124 genes were identified, of which 71

were up-regulated in VTE and down-regulated in CVD, and 53 were up-regulated in CVD

Table 2. Top differentially expressed genes identified in the meta-analysis.

Fold-change in individual studies (FC) Meta-analysis results Main biological process

Genes VTE PAOD AMI CS IS Ave FC FDR

Up-regulated genes

G0S2 1.20 4.88 3.89 1.12 1.76 2.57 <0.0001 Apoptosis

BCL2A1 2.29 1.55 1.73 1.30 1.88 1.75 <0.0001 Apoptosis

TNFAIP6 2.05 1.45 1.72 1.23 1.70 1.63 <0.0001 Innate Imm

ANXA3 1.71 1.40 1.21 1.83 1.96 1.62 <0.0001 Hemostasis

SERPINB2 1.19 1.91 1.42 1.23 1.95 1.54 <0.0001 Hemostasis

S100A12 2.10 1.00 1.01 1.74 1.79 1.53 <0.0001 Innate Imm

SLPI 1.84 1.14 1.00 1.59 1.65 1.45 <0.0001 Innate Imm

FKBP1B 2.05 1.19 1.23 1.09 1.61 1.43 <0.0001 Imm Reg

DEFA4 1.25 1.55 1.27 1.01 2.08 1.43 <0.0001 Innate Imm

PTX3 1.06 1.98 1.56 1.11 1.35 1.41 <0.0001 Innate Imm

Down-regulated genes

CLIC3 0.89 0.77 0.89 0.87 0.92 0.87 <0.0001 Cell Maint

BACH2 0.92 0.91 0.79 0.89 0.96 0.90 <0.0001 Imm Reg

TXK 0.85 0.94 0.93 0.87 0.63 0.84 <0.0001 Innate Imm

MLC1 0.87 0.97 0.98 0.94 0.97 0.95 <0.0001 Unknown

ID3 0.94 0.92 0.90 0.84 0.97 0.91 <0.0001 Cell Prolif

ZNF304 0.87 0.98 0.91 0.97 0.61 0.87 <0.0001 Gene expr

EVL 0.97 0.95 0.92 0.87 0.86 0.92 <0.0001 Innate Imm

BCOR 0.93 0.96 0.92 0.95 0.92 0.94 <0.0001 Apoptosis

TBX21 0.98 0.96 0.79 0.97 0.79 0.90 <0.0001 T cell dev

IL2RB 0.87 0.95 0.92 0.94 0.87 0.91 <0.0001 Imm Reg

Genes were ranked according to the fold change. FC: Fold-change; Ave FC: average FC; FDR: False Discovery Rate. VTE: venous thromboembolism; PAOD: peripheral

arterial obstructive disease; AMI: acute myocardial infarction; CS: cardioembolic stroke; IS: ischemic stroke; Innate Imm: innate immunity; Imm Reg: Immune

regulation; Cell Maint: cell maintenance; Cell Prolif: cell proliferation; Gene expr: gene expression; T cell dev: T cell development. The average FC is expressed as mean

FC across studies.

https://doi.org/10.1371/journal.pone.0235501.t002
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and down-regulated in VTE (S4 Table). Expression levels of these genes are shown in Fig 3

which clearly demonstrates a different profile between VTE and CVD.

We then identified which pathways were associated with the expression signatures of these

124 genes. As shown in Fig 4A, genes that were up-regulated in VTE compared to CVD associ-

ated mainly with biological processes related to cell maintenance, cell proliferation and

immune regulation. In contrast, genes that were up-regulated in CVD compared to VTE were

associated mainly with innate immunity, neutrophil degranulation and cell proliferation (Fig

4B).

Validation of gene expression signatures associated with VTE and/or CVD

Finally, we validated the biological relevance of these gene expression signatures by construct-

ing three SVM-based gene lists (classifiers) including one of the most informative genes from

the list of divergently expressed genes (n = 124), and two from the commonly expressed genes

(n = 472) (validation 1, 2, 3 and 4, respectively). The classifiers are presented in S5 Table. In

validation 1, we were able to demonstrate that a classifier consisting of 107 genes could dis-

criminate patients with at least two episodes of non-provoked VTE from patients with AMI

with 100% accuracy (Fig 5A). We also show that a 60-gene classifier (validation 2) and a

23-gene classifier could discriminate patients with VTE and those with AMI from healthy indi-

viduals with an accuracy of 76.5% (Fig 5B) and 91.6% (Fig 5C) respectively. A classifier based

on a gene set constituted of 76 commonly expressed genes were also capable to discriminate IS

patients from healthy controls with 81.4% of precision (Fig 5D).

Fig 1. Correlation of gene expression changes between Venous Thromboembolism (VTE). Ischemic stroke (IS).

Peripheral arterial occlusive disease (PAOD). Acute myocardial infarction (AMI) and Cardioembolic stroke (CS).

Pairwise correlation scatter plots are in the lower triangle boxes. The upper triangle boxes show Pearson correlation

coefficients (R) of log2 fold changes for all 472 differentially expressed genes between studies.

https://doi.org/10.1371/journal.pone.0235501.g001
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Discussion

While both CVD and VTE are caused by the formation of thrombi inside a vessel, differences

in their pathogenesis have been long recognized, with CVD linked to atherosclerosis [49] and

VTE to the classical elements of the Virchow’s Triad [2, 50]. Yet, epidemiological, pathological

and clinical data highlight the need for studies addressing in more detail the similarities and

differences, particularly at the cellular and molecular level, between these two conditions. By

using an integrative bioinformatics approach we were able to confirm that innate immunity,

complement activation and classical hemostasis pathways are involved in the pathogenesis of

both CVD and VTE at the transcriptomic level. In addition, we identified a shared and a dis-

cordant gene expression signature from VTE and CVD patients that can be used by other

groups for the identification of biomarkers and therapeutic targets, as well as for a better

understanding of the pathophysiology of these conditions.

Fig 2. Fold-change of gene expression from patients with venous thromboembolism (VTE). Ischemic stroke (IS).

Peripheral arterial occlusive disease (PAOD). Acute myocardial infarction (AMI). Cardioembolic stroke (CS). The top

20 up- (red) and down-regulated (blue) genes are listed.

https://doi.org/10.1371/journal.pone.0235501.g002
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VTE is a disease whose pathogenesis involves the interplay between venous stasis, hyperco-

agulability and endothelial damage. After more than a century since Virchow’s enumeration of

these three elements, the concept of hypercoagulability and endothelial damage evolved sub-

stantially, and inflammation is currently recognized as a common cause of both alterations

[51, 52]. According to this updated view, thrombo-inflammation, which involves leukocyte

Table 3. Pathways and ontology terms enriched in the meta-analysis of VTE and CVD.

Functional category GSA library p-value
Pathways associated with hemostasis

Complement and coagulation cascades KEGG 0.001

Blood clotting cascade Wikipathways 0.001

Hemostasis Reactome 0.0006

Intrinsic Prothrombin Activation Pathway Biocarta 0.02

Pathways/terms associated with activation of the immune system
IL-1 Signaling Pathway Wikipathways 0.006

Signal transduction through IL1R Biocarta 0.04

Immune System Reactome < 0.001

Adaptive Immune System Reactome < 0.001

Neutrophil degranulation GO biological process < 0.001

Neutrophil mediated immunity GO Biological process < 0.001

Neutrophil activation in immune response GO Biological process < 0.001

Antibacterial humoral response GO Biological process < 0.001

Innate immune response in mucosa GO Biological process < 0.001

Only pathways identified in more than one GSA library are listed (manually clustered according to common

biological processes). For gene ontology terms the top five terms with an adjusted P value < 0.0001 were considered

relevant. GSA: gene set analysis.

https://doi.org/10.1371/journal.pone.0235501.t003

Fig 3. Heatmap built with the 124 DE genes that were divergently expressed between VTE and CVD. Each column

represents an individual (control or patient) and conditions are shown in the upper row. Unsupervised clustering of

these genes demonstrates that IS. MI and PAOD are clustered together, separately from VTE.

https://doi.org/10.1371/journal.pone.0235501.g003
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and platelet adhesion to the endothelium as well as local thrombin and fibrin generation, is

part of a “biological response” that contributes to pathogen clearance and tissue repair, but

that in the presence of prothrombotic factors (e.g. cancer, estrogens, etc) can tip the system

towards a hypercoagulable state thereby triggering the cellular events of VTE [53–55]. On the

other hand, the pathogenesis of CVD is intimately associated with atherogenesis, which

involves (i) the recruitment, adherence and transmigration of circulating leukocytes to areas of

endothelial damage; (ii) maturation of monocytes mature into macrophages in the intima

which engulf low density lipoprotein molecules (originating foam cells); (iii) migration and

proliferation of smooth muscle cells from the media into the intima, coupled with the synthesis

of extracellular matrix molecules which contribute to the formation of the fibrous cap; and (iv)

repeated cycles of proliferation and cell death inside the plaque which contribute to its growth

and instability, and eventually lead to its physical rupture, which activates hemostasis (by tissue

factor exposure and platelet activation), and ultimately results in thrombosis and ischemia [49,

52, 56].

Yet, several lines of evidence support an at least a partial overlap in the pathogenesis of VTE

and CVD. From an epidemiological standpoint, this is well illustrated by a study that revealed

that patients with unprovoked VTE present an estimated risk of atherosclerosis that is 5.1 and

14.5-fold higher than in patients with secondary VTE and healthy controls, respectively [7, 57]

and by the existence of conditions that increase the risk of both VTE and CVD such as APS

[58] and SCD [9, 59]. In addition, the cross-talk between the immune system, hemostasis and

atherogenesis is being increasingly supported by experimental data [14, 15, 52, 60]. And finally,

the classical borders between CVD and VTE were further blurred by results from large-scale

Fig 4. Heatmap (a) depicting FAIME scores of gene ontology (GO) terms enriched between VTE and CVD. FAIME

scores compare the contribution of genes in different Gene Ontology pathways. Patients were segregated into VTE and

CVD clusters based on their gene pattern similarities. The most significant terms were selected based on FDR (<0.05)

and are summarized in the lower panel (b). VTE: venous thromboembolism; CVD: cardiovascular disease.

https://doi.org/10.1371/journal.pone.0235501.g004
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clinical trials in which aspirin was shown to decrease the risk of recurrent VTE [10, 11], and

rivaroxaban, an anti-factor Xa anticoagulant was shown to decrease the risk of recurrent CVD

more effectively than aspirin [12].

Using an integrative bioinformatics approach we analyzed five independent datasets of

gene expression data and generated two distinct lists of genes that are commonly (n = 472) or

divergently (n = 124) expressed in VTE and CVD. We took advantage of publicly available

datasets from five well-designed studies addressing other scientific questions, but that gener-

ated high-quality data, all using the same microarray platform applied to both patients and

healthy controls, and with sufficient meta-data to allow inter-study comparisons. We also took

advantage of new standardized bioinformatics methods to perform data processing, meta-

analyses and functional analyses [23, 61, 62].

Among commonly DE genes we observed a predominance of genes associated with innate

immunity. These included genes that have been previously associated with CVD in human

studies such as PTX3 (pentraxin 3) [63–65] and S100A12 (EN-RAGE) [66, 67], as well as genes

that have been associated with CVD only in animal studies such as ANXA3 and SLPI, both

shown to be up-regulated in rodent models of ischemic stroke [68, 69]. Our meta-analysis also

identified a commonly down-regulated gene, ID3 (Inhibitor of DNA Binding 3. HLH Protein),

which is atheroprotective in animal models [70] and whose functional polymorphisms have

been associated with atherosclerosis protection in several populational studies [70, 71]. In

Fig 5. Clustering of VTE and CVD patients form independent (validation) cohorts, using gene lists (classifiers)

identified by SVM-based methods derived from cohorts (training) used for the meta-analysis. In (a), a classifier

consisting of 107 genes was capable to discriminate patients with at least two episodes of VTE (n = 71; red) from

patients with AMI (n = 30; blue) with 100% accuracy. In (b), a classifier consisting of 60 genes was capable to

discriminate the same population of VTE patients from healthy individuals with 76.5% accuracy. In (c), a classifier

consisting of 23 genes was capable to discriminate the myocardial infarction patients from healthy individuals with

91.6% accuracy. Finally, (d) showed a classifier consisting of 76 genes capable to discriminate ischemic stroke patients

from healthy individuals with 81.4% accuracy. log2(expr): base 2 logarithm of normalized expression; MI: myocardial

infarction; VTE: venous thromboembolism; SVM: Support Vector Machine.

https://doi.org/10.1371/journal.pone.0235501.g005
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regard to VTE, TBX21 (T-box 21), which was commonly down-regulated in our study, has

been recently associated with the resolution of VTE in an animal model [72]. Though less fre-

quent, genes that are more directly associated with hemostasis were also identified such as

SERPINB2 (plasminogen activator inhibitor 2), whose polymorphisms have been associated

with recurrent CVD [73]. Finally, The identification of BACH1 and BACH2, which are

involved in heme metabolism, is also of interest since we and others have shown that heme is a

potential activator of hemostasis [74–76]. The pattern observed in the analysis of individual

DE genes was confirmed by the gene set analysis that identified pathways associated with

hemostasis and innate immunity as the most consistently associated with the gene signature of

VTE and CVD. Of note, pathways whose associations with the pathogenesis, diagnosis and

even treatment of VTE/CVD were only recently confirmed, such as IL-1 signaling and neutro-

phil mediated immunity, emerged with strong associations in our model.

Genes whose expression was discordant between VTE and CVD were also explored, and in

addition to a full list of these genes, we opted to identify pathways that were over-represented

in VTE compared to CVD and vice versa. The most significant result was the identification of

several neutrophil-related pathways in CVD when compared to VTE, suggesting a more prom-

inent role for these cells in the former. Some of the genes involved in these pathways have been

associated with CVD in animal models (MCL1, JUND, PELI1) [77–79], and in humans

(ACSL1, AOC3, ALPL, MMP9, PPIF, GRK2) [80–87]. Also of interest was the identification of

PADI4, a critical enzyme for the formation of neutrophil extracellular traps [88], which has

been previously associated with other vascular-related phenotypes in animal models [89, 90].

These results are of interest for the following reasons: first, they represent a confirmation

that the participation of innate immunity and hemostasis in the pathophysiology of VTE and

CVD is also evident at the transcriptomic level, an observation that to our knowledge had not

been previously demonstrated at a systems biology level; and second, the list of genes and path-

ways identified in our study (provided in detailed supplementary lists) may allow other groups

to gain new insights about the pathophysiology of VTE and CVD at the cellular level and

molecular level, as well as the identification of new biomarkers or therapeutic targets. In favor

of this possibility is unsupervised call of the IL-1 pathway as a relevant pathway in the patho-

genesis of CVD, which was recently confirmed by the CANTOS clinical trial [91], as well as

the identification of complement, intrinsic prothrombin activation and neutrophil function as

enriched pathways in both VTE and CVD, which is in accordance with new and evolving con-

cepts of hemostasis and thrombosis [16, 92–94]. We also validated our results using a robust

machine learning strategy in independent cohorts, by demonstrating that a list of 107 diver-

gently expressed genes derived from our analysis was capable to discriminate with 100% accu-

racy patients with VTE and AMI. In addition, three other gene classifiers were constructed to

discriminate patients with VTE, AMI and IS from healthy individuals with a precisions of

76.5%, 91.6% and 81.4% respectively. While it should be emphasized that the objective of these

validations is not to claim that these genes should be used to discriminate two conditions that

are clearly defined by clinical characteristics, it does confirm that the experimental strategies

used in our analyses are valid.

Our study has limitations that need to be acknowledged. As in any meta-analysis, results

are dependent and limited by characteristics of the original studies. Even though we restricted

our analysis to datasets used in peer-reviewed published studies, with high-quality meta-data

and from the same microarray platform, only two studies involving VTE were available [40,

43], which were used as training and validation cohort. Since in both studies patients with can-

cer and APS were excluded, we believe that they although limited in number, they provide a

good representation of VTE patients. The relative scarcity of microarray datasets was also the

reason why we had to include studies using RNA from different sources (whole blood and
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PBMC), and with different time of sample collection since the index thrombotic event. In fact,

this compromise between sample homogeneity and sample availability was necessary, or the

study would not have been possible. Accordingly, we acknowledge that it is not possible to

exclude that additional commonly expressed genes could have been identified if all datasets

were from the same RNA source (type II error). On the other hand, since positive findings

from our analytical approach were those that were remained significant in all samples despite

this relative heterogeneity, our conclusions are likely to be of biological relevance (lower

chance of type I error), as supported by our external validation. In fact, the concept of gene

expression meta-analysis has been previously used in the context of other complex diseases

[38, 95–97].

In conclusion, we demonstrate that the participation of innate immunity, complement and

hemostasis activation in the pathogenesis of VTE and CVD is also evident at the transcrip-

tomic level. We also demonstrate that in CVD, pathways associated with IL-1 signaling and

neutrophil activation are relatively more represented in CVD than in VTE and that the gene

expression signature of VTE resembles more closely the pattern observed in cardioembolic

stroke than the pattern observed in AMI, IS or PAOD. Finally, we provide two validated lists

of genes whose expression is shared or discordant between VTE and CVD, which can be used

in future studies involving these two conditions.
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