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Multiomics data integration unveils core transcriptional
regulatory networks governing cell-type identity
Sascha Jung1 and Antonio del Sol 1,2,3,4✉

A plethora of computational approaches have been proposed for reconstructing gene regulatory networks (GRNs) from gene
expression data. However, gene regulatory processes are often too complex to predict from the transcriptome alone. Here, we
present a computational method, Moni, that systematically integrates epigenetics, transcriptomics, and protein–protein interactions
to reconstruct GRNs among core transcription factors and their co-factors governing cell identity. We applied Moni to 57 datasets of
human cell types and lines and demonstrate that it can accurately infer GRNs, thereby outperforming state-of-the-art methods.
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INTRODUCTION
Cellular phenotypes are characterized by stable gene expression
profiles maintained by a set of transcription factors (TFs) that
jointly determine cell identity. Together with other co-factors,
these identity TFs form a regulatory core network, which is shaped
by the epigenetic landscape1–3. In particular, the epigenetic
landscape, defined by epigenetic modifications, chromatin acces-
sibility, and chromatin conformation, determines phenotype-
specific active regulatory regions of each core TF4. In particular,
in contrast to active promoter regions shared by various cell and
tissue types, enhancer regions modulate phenotype-specific
expression profiles due to their phenotype-specific selection5.
In the past decades, a wealth of computational methods has

been developed that aim at identifying regulatory interactions
between genes6–11. However, these methods require tremendous
amounts of transcriptomics data and cannot provide information
about the active regulatory regions, an issue that even new
technologies such as single-cell profiling do not mitigate.
To address these shortcomings, we propose Moni (Multi-omics

network inference), a computational method that systematically
integrates histone modification, chromatin accessibility, and
transcriptomics data with a global atlas of TF-binding events,
enhancer–promoter interactions, and protein–protein interactions
across diverse cell types and lines, obtained from ENCODE12, the
Roadmap Epigenomics Project13 and the Blueprint database14, in
order to reconstruct phenotype-specific core regulatory networks.
As a result, Moni provides a comprehensive map of the
phenotype-specific core regulatory network including regulation
at distal enhancer regions and the cooperativity of TFs in the
regulation of target genes. With the steady increase in epigenetic
profiling, we expect Moni to be of general utility for the molecular
characterization of cellular phenotypes and to aid in the
identification of key regulators.

RESULTS AND DISCUSSION
Given a particular phenotype, gene regulatory network (GRN)
reconstruction by Moni involves three main steps (Fig. 1a). Firstly,
core TFs are detected by comparing the expression of each TF to
their expression in a background datasets of other cell types and

lines assembled from ArchS4 (ref. 15). Based on a previous study
demonstrating that the TFs with the highest phenotypic specificity
are most likely to be essential determinants of cell identity16, the
10 TFs with the highest phenotypic specificity are selected as core
TFs. In addition, potential co-factors are detected, i.e., TFs that are
significantly more specific to the phenotype than their expected
median specificity. Secondly, active promoters and enhancers of
core TFs and co-factors are identified. Promoter regions are
considered to be active if they overlap with at least one H3K4me3
peak while potential enhancers are associated to TFs on the basis
of the GeneHancer database17 and deemed active if they overlap
with at least one H3K27ac peak. Finally, directed interactions
among core TFs and co-factors are inferred if they satisfy each of
the following conditions: (1) the promoter of the target TF is
active, (2) the interaction is supported by a (non-phenotype-
specific) ChIP-seq peak in the promoter or any active enhancer
region of the target TF, and (3) the supporting ChIP-seq peak falls
within an accessible chromatin region. For interactions within the
same genomic regions, i.e., enhancer or promoter, cooperative
and competitive TF regulation is determined by the overlap of
supporting ChIP-seq peaks and whether a protein–protein
interaction among the TFs has been reported in databases
(Supplementary Fig. 1).
We first set out to validate the accuracy of the reconstructed

regulatory interactions in three well-characterized cell lines,
namely H1 (embryonic stem cells), GM12878 (B-lymphocytes),
and HepG2 (liver cancer), and compared the performance to six
state-of-the-art methods including GENIE3 (ref. 6), RTN9,10,
ARACNE18, and Minet8. Cell-type-specific TF ChIP-seq data were
collected from Cistrome19 and ENCODE12 and restricted to TFs in
the networks reconstructed by each individual method. Compar-
ison of predicted and validated interactions in the promoter
regions resulted in an average F1 score of 0.84 of Moni (Fig. 1b). In
contrast, the best performing state-of-the-art methods, ARACNE
and Minet, only achieved average F1 scores between 0.31 and
0.44 (Fig. 1b).
Next, we validated the enhancer–promoter assignment by our

method in five cell lines and types, namely H1, IMR90 (lung
fibroblast), in vitro-differentiated mesenchymal and neural stem
cells, and in vitro-differentiated trophoblast, using promoter-
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capture Hi-C datasets20. As a result, we were able to validate on
average 78.6% of enhancer–promoter interactions with up to 95%
validated interactions in neural stem cells (Fig. 1c). Moreover, the
overall distribution of enhancers in reconstructed GRNs of 54 cell
lines and types from ENCODE12, Roadmap Epigenomics13, and
Blueprint14 follows an exponential distribution where most of the
TFs have only one or two enhancers (Supplementary Fig. 2), which
is consistent with previous experimental studies21.
In addition to validating interactions and enhancer–promoter

assignments, we assessed the selection and reproducibility of core
TFs by employing the reconstructed networks for 54 cell lines and
types. Projecting the incidence matrix of TFs and cell types into
planar space reveals a homogeneous clustering by cell types,
except for embryonic and cancer samples that are clustered
together due to their share of co-factors (Fig. 1d). Of note, the
clustering of embryonic and cancer samples can be further
divided into smaller sub-clusters of samples of the same cell type
or lineage. For instance, the cancer cell lines MCF-7, PANC-1, and
PC3 are closely related to neonatal foreskin keratinocytes. Indeed,
all of these cells possess an epithelial phenotype, which is
reflected in the TFs selected by Moni. Similarly, embryonic stem
cell-derived hepatocytes and HepG2 cells form a smaller sub-
cluster representing the hepatocyte identity while individual
differences in the selected TFs establish the differences between
cancer and normal samples. Moreover, hierarchical clustering of
the incidence matrix supports these conclusions by consistently
relating both broad cell types and subtypes, for example, induced
by treatment with compounds (Supplementary Fig. 3). In
particular, three clusters of TFs could be identified: (i) co-factors
predominantly active in blood cells, (ii) co-factors predominantly
active in non-blood cells, and (iii) phenotype-specific core TFs.
Importantly, Moni identified RUNX1, a known pioneer factor, as a
co-factor rather than a core TF due to its expression in multiple
cell types, such as fibroblasts, erythroblasts, and monocytes
(Supplementary Fig. 4). This finding supports Moni’s underlying

hypothesis that a combination of core TFs and core factors are
necessary to convey cell-type identity.
Next, we sought to establish the functional implication of core

TFs and co-factors in maintaining important cell-type functions.
Gene Ontology enrichment demonstrates that the selected TFs
are not only consistently selected but are also implicated in
important cellular functions (Supplementary Table 1). For example,
induced pluripotent stem cells express well known pluripotency
factors, i.e., NANOG, SOX2, and POU5F1, and are enriched in
categories corresponding to stem cell maintenance (Supplemen-
tary Fig. 4). Moreover, CD4-positive alpha–beta T cells are enriched
in “immune response”, “T cell activation” and, strikingly, “CD4-
positive, alpha–beta T cell activation”. Thus, Moni is able to select
core TFs and co-factors governing cell-type- and subtype-specific
biological processes.
After establishing Moni’s accuracy in selecting TFs governing

cell identity and its increased accuracy of reconstructed networks
between these TFs, we set out to validate the predicted TF
complexes jointly regulating their target genes. Due to the
increased availability of previous studies, we focused our analysis
on H1 embryonic stem cells. Moni identified in total 12 protein
complexes involving between 2 and 4 TFs. Of these, ten
complexes involve NANOG, SOX2, or POU5F1 and have been
validated in previous studies or curated databases. In addition, the
remaining two complexes, TCF12-TCF4 and TCF7L1-TCF7L2, have
been previously verified, as well (Supplementary Table 2).
In summary, Moni integrates multiple-omics datasets to provide

a more comprehensive characterization of the core GRN control-
ling cell identity. Although, we demonstrated the performance of
Moni using human cell types and lines in this study, it is applicable
to samples from other species. Especially for mouse cells, a multi-
omics data atlas can be readily compiled from data in ArchS4
(ref. 15), Cistrome19, String22, and Enhancer Atlas23. In addition,
publicly available query datasets are available from the Interna-
tional Human Epigenome Consortium24 (IHEC), ENCODE12, and

