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Abstract 

Background:  Metabolic reprogramming has been reported in various kinds of cancers and is related to clinical prog-
nosis, but the prognostic role of pyrimidine metabolism in gastric cancer (GC) remains unclear.

Methods:  Here, we employed DEG analysis to detect the differentially expressed genes (DEGs) in pyrimidine meta-
bolic signaling pathway and used univariate Cox analysis, Lasso-penalizes Cox regression analysis, Kaplan–Meier 
survival analysis, univariate and multivariate Cox regression analysis to explore their prognostic roles in GC. The DEGs 
were experimentally validated in GC cells and clinical samples by quantitative real-time PCR.

Results:  Through DEG analysis, we found NT5E, DPYS and UPP1 these three genes are highly expressed in GC. This 
conclusion has also been verified in GC cells and clinical samples. A prognostic risk model was established according 
to these three DEGs by Univariate Cox analysis and Lasso-penalizes Cox regression analysis. Kaplan–Meier survival 
analysis suggested that patient cohorts with high risk score undertook a lower overall survival rate than those with 
low risk score. Stratified survival analysis, Univariate and multivariate Cox regression analysis of this model confirmed 
that it is a reliable and independent clinical factor. Therefore, we made nomograms to visually depict the survival rate 
of GC patients according to some important clinical factors including our risk model.

Conclusion:  In a word, our research found that pyrimidine metabolism is dysregulated in GC and established a prog-
nostic model of GC based on genes differentially expressed in pyrimidine metabolism.
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Introduction
Gastric cancer (GC) remains one of the most com-
mon malignant diseases in the world [1, 2]. Although 
the treatment has made some progress over the dec-
ades, the 5-year survival rate of patients with advanced 
GC remains low [3]. Exploration and analysis of tumor 

prognostic biomarkers are crucial for assessing tumor 
progression, predicting the effect of treatment, reducing 
recurrence and mortality, and prolonging survival.

Metabolic reprogramming is one of the characteris-
tics of cancer, promotes tumor cell proliferation and 
survival [4, 5]. A lot of studies have shown that the 
metabolism of sugar, lipid and amino acid ultimately 
affects tumor growth through nucleotide metabolism 
[6–10]. Nucleotide metabolism is a multi-step process 
containing a variety of enzymes, including common 
catalytic enzymes and rate-limiting enzymes such as 
lyase, synthase, amidotransferase, dehydrogenase, etc. 
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Studies have also proved that restraining the activity of 
some rate-limiting enzymes in pyrimidine metabolism 
can directly affect tumor growth [11, 12]. For example, 
high expression levels of rate–limiting enzymes car-
bamoyl-phosphate synthetase 2, aspartate transcarba-
mylase, and dihydroorotase (CAD), deoxythymidylate 
kinase, 5ʹ-nucleotidase, cytosolic II (NT5C2), NT5C3, 
ribonucleotide reductase catalytic subunit M1 (RRM1), 
RRM2, thymidine kinase 1 (TK1), TK2, dihydroorotate 
dehydrogenase (DHODH), thymidylate synthetase, 
uridine-cytidine kinase 2 (UCK2), UCKL1 in pyrimi-
dine metabolism are described in liver cancer and lung 
cancer patients and related to poor clinical progno-
sis [11, 13]. Using pyrimidine metabolism rate-limit-
ing enzymes CAD and DHODH as targets to inhibit 
pyrimidine synthesis enhances the molecular thera-
peutic response to glioblastoma [14]. 5ʹ-nucleotidase 
ecto (NT5E) is related to poor clinical prognosis and 
regulates cell proliferation and migration in many can-
cers including GC [15, 16]. Historically, pyrimidine 
nucleotide synthesis has been the pathway of choice to 
target tumors, because pyrimidine nucleotides are the 
fundamental building block of DNA synthesis in cells 
and are increasingly needed by cancer cells due to its 
rapid growth [12]. Pyrimidine analogue 5-Fluoroura-
cil (5FU) is one of the most extensively used drugs in 
cancer treatment. 5FU can inhibit thymidylate syn-
thase and prevent the conversion of deoxyuridine acid 
to thymidylate, thus interfering with DNA synthesis 
[17]. It is commonly employed to treat breast, colorec-
tal, pancreatic, gastric, liver, and ovarian cancer [18]. 
However, pyrimidine analogues like 5FU not only tar-
get the pyrimidine metabolism of tumor cells, but also 
partially affect the pyrimidine metabolism of normal 
cells, causing great side effects [19]. Thus, it is of great 
significance to search for genes differentially expressed 
in pyrimidine metabolism according to different can-
cer types for the treatment and prognosis of different 
cancer.

In this research, we employed The Cancer Genome 
Atlas (TCGA) cohort to explore the differentially 
expressed genes (DEGs) in pyrimidine metabolism in 
GC and verified them through in vitro experiments. A 
prognostic risk models was established based on these 
DEGs. Stratified survival analysis, univariate and mul-
tivariate Cox analysis of this model confirmed that it 
is a reliable and independent clinical factor. Therefore, 
we made nomograms to visually depict the survival 
rate of GC patients according to some important clini-
cal factors including our risk model. These conclusions 
have been verified in the Gene Expression Omnibus 
(GEO) database. The detailed workflow chart of our 
article was shown in Fig. 1A.

Methods
Acquisition of information of GC patients
The training cohort of mRNA expression information 
and relevant clinical data of 375 cases of GC patients (10 
cases without survival information and 33 cases with sur-
vival time less than 30 days were eliminated later) and 32 
cases of normal people were all downloaded from TCGA 
(https://​www.​cancer.​gov/), which were expressed as frag-
ments per kilobase million (FPKM). Finally, 332 samples 
were included in the study. Common clinical character-
istics including age, sex, stage, TNM grade, clinical sur-
vival time, and clinical survival outcome were included 
in our analysis. The test cohort of mRNA gene expres-
sion data expressed as FPKM were downloaded from 
GSE15459 and GSE84433 cohort in GEO (https://​www.​
ncbi.​nlm.​nih.​gov/​geo/), which includes 615 cases of GC 
patients. The clinical features including age, gender and 
stage were download from their original paper [20, 21] 
0.57 pyrimidine metabolism pathway genes (map00240) 
were employed in KEGG (https://​www.​kegg.​jp).

Construction of correlation analysis and protein–protein 
interaction (PPI) network
After obtaining the data of DEGs in GC from TCGA, in 
order to analyze the relationship between these genes, 
we did correlation analysis employed R packages "ggstat-
splot" and "corrplot", Pearson’s correlation coefficients 
were used to analyze the correlation of the three genes. 
Using GeneMANIA database to process genes that co-
expressed with NT5E/UPP1/DPYS in GC samples and 
established protein–protein interaction analysis.

Establishment and verification of a prognostic risk model
The Wilcoxon method was utilized for DEGs analysis, 
and then the pheatmap software package of R software 
v1.2.1 was employed to draw the heat map. Univariate 
Cox analysis was performed on overall survival (OS) to 
screen DEGs with prognostic values. Lasso-penalized 
Cox regression analysis was utilized to remove redun-
dant genes with low impact, and a prognostic risk model 
was established on basis of the expression of residual 
DEGs mRNA. The obtained prognostic risk model was 
subsequently verified by the GSE15459 and GSE84433 
cohorts in GEO. We use the survminer package in the R 
program to test the capability of the model, and use the 
surv_cutpoint function to calculate the optimal cut-off 
value. According to this value, GC patients were divided 
into high risk cohort and low risk cohort. Subsequently, 
time-dependent receiver operating characteristic (ROC) 
curves were plotted with time ROC package to estimate 

https://www.cancer.gov/
https://www.ncbi.nlm.nih.gov/geo/
https://www.ncbi.nlm.nih.gov/geo/
https://www.kegg.jp
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Fig. 1  Differential gene expression analysis in the TCGA database. A Flow chart of the study. B Heatmap of differential gene expression in 
pyrimidine metabolism. C Unicox analyses of DEGs according to prognosis. D Kaplan–Meier survival curves of OS for these 3 genes in TCGA​
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the predictive power of the prognostic model. In order 
to assess the difference in overall survival (OS) between 
the high-risk cohort and the low-risk cohort, stratified 
Kaplan–Meier survival analysis was utilized.

Cox regression analysis
Univariate and multivariate Cox regression analysis were 
employed to test whether the prognostic risk model was 
an important and independent clinical factor. p < 0.05 was 
considered as statistically significant.

Gene set enrichment analyses (GSEA)
In order to explore whether GC pyrimidine metabo-
lism disorders will affect other signaling pathways, we 
performed GSEA analysis on the high-risk and low-
risk cohorts in the GEO and TCGA databases, respec-
tively. GSEAv4.1.0 tool was employed to combine with 
the KEGG gene set for GSEA analysis. p < 0.05 and 
FDR < 0.25 were considered as statistically significant.

Establishment and validation of a predictive nomogram
We established a nomogram model to evaluate the OS 
prognosis of GC patients via employing the rms pack-
age of R program. The coxph function of survival package 
was used to find the C index, which was used to meas-
ure the prediction ability and performance of the model. 
Then, the lrtest function of rms package was used to 
measure the advantages of each model.

Cell culture
One normal human gastric epithelial cell GES-1 and six 
GC cell lines MKN-28, MKN-45, MGC-803, HGC-27, 
BGC-823 and SGC-7901 were collected from the Affili-
ated Zhongshan Hospital of Xiamen University. GES-
1, MKN-28 and MKN-45 were cultured in RPMI 1640 
medium (Gibco, USA), MGC-803, HGC-27 and BGC-823 
were cultured in Dulbecco’s Modified Eagle’s medium 
(Gibco, USA), and SGC-7901 was culture in Minimum 
Essential Medium (Gibco, USA) in a humid environment 
with 5% CO2 and 37  °C. All types of media contained 
100 U/mL penicillin–streptomycin solution (Meilun Bio-
tech, Dalian) and 10% fetal bovine serum (Gibco, USA).

Human GC samples
20 pairs of GC tissues and matching normal tissues (At 
least 5  cm or farthest from the tumor) were collected 
from the Department of Gastrointestinal Surgery, Affili-
ated Zhongshan Hospital of Xiamen University.

RNA extraction and quantitative real‑time (q‑RT)PCR
Following instructions provided by the manufacturer, 
TRIzol reagent (TransGen Biotech, Beijing) was uti-
lized to extract RNA from cells and tissues. The cDNA 

Synthesis Supermix kit (TransGen Biotech, Beijing) was 
utilized to reverse transcribe 1  µg RNA into cDNA. 2X 
SYBR Green qPCR Master Mix (Bimake, USA) was uti-
lized to carry out real-time PCR on a BioRad Biosystems 
7500 instrument (Bio-Rad, Hercules, CA) in triplicate. 
β-actin or 18 s-rRNA was employed to normalize the lev-
els of RNA measured. All operations should be done on 
ice as much as possible. The sequences of the primers are 
as follows: β-actin-F: GGA​CTT​CGA​GCA​AGA​GAT​G and 
β-actin-R: AGC​ACT​GTG​TTG​GCG​TAC​AG; 18 s-rRNA-
F: AGT​CCC​TGC​CCT​TTG​TAC​ACA and 18  s-rRNA-R: 
GAT​CCG​AGG​GCC​TCA​CTA​AAC; NT5E-F: TCT​TCT​
AAA​CAG​CAG​CAT​TCC and NT5E-R: CAT​TTC​ATC​
CGT​GTG​TCT​CAG; UPP1-F: ACT​GCC​CAG​GTA​GAG​
ACT​ATC and UPP1-R: CTG​CAC​CAG​CTT​CTT​GTT​
AAG; DPYS-F: ACC​CGA​CTT​CCT​CAT​GAA​TCT and 
DPYS-R: CAT​CCG​ATC​TTC​AAC​ACC​ATTCA.

Western blot analysis
GC cells were laid in 10 cm culture dishes and cultured to 
75% to 90% confluency and harvested in lysis buffer con-
taining proteases and phosphatase inhibitors, leave it at 4 °C 
for about 45 min. The protein was quantified by BCA analy-
sis. Then the proteins were isolated on SDS-PAGE and then 
transferred onto polyvinylidene difluoride (PVDF) mem-
branes, these membranes were probed using primary anti-
bodies and secondary antibodies according to the supplier’s 
recommendations: DPYS (1:500, Proteintech, 13,237–1-AP, 
Wuhan, Hubei), NT5E (1:1000, Abcam, ab133582, Suite 
Cambridge, USA), UPP1 (1:1000, Abcam, ab128854, Suite 
Cambridge, USA), β-actin (1:1000, #3700, CST, USA), anti-
rabbit secondary antibody (Abcam, ab150077, Cambridge, 
USA) and anti-mouse secondary antibodies (Bio-Rad, 
1706516, Hercules, CA). Finally, enhanced chemilumines-
cence (ECL) was used to observe the results.

Immunohistochemistry
Briefly, the collected tissues were fixed, embedded, and 
mounted on slides. After deparaffinization and rehydra-
tion were finished, the antigen was repaired by gastric 
enzyme (Maxim, DIG-3009, Fuzhou, Fujian). Later, an 
immunohistochemical UltraSensitive Sp kit (Maxim, 
KIT-9730, Fuzhou, Fujian) was used to suppress the 
endogenous peroxidase activity in tissues and block the 
sections. The indicated antibody was applied in the cold 
room overnight. The corresponding secondary antibody 
was used on the next day. Finally, an Enhanced DAB 
chromogenic kit (Maxim, DAB-2032, Fuzhou, Fujian) 
was used to achieve the detection. Hematoxylin and 
Hydrochloric acid ethanol were used to stain and treat 
the slides which were then mounted and observed under 
microscopy.
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Results
DEGs related to GC pyrimidine metabolism in TCGA​
To seek DEGs in GC pyrimidine metabolism, we com-
pared mRNA expressions in 332 GC tissues and 32 nor-
mal gastric tissues in TCGA. Through univariate Cox 
regression analysis, 3 genes (NT5E, DPYS and UPP1) 
connected with pyrimidine metabolism were detected 
(Fig.  1B, C). Survival analysis and Lasso-penalized Cox 
analysis showed that these three genes in GC pyrimidine 
metabolism were closely connected with GC prognosis 
(Fig.  1D, Additional file  1: Fig. S1). Among the 3 genes 
related to pyrimidine metabolism, NT5E and dihydro-
pyrimidinase (DPYS) participate in the catabolism of 
pyrimidine, and uridine phosphorylase 1(UPP1) is an 
enzyme in the salvage synthesis pathway of pyrimidine 
nucleotides. We then analyzed the associations between 
these three genes. We found that NT5E is positively cor-
related with DPYS and UPP1 UPP1(r = 0.12, p = 0.03; 
r = 0.34, p = 1.5E-10, respectively), while the DPYS is 

negatively correlated with UPP1(r = − 0.12, p = 0.75) 
(Fig.  2A, B). To further analyze the functional correla-
tion of the three genes, we established a PPI network by 
employing GeneMINEA database. These three key genes 
and their co-expressed genes are mainly involved in fluo-
rouracil activation and promotion of pyrimidine metabo-
lism (Fig. 2C).

Experimental validation of DEGs in GC cells and tissues
We also performed qRT-PCR to verify the reliability 
of DEGs calculated by bioinformatics methods. We 
found that these genes were highly expressed in most 
of GC cell lines and 20 pairs of GC tissue samples 
(Fig.  3A, B). This is consistent with our bioinformat-
ics results. Meanwhile, western blot analysis revealed 
that the protein level of these 3 genes were also highly 
expressed in most of GC cell lines and tissue samples 
(Fig. 3C–F). And, the results of immunohistochemistry 

Fig. 2  The mRNA expression correlation of these DEGs and PPI network in GeneMANIA database. A Correlation plot of NT5E, DPYS and UPP1. B 
Pearson’s correlation analysis of expression levels of NT5E, DPYS and UPP1. C PPI network between NT5E, DPYS and UPP1 with their co-expression 
genes
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were consistent with the results of qRT-PCR and west-
ern blot (Fig. 3G, H). These results indicate that DPYS, 
NT5E and UPP1 are highly expressed in both RNA and 
protein levels in GC, which may be related to the for-
mation and susceptibility of GC.

Establishment of a prognostic risk model in TCGA​
On basis of the relationship between the mRNA expres-
sion levels of these three genes and the prognosis of GC, 
we established a prognostic risk model. The model was 
conducted as: prognostic risk score = 0.1661*NT5E + 0.10

Fig. 3  The DEGs in pyrimidine metabolism are overexpressed in GC. A The mRNA expressions of pyrimidine metabolism (NT5E,UPP1 and DPYS) 
were accessed in six GC cell lines (including HGC-27, MGC-803, SGC-7901, BGC-823, MKN-45 and MKN-28) and one immortalized normal gastric 
epithelial cell GES-1. B The mRNA expressions of pyrimidine metabolism were also compared between 20 pairs of GC tumor tissues and adjacent 
non-tumor gastric tissues. C, D The expression of NT5E,UPP1 and DPYS were analyzed by western blot between normal gastric cell and GC cell lines. 
E–H The expression of NT5E, UPP1 and DPYS was analyzed by western blot and immunochemistry in 20 pairs of GC tumor tissues and adjacent 
non-tumor gastric tissues. Data are presented as the mean ± SD. *p < 0.05; **p < 0.01; ***p < 0.001: ****p < 0.0001
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Fig. 4  Risk score model, time-dependent ROC analysis, and survival analysis for the prognostic risk model. A–C Risk scoring model, time-dependent 
ROC analysis and survival analysis of genes related to pyrimidine metabolism in TCGA. E–G Risk scoring model, time-dependent ROC analysis and 
survival analysis of genes related to pyrimidine metabolism in GEO
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07*DPYS + 0.1877*UPP1. In this risk model, GC patients 
were segmented into high-risk cohort and low-risk cohort 
according to the optimal cutoff value of 6.30 (Fig. 4A). In 
the middle of Fig. 4A, we can see that patients in high-risk 
cohort had lower survival times than the low-risk cohort. 
The difference in expression of each gene between high-
risk cohort and low-risk group was shown at the bot-
tom of Fig. 4A and Additional file 2: Fig. S2A, all of these 
3 genes are highly expressed in high-risk GC cohort. 
According to the ROC curve, the area under the curve 
(AUC) of OS in 1, 2, and 3 year were 0.62, 0.587 and 0.62, 
respectively, indicating that our model was relatively reli-
able (Fig. 4B). The OS in high-risk cohort was obviously 
lower than the low-risk cohort too (p = 0.0012, Fig.  4C). 
In conclusion, these results suggest that this prognostic 
risk model based on DEGs in pyrimidine metