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Summary

Viral diseases like influenza, AIDS, hepatitis, and Ebola cause severe epidemics world-

wide. Along with their resistant strains, new pathogenic viruses continue to be discov-

ered so creating an ongoing need for new antiviral treatments. RNA interference is a

cellular gene‐silencing phenomenon in which sequence‐specific degradation of target

mRNA is achieved by means of complementary short interfering RNA (siRNA) mole-

cules. Short interfering RNA technology affords a potential tractable strategy to combat

viral pathogenesis because siRNAs are specific, easy to design, and can be directed

against multiple strains of a virus by targeting their conserved gene regions. In this

review, we briefly summarize the current status of siRNA therapy for representative

examples from different virus families. In addition, other aspects like their design, deliv-

ery, medical significance, bioinformatics resources, and limitations are also discussed.
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1 | INTRODUCTION

Because of their highmutation rates, viruses have the potential to elude

host defense systems as well as antiviral drugs and vaccines. Thus,

development of new and alternate antiviral therapies has become

important.1,2 During the past decade, scientists have widely used the

cellular RNA interference (RNAi) pathway approach to target a number

of viral genes to restrain their expression.3,4 In this pathway, long dou-

ble‐stranded RNA (dsRNA) precursors are split into short interfering

RNAs (siRNAs) following which the RNA‐induced silencing complex

includes one of the siRNA strands and slices the complementary target

mRNA using ATP.5,6 Short interfering RNA technology has been

exploited to target disease‐causing genes as well as for functional stud-

ies.7,8 Also, this strategy can target diverse types of viruses as even a

tiny viral genome can provide several targetable regions. For example,

siRNAs directed against different genes of deadly viruses like human

immunodeficiency virus (HIV),9,10 influenza virus (INFV),11,12 hepatitis
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B virus (HBV),13 SARS coronavirus (SARS‐CoV),14,15 human papilloma-

virus (HPV),16 and West Nile virus (WNV)17 in infected cells displayed

encouraging results in inhibiting viral replication. Researchers have also

used multiple siRNAs simultaneously to augment viral inhibition in a

coordinated approach.18,19 Short interfering RNAs for various human

viruses like respiratory syncytial virus (RSV), hepatitis C virus (HCV),

HBV, andHIV are also appearing in clinical trials, which further elucidate

their importance in inhibiting viral infections.20 Thus, siRNAs have

emerged as practically modular and adaptable therapeutics for treating

viral infections. In this review, we will discuss the use of siRNAs against

different viral families, their therapeutic applications, and design and

delivery considerations. Further limitations of siRNAs as antivirals and

the remedial measures are also discussed.
2 | VIRUSES

Viruses are tiny obligate intracellular parasites, having either an RNA or

a DNA genome enclosed by a virus‐coded protein coat. Viruses depend

on host cells for proliferation. They are classified on account of shape,

genome structure, or mode of replication, and many classes of these

pathogens cause a large number of diseases in different organisms.21

Different species of viruses have varying types of infection processes;

however, there are many general steps22,23 that are briefly summarized
Copyright © 2018 John Wiley & Sons, Ltd.mv 1 of 11
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in Figure 1. Short interfering RNAs directed against specific viral/host

genes can block the virus life cycle at any of the steps.
3 | RNA INTERFERENCE

RNAi is a cellularmechanismwherein smallmolecules of RNAhinder the

expression of a particular gene(s) via counteracting the corresponding

mRNA molecules that possess nucleotide sequences complimentary

to the small RNA.24 Historically, RNAi was identified by different terms

such as quelling, cosuppression, and posttranscriptional gene silencing.

In 1998, Mello and Fire illustrated a strong gene silencing caused by

injecting dsRNA into Caenorhabditis elegans.25 Further findings in the

field of RNAi have been pictorially summarized in Figure 2.

The RNAi pathway processes dsRNA into 21 to 30 nucleotide‐

long RNA molecules that act as a module of a silencing machinery to

distinctively suppress expression/function of an intended gene/geno-

mic region (Figure 3). In particular, the silencing pathway involves

chopping of dsRNA into siRNA that are typically 21 to 25 base pairs

long dsRNA having dinucleotide overhangs on the 3′ termini. One of

the siRNA strands (guide strand) is then incorporated into an RNA‐

induced silencing complex that degrades the target mRNA.5,26 The

siRNAs resulting from the original longer dsRNA are different from

microRNAs as the latter in general have partial base pairing with a tar-

get mRNA and restrain the expression of several different genes hav-

ing related sequences. Short interfering RNAs also differ from short

hairpin RNAs as the latter have a hairpin turn and their expression in

cells is usually achieved by means of bacterial/viral vectors.27
FIGURE 1 The typical different stages of virus life cycle. (1) Attachment:
membrane receptors. (2) Endocytosis: Here, the viral contents are taken up
cell enzymes. (4) Growth: It involves translation and replication of the vira
genome. (6) Release: The mature virus particles escape from the host cell
not integrated into the host genome, and hence, their RNA molecules are
Short interfering RNAs characteristically base‐pair completely and

cause mRNA cleavage in a precise target region.28 MicroRNAs are

generated from introns or their own genes. Gene silencing can take

place through mRNA cleavage or thwarting mRNA translation. The

role of microRNAs is to regulate gene expression. In the plant king-

dom, RNAi is broadcasted by the transportation of siRNAs amid cells

via plasmodesmata.29 RNAi was described as the “breakthrough of

the year” in30 2002. RNAi is also believed to be a component of a

primitive immune system based on nucleic acid recognition.31 RNAi

shields human cells from pathogenic viruses by silencing viral

genes.32,33 Moreover, small RNAs can cause genomic imprinting or

facilitate in delineating tissue‐specific transcription prototypes by

adapting conformation of certain genome regions.34
4 | ANTIVIRAL POTENTIAL OF siRNAs

Short interfering RNAs can be used against all types of viral genomes,

be it double‐ or single‐stranded DNA/RNA. Also, several siRNAs can

be used concurrently to maintain an extended antiviral effect. The fol-

lowing examples (Table 1) further illustrate the development of siRNA

therapeutics as a novel antiviral strategy.
4.1 | DNA viruses

4.1.1 | Papillomaviridae

This taxonomic group consists of nonenveloped DNA viruses. Infec-

tion by papillomaviruses can cause benign or cancerous tumors.85 Viral
In this step, the viral envelope glycoproteins attach to certain host cell
by the host cell. (3) Uncoating: Degradation of the viral capsid by host
l genes. (5) Assembly: The viral proteins assemble to enclose the viral
by budding/lysis. In RNA viruses, however, the viral genome is usually
directly used as mRNAs for translation



FIGURE 2 Timeline depicting the sequential progression in the field of RNA interference (RNAi). shRNA, short hairpin RNA; siRNA, short
interfering RNA

FIGURE 3 In the RNA interference mechanism, double‐stranded
RNA (dsRNA) is chopped into short (21‐25 nucleotides) interfering

RNA (siRNA) molecules possessing dinucleotide overhangs on the 3′
termini. One siRNA strand is integrated into the RNA‐induced
silencing complex (RISC) that finally degrades the complementary
target mRNA

TABLE 1 Development of antiviral short interfering RNAs by various
researchers against a range of pathogenic viruses

S. No. Virus Family Genome Type Reference

1 Papillomaviridae DNA viruses 16,35,36

2 Polyomaviridae 37,38

3 Poxviridae 39-41

4 Hepadnaviridae 42-44

5 Herpesviridae 45-47

6 Reoviridae Double‐stranded RNA viruses 48,49

7 Arenaviridae Negative‐strand RNA viruses 50-52

8 Paramyxoviridae 53-55

9 Rhabdoviridae 56-58

10 Bunyavirales 59-61

11 Filoviridae 62-64

12 Orthomyxoviridae 65-67

13 Picornaviridae Positive‐strand RNA viruses 68-70

14 Togaviridae 71,72

15 Coronaviridae 15,73,74

16 Flaviviridae 75-77

17 Hepeviridae 78-80

18 Retroviridae 81-84
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oncogenes of HPV types 16 and 18 can cause cervical cancer. To

counteract this, siRNAs have been engaged against the antiapoptotic

HPV E6 oncogene, resulting in selective and substantial cell death of

HeLa cancer cells.86 Short interfering RNAs have also been used in

several combinations against HPV‐16 and HPV‐18 targeting their E6

or E7 gene resulting in considerable reduction in viral replication in

HeLa cell line. It is noteworthy to mention that the siRNAs did not

show any harmful effect on control cells, which indicates meager
off‐target effects.87 This illustrates that siRNA treatment has the

potential to suppress the progression of cervical cancer.

4.1.2 | Polyomaviridae

Polyomaviruses have a double‐stranded circular DNA genome.88 They

are clinically relevant because they cause Merkel cell carcinoma, a very

aggressive type of squamous cancer. Merkel cell polyomavirus T anti-

gen (T‐Ag) protein is involved in replication and plays a major role in

viral infection. Merkel cell polyomavirus activity can be restrained

through rationally designed siRNA molecules for the treatment of

Merkel cell carcinoma at the genome level.37 Similarly, the polyomavi-

rus BK (BKV) has been found to induce malignant transformation.

Repression of theT‐Ag oncogene has been shown to hinder the trans-

formation of the cells. Short interfering RNAs designed to target the

BKV T‐Ag were reported to restrain its expression in pRPc cell lines.

Blocking of T‐Ag results in diminished growth rate of BKV‐trans-

formed cells and thus suppresses tumorigenicity.38

4.1.3 | Poxviridae

Poxviruses have a single, linear, double‐stranded DNA and infect both

vertebrates and invertebrates. Vaccinia virus (VACV) is the quintes-

sential member of the Poxviridae.89 The VACV produces a dsRNA
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binding protein, E3L, which hampers host defense mechanisms like

interferon. E3L‐specific siRNAs inhibited virus replication in HeLa cells

by 98% as compared with control infection.39 In addition, both early

and late gene expressions of VACV could be blocked by siRNA

treatment.90

4.1.4 | Hepadnaviridae

Hepadnaviridae include enveloped viruses with a partially double‐

stranded genome. The viruses of this family can cause liver infections

in animals including humans.91 Hepatitis B virus is the most

well‐known member of this group, as it is one of the leading causes

of liver cirrhosis and hepatocellular carcinoma. Short interfering

RNA developed against the surface antigen region significantly

reduced the level of viral transcripts as well as the secretion of viral

antigens in mice.92

4.1.5 | Herpesviridae

This family includes important pathogenic viruses like Epstein‐Barr

virus and herpes simplex virus. Epstein‐Barr virus is responsible for

the maintenance of the tumor phenotype in many cancer types. It

was found that EBNA1 is universally expressed in all Epstein‐Barr

virus–associated tumors. Short interfering RNAs generated against

the EBNA1 mRNA are able to inhibit its translation and thus block

tumor survival in HeLa cells.93 Similarly, the herpes simplex virus gly-

coprotein E is responsible for cell‐to‐cell spread and immune evasion.

Targeting glycoprotein E with siRNAs suppressed its expression and

function in HaCaT cells.94

4.2 | dsRNA viruses

4.2.1 | Reoviridae

Reoviruses have a genome of about 10 segments of dsRNA. Plasmid‐

based vectors expressing siRNAs targeting the μNS, μ2, and σNS

genes of the T3D strain of reovirus considerably blocked multiple

steps in the viral replication machinery in 293T cells.48 These studies

further illustrate the usefulness of siRNAs both as therapeutic agents

and as important means for the investigation of relationship between

structure and function of viral proteins.

4.3 | Negative‐strand RNA viruses

4.3.1 | Arenaviridae

Arenaviruses contain a segmented RNA genome with 2 single‐

stranded ambisense RNAs.95 Arenaviruses are often responsible for

fatal hemorrhagic fever in people, and there is a lack of effective med-

ications to tackle their infection. The lymphocytic choriomeningitis

virus is a key model used in the investigation of arenavirus linked path-

ogenesis. Short interfering RNAs directed against L polymerase and Z

viral mRNAs stall viral growth in HEK 293T host cells.50

4.3.2 | Paramyxoviridae

Paramyxoviridae are negative‐sense single‐stranded RNA viruses.96

The RSV is an important member of this group. It causes lung infection

in young and the aged people worldwide. Short interfering RNAs

targeting the RSV P gene in a BALB/c mice model showed less lung
pathogenesis or pulmonary inflammation and generated a strong anti-

viral reaction when later given RSV.97

4.3.3 | Rhabdoviridae

Rabies virus (RV) is a member of family Rhabdoviridae and causes fatal

zoonotic disease in both humans and animals. It is responsible for

50 000 to 55 000 human deaths annually in Asia and Africa.56

Brandao et al used siRNAs against rabies virus nucleoprotein mRNA,

which decreased virus titers in BHK‐21 cells.57 Other workers devel-

oped siRNAs targeting rabies virus glycoprotein and nucleoprotein

showing remarkable knockdown effects and significant inhibition of

RV multiplication and release.56

4.3.4 | Bunyavirales

This order of viruses, previously known as the Bunyaviridae family,

includes enveloped, segmented negative‐stranded RNA viruses.98

Because of lack of effective vaccines and therapies for bunyaviruses in

humans, siRNAs afford an attractive alternative. For example, the model

Hazara virus of genus Nairovirus was inhibited by siRNAs targeting the

NP gene in A549 cells.59 Similarly, siRNAs developed against the

agnoprotein of John Cunningham virus, the etiological agent of the

demyelinating progressive multifocal leukoencephalopathy disease,

proved to be an effective inhibitor of John Cunningham virus infection

in nude mice.99

4.3.5 | Filoviridae

The Filoviridae family comprises filamentous single‐stranded nega-

tive‐sense RNA viruses such as Ebola and Marburg virus (MARV),

which can cause severe disease in humans.100 Short interfering

RNA targeting the Zaire ebolavirus nucleoprotein decreased viral

titers after infection in 293T cells.62 Short interfering RNAs were

used to degrade MARV nucleocapsid transcripts (NP, VP35, and

VP30) in HeLa CCL‐2 cells. Down‐regulation of VP30 also caused a

strong decline in the expression of other MARV proteins and virus

release, suggesting the role of VP30 in viral transcription and

replication.63

4.3.6 | Orthomyxoviridae

Influenza virus causes one of the most common infections in humans.

Although some antiviral drugs are available, their use is limited by pos-

sible emergence of resistant virus. Ge et al found that siRNAs

pertaining to conserved regions of the INFV genome can inhibit its

replication in C57BL/6 mice.101,102
4.4 | Positive‐strand RNA viruses

4.4.1 | Picornaviridae

Picornaviruses are nonenveloped RNA viruses and have an icosahedral

capsid. Coxsackievirus and poliovirus are two of the well‐known

viruses in this group.103 Treatment with siRNAs significantly

decreased cell death in parallel with a reduction in coxsackievirus B3

replication in HeLa cells. Also, the efficient coxsackievirus B3–specific

siRNA displayed antiviral activity in other related enteroviruses such

as CVB1, CVB5, CVB6, coxsackievirus A9, and Echo6 in HeLa cells.104
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4.4.2 | Togaviridae

This group of viruses contains linear, single‐stranded, positive‐sense

RNA.105 One of its members, the Chikungunya virus, is the causative

agent of chikungunya fever, which has emerged as an important

arboviral infection of public health concern. Short interfering RNAs

targeting the conserved segments of nsP3 and E1 mRNAs of the

pathogen were able to drastically reduce the virus titer in Vero

cells.71
4.4.3 | Coronaviridae

Severe acute respiratory syndrome, also known as SARS‐CoV, is a

member of the Coronaviridae family whose members have single‐

stranded positive‐sense RNA genomes. Short interfering RNAs

targeting the 3′ untranslated regions (UTRs) of the pathogen inhibit

the replication of SARS‐CoV in Vero‐E6 cells.106 Li et al demonstrated

that siRNAs used against SARS‐CoV provided relief from viral fever,

decreased viral levels, and lower acute diffuse alveoli damage in

macaques.107
4.4.4 | Flaviviridae

This family encompasses spherical enveloped viruses with linear, sin-

gle‐stranded positive RNA genome. It includes many important human

viruses like HCV, Dengue virus (DENV), and WNV.108 Hepatitis C

virus infection can cause permanent damage to the liver, hepatocellu-

lar carcinoma, and death. Seo et al targeted multiple segments of the

5′ UTR of the virus genome using siRNA and achieved up to 85%

reduction in activity in Huh‐7 cells.109 In a similar approach, siRNAs

were designed against WNV 3′ UTR and then expressed from a plas-

mid‐based system in Vero cells resulting in suppression of WNV repli-

cation in a sequence‐specific manner and also indicating the function

of 3′ UTR in WNV pathogenesis.110 Dengue virus causes severe dis-

ease that threatens public health globally in tropical and subtropical

places. Exogenously introduced siRNA directed against the conserved

5′ cyclization sequence segment of the DENV genome effectively

decreased the viral titers of multiple DENV strains in mice illustrating

the potential of siRNAs to tackle genetically varied dengue strains.111

Zika virus had recently posed as a global health threat prompting

intense research to control the pathogen.112 Scientists have found

that the conserved 3′ UTR of the virus genome plays a crucial function

in its replication. Therefore, rationally designed siRNAs against the 3′
FIGURE 4 Timeline summarizing different stages in the course of develo
HBV, hepatitis B virus; HCV, hepatitis C virus; siRNA, short interfering RN
UTRs have been predicted to inhibit the pathogen.113,114 Studies have

also shown that siRNA‐directed silencing of host endoplasmic reticu-

lum membrane complex protein components halted the replication

of multiple Zika virus strains in HeLa cells.115
4.4.5 | Hepeviridae

Hepeviridae mainly includes hepatitis E virus, a key source of water‐

borne hepatitis in adults that has particularly high mortality in preg-

nant women. Short interfering RNAs developed against the helicase

and replicase genes of hepatitis E virus were found to be effective in

inhibiting virus replication in A549 as well as HepG2 cells.78,79
4.4.6 | Retroviridae

Retroviridae is a family of enveloped single‐stranded RNA viruses that

replicate in a host cell through the process of reverse transcription.116

It has been noted that siRNAs can inhibit HIV‐1 growth by aiming the

genes for the host CD4 cell receptor, or the viral Gag and Nef proteins

in Magi‐CCR5, HeLa‐CD4, and H9 T cells. Studies report that siRNA

molecules efficiently hinder preintegration as well as postintegration

infection phases in the HIV life cycle.117
5 | CLINICAL TRIALS

Because of the large therapeutic potential offered by siRNAs against

the pathogenic viruses, many of them are being considered for medical

use in the near future. A few siRNA‐based antivirals have already

entered clinical trials, eg, ALN‐RSV01 for RSV targeting its nucleocap-

sid gene (phase II),118 NucB1000 directed against 4 different targets

(Pre‐C, Pre‐S1, Pre‐S2, and X) of HBV (phase I),119 SPC3649 directed

against miR‐122 for HCV (phase II),120 pHIV7‐shI‐TAR‐CCR5RZ

targeting multiple genes (Tat, Tar, and CCR5) for HIV (phase I),121

and TKM‐Ebola directed against multiple transcripts (L, VP24, and

VP35) of EBOV (phase I).122

RNAi therapy has also been proved to be useful against animal

viruses such as Marek's disease virus in chicken,123 foot and mouth

disease virus in pigs,124 and O'nyong‐nyong virus in mosquitoes.125

The significance of RNAi in the treatment of viral infections was fur-

ther reviewed.20,126 Figure 4 briefly summarizes the role of gene

silencing in combating pathogenic viruses.
pment of RNA interference (RNAi)–based therapeutics against viruses.
A
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6 | DESIGN

Designing siRNAs with high antiviral activity is a challenging task.

There are many features that influence siRNA efficacy including GC

(guanine‐cytosine) content, nucleotides at siRNA termini, thermody-

namic properties, siRNA structure, and accessibility of the target

site.127,128 Also, the siRNAs should be developed against conserved

target sites to prevent viral escape due to mutations.129 It has been

suggested that a single target site might not be enough for durable

viral silencing so using multiple siRNAs against several target sites

can also prevent viral escape.19 In addition, chemically modified nucle-

otides can also be used to enhance the stability or reduce off‐target

effects of siRNAs,130-132 eg, modified siRNAs used against HBV infec-

tion were found to have significantly increased half‐life and activity in

human serum as compared with the unmodified siRNAs.133
7 | DELIVERY

Unaided siRNAs are not capable to penetrate the cellular membrane

due to their negative charge. Besides, siRNAs have been shown to

elicit immune response and are vulnerable to nuclease enzymes. Thus,

suitable delivery agents are required to efficiently transport the

siRNAs to the target cells. Delivery of siRNAs to the desired cells

can lessen the amount of siRNA necessary for silencing and also cir-

cumvent off‐target effects.20

Short interfering RNAs are delivered in a number of ways, eg, by

encapsulation in synthetic vehicles such as cationic liposomes/nano-

particles or siRNAs conjugated to cell penetrating peptides or specific

antibodies against the infected cells.134 Liposomes are frequently used

as delivery mediums for a wide range of drugs including siRNAs. This

method often involves cationic lipids to overcome the negative charge

associated with siRNAs.135 Lately, stable nucleic acid lipid particles

have been used to efficiently stabilize and transport siRNAs.136

Morrissey et al used stable nucleic acid lipid particles to deliver siRNAs

against HBV, which efficiently inhibited the virus in mice.137 Next, the

polymer‐based siRNA delivery vehicles (polyplexes) afford high struc-

tural and physicochemical flexibility while shielding the siRNAs against

nucleases.138 Likewise, inorganic nanoparticles generated from cal-

cium phosphate, gold, carbon, and iron oxides are sometimes pre-

ferred to transport siRNAs due to their small size and increased

permeability in comparison with liposomes and polyplexes. Occasion-

ally, surface ligands are incorporated with the nanoparticles to

enhance selective targeting of the diseased cells.139 Plasmid and viral

vectors are also used as expression cassettes for sustained silencing

effect. However, use of plasmids limits the delivery efficiency as
TABLE 2 Bioinformatics resources dedicated to the analysis, prediction,

S. No. Resource Description

1 siVirus Antiviral siRNA design

2 HIVsirDB HIV siRNA database

3 VIRsiRNAdb Viral siRNA database

4 VIRsiRNApred Viral siRNA prediction
compared with the viral vectors.140,141 Alternatively, direct injection

into the infected tissue may also help in targeting the specific cells.134
8 | BIOINFORMATICS RESOURCES

Although a large number of databases, design, and prediction algo-

rithms are available for mammalian siRNAs, very few bioinformatics

resources have been developed so far regarding viral siRNAs despite

their huge potential and data availability. The viral siRNA database,

available at http://crdd.osdd.net/servers/virsirnadb, covers the details

of siRNAs targeting 42 important human viruses. The database pro-

vides not only detailed information about siRNA sequence, target

virus and gene, cell line, assay, and inhibition but also useful siRNA

analysis tools including siTarAlign that aligns the siRNA sequence with

genome sequences of representative viruses.142 On similar lines, the

HIV siRNA database, available at http://crdd.osdd.net/raghava/hivsir,

furnishes details of experimentally tested siRNAs/short hairpin RNAs

aiming diverse HIV genome segments. Further, the “HivsirMut”

subdatabase, accessible at http://crdd.osdd.net/raghava/hivsir/hiv‐

esc‐seq.php, provides information of escape mutations together with

nucleotide mismatch amid the target genes and the siRNA molecules

and their effect on siRNA efficacy.143

As all siRNAs developed to inhibit a certain gene are not equally

successful, a variety of wide‐ranging siRNA design rules and predic-

tion methods have been published. The most basic procedures for

siRNA design were grounded on frequency of certain nucleotides at

multiple locations in siRNA sequence as anticipated by Elbashir

et al,144 Reynolds et al,145 Ui‐Tei et al,146 Amarzguioui et al,147 and

Jagla et al.148 siVirus web server, accessible at http://sivirus.rnai.jp,

makes use of these guidelines to select effective siRNAs against

viruses. siVirus provides siRNA sequences directed against conserved

regions of viruses like HIV, HCV, INFV, and SARS‐CoV with minimum

off‐target effects.149 Although many machine learning techniques like

boosted genetic programming,150 artificial neural network,151 and

support vector machine152 have been used to design mammalian

siRNAs, however, their performances were not satisfactory for viral

siRNAs. This may be due to the fact that these methods were not

trained on viral siRNAs. Viral siRNA predictor, available at http://

crdd.osdd.net/servers/virsirnapred, the original algorithm for calculat-

ing inhibition potential of viral siRNAs, is a support vector machine–

based method for predicting the activity of viral siRNA. This algorithm

was developed using published viral siRNAs using many features such

as nucleotide frequency, thermodynamic factors, and nucleotide loca-

tion to predict the competence of siRNAs targeting pathogenic

viruses.153 These online resources (Table 2) will facilitate the
and archival of antiviral short interfering RNAs (siRNAs)

URL Reference

http://sivirus.rnai.jp/ 149

http://crdd.osdd.net/raghava/hivsir 143

http://crdd.osdd.net/servers/virsirnadb/ 142

http://crdd.osdd.net/servers/virsirnapred/ 153

http://crdd.osdd.net/servers/virsirnadb
http://crdd.osdd.net/raghava/hivsir
http://crdd.osdd.net/raghava/hivsir/hiv-esc-seq.php
http://crdd.osdd.net/raghava/hivsir/hiv-esc-seq.php
http://sivirus.rnai.jp
http://crdd.osdd.net/servers/virsirnapred
http://crdd.osdd.net/servers/virsirnapred
http://sivirus.rnai.jp/
http://crdd.osdd.net/raghava/hivsir
http://crdd.osdd.net/servers/virsirnadb/
http://crdd.osdd.net/servers/virsirnapred/
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researchers in selecting or designing efficient siRNAs for antiviral

therapeutic development.
9 | LIMITATIONS AND FUTURE
IMPLICATIONS

Short interfering RNA–mediated gene silencing has surfaced as a potent

strategy to study cellular networks as well as to precisely knockdown

the disease causing factors. However, siRNAs are confronted by a few

shortcomings like virus escape, inefficient cellular uptake, poor stability,

off‐target effects, and immunostimulation.154-156 Virus escape can be

overcome by targeting conserved viral genes149 or those factors

involved in negative‐feedback regulation.3 Cellular uptake can be

improved by using synthetic nanoparticles composed of polymers,

lipids, and conjugates and also by incorporating cell‐specific targeting

ligands in the carriers.140 As far as siRNA stability is concerned, chemical

modifications like the 2′‐fluoro and thioate linkagesmay be used to pro-

long the half‐life of siRNAs.157 Also, detailed identification of the cellu-

lar pathways of immunorecognition of RNA can allow the development

of methods to avoid immunostimulatory oligonucleotide motifs during

siRNA design.158 Also, multiple siRNA expression vectors may be used

tomaximize the long‐term inhibition.159 It would also be helpful tomake

use of bioinformatics approaches to identify potential target sites as

well as to design siRNAs with optimum features for preliminary

experiments.160
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