Fig. 1 Method overview and benchmark results. a Overview of the methods workflow. b Benchmark results against state-of-the-art
methods. Gold-standard networks for GM12878, H1, and HepG2 were from cell-type-specific TF ChIP-seq data and mapped to promoter
regions. Each methods ability to identify these interactions is expressed as the F1 score. c Benchmark results of enhancer–promoter
assignments of the proposed method. A gold-standard dataset of cell-type-specific promoter-capture Hi-C data was assembled H1 embryonic
stem cells, IMR90 fibroblasts, mesenchymal stem cells (MSC), neural stem cells (NSC), and trophoblasts. The percentage of validated
enhancer–promoter assignments is reported as a box plot showing the median (solid center line). Whiskers extend to 1.5 times the
interquartile range. Between 69% (MSC) and 95% (NSC) of interactions could be validated. d t-SNE plot of cell types and cell lines
reconstructed with Moni. Seven clusters were identified that are specific to different cell types.
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Gene Expression Omnibus25. Thus, we expect Moni to be a
valuable tool for obtaining mechanistic insights into key
transcriptional regulators in processes such as cell conversion
and disease phenotypes.

METHODS
Assembly of background distribution
We collected all human RNA-seq count data from ArchS4 (version 8, 2/
2020)15 and selected polyA and total RNA samples based on the provided
metadata. Next, we removed single-cell experiments and samples with a
low number of counts. Based on the distribution of counts of each sample,
we removed samples with less than 15,000 counts. PolyA and total RNA-
seq samples were divided into distinct sets for assembly of distinct
background distributions. We further removed correlated samples in each
set following two steps. First, select a random sample as the seed and,
second, iteratively add randomly selected samples whose Pearson
correlation coefficient to all already added samples is less than 0.7. After
removal of correlated samples, we end up with 583 uncorrelated polyA
RNA-seq samples and 2523 total RNA-seq samples serving as the
background distributions for each gene. Finally, all counts were
transformed to transcripts per million.

Identification of identity TFs and co-factors
Given a query RNA-seq sample, the appropriate background distribution,
i.e., polyA or total RNA, was selected based on the sequenced molecules.
For each TF, the following three steps were performed. First, an idealized
distribution was created for the query and background samples, having
probability “1” in place of the query sample and “0” otherwise. Second, the
background expression distribution was created for the combined query
and background samples. Probabilities are defined as the scaled
expression in each sample such that the sum of probabilities equals one.
Finally, Jennsen–Shannon divergence (JSD) was computed between the
idealized and background distributions. The 10 TFs having the lowest JSD
value were considered identity TFs.
For co-factors, JSD values were computed for each sample in the

background and ranked in ascending order, i.e the lowest JSD value has
rank 1. Given a query sample, for each TF a z-score was computed for the
rank its JSD value given the distribution of ranks in the background
sample. Each TF having a z-score less than −1.5 were considered as co-
factors.

Reconstruction of core GRNs
GRN reconstruction follows a four-step approach. First, identity TFs and co-
factors are selected as described before. Second, active proximal and distal
regulatory regions are identified for every identity TF and co-factor.
Promoters are defined on the basis of the Ensembl promoter annotation
from the Eukaryotic Promoter Database26 and truncated to 1500 bp up-
and 500 bp downstream. If a promoter overlaps at least one phenotype-
specific H3K4me3 peak, it is considered to be active. In addition, potential
enhancer regions are linked to active promoters by the Genehancer
database17. Enhancers are active if they overlap at least one phenotype-
specific H3K27ac peak and truncated to the peak regions. Inactive
enhancers are not considered. Third, phenotype-specific DNase-seq peaks
in active promoter and enhancer regions define potentially active
regulatory sites. Finally, (non-specific) TF ChIP-seq peaks from Cistrome19

overlapping with an active regulatory site establishes the GRN scaffold. The
GRN scaffold is further filtered such that only interactions between identity
TFs and co-factors are retained that satisfy the following condition. Each
co-factor included in the network must regulate at least one identity TF
and must be regulated by at least one identity TF.

Distinguishing cooperative and competitive TF binding
Cooperative and competitive binding events of overlapping TF ChIP-seq
peaks is distinguished on the basis of two criteria. First, a protein–protein
interaction is reported in the String database22 with a confidence score
greater than 800. Second, the TF ChIP-seq peaks reciprocally overlap by at
least 62%. The overlap threshold was defined on the basis of a positive and
negative gold-standard dataset including 755 and 336 protein-protein
interactions (PPIs), respectively27,28. The overlap of ChIP-seq peaks of
interacting and non-interacting TFs was computed in all cell lines and
types with available information in Cistrome19, resulting in a threshold of

62.43% above which TFs are more likely to interact than not (Supplemen-
tary Fig. 1). Multiple TFs fulfilling this condition in the same regulatory
region are detected by constructing an undirected graph where edges
represent an overlap of more than 62%. The connected components in this
graph are detected using the clusters-method of the R “igraph” library
(version 1.2.4.2) and are deemed cooperative, i.e., forming a complex for
regulation. All other TFs with overlapping ChIP-seq peaks are deemed
competitive.

Comparison to other methods
We compared the performance of our method to six other methods,
namely GENIE3 (ref. 6), C3Net7, Minet8, ARACNE18, RTN9,10, and CorTo11. Of
note, ARACNE was run using the implementation in the Minet R-package.
For GENIE3 and Minet, different algorithms were employed for recon-
structing networks. In particular, we employed GENIE3 using either the
random forests or extra trees algorithm with all TFs (parameter: “ALL”) or a
random selection of approximately 41 TFs (parameter: “SQRT”). For
comparison, interactions within the top quartile were considered. Further,
we employed Minet using the following configurations:

1. Method parameter: mrnet and estimator parameter either “spear-
man” or “pearson”.

2. Method parameter: aracne and estimator parameter either “mi.mm”
or “mi.empirical” using “globalequalwidth” discretization.

3. Method parameter: mrnetb and estimator parameter either “mi.mm”
or “mi.empirical” using “globalequalwidth” discretization.

Finally, CorTo requires the user to define a set of centroids, i.e., TFs
acting as regulators of other TFs, which we defined to be the identity TFs
and co-factors identified by our method.
Each method was run on three datasets of H1 cells, GM12878 cells, and

HepG2 cells for which we collected 7, 18, and 10 homogeneously
processed total RNA-seq datasets from ENCODE12. Since, except RTN, all
methods do not provide information about the directionality of the
interaction, both potential directionalities were considered for the
comparison.
Cell-line-specific gold-standard TF ChIP-seq datasets were collected from

Cistrome19 and ENCODE12 and restricted to peaks falling within promoter
regions of TFs. To obtain a fair comparison, promoter regions are defined
as described above, i.e., 1500 bp up- and 500 bp downstream of the TSS.

Gold-standard promoter-capture Hi-C datasets
Processed promoter-capture Hi-C datasets for H1, IMR90 (lung fibroblast),
in vitro-differentiated mesenchymal and neural stem cells and in vitro-
differentiated trophoblast were obtained from a previous study20. Due to
the heterogeneity observed in tissue samples from different donors, we
restricted the gold-standard dataset to cell lines and in vitro-differentiated
cells under controlled conditions.
For each sample, we obtained promoter–promoter and promoter–other

interactions and identified all interactions where one genomic regions is
located in an enhancer described in GeneHancer17 and the other region is
located within the promoter of a TF using bedtools version 1.2.4.2 (ref. 29)
and a custom R script.
We restricted the gold-standard datasets of every cell line/type to the

TFs in the reconstructed networks and computed the percentage of
correctly assigned enhancer regions.

Reporting summary
Further information on research design is available in the Nature Research
Reporting Summary linked to this article.

DATA AVAILABILITY
The datasets RNA-seq, DNase-seq, and histone modification ChIP-seq data analyzed
during the current study are available in ENCODE (https://www.encodeproject.org),
ArchS4 (https://amp.pharm.mssm.edu/archs4/), Blueprint Epigenomics (http://dcc.
blueprint-epigenome.eu/#/experiments), and Gene Expression Omnibus (https://
www.ncbi.nlm.nih.gov/geo/). The identifier of each dataset can be found in
Supplementary Table 3. The TF ChIP-seq data that support the findings of this
study are available from Cistrome but restrictions apply to the availability of these
data, which were used under license for the current study, and so are not publicly
available. Data are however available from the authors upon reasonable request and
with permission of Cistrome.
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CODE AVAILABILITY
The source code of Moni together with its documentation is available online at
https://github.com/saschajung/Moni.
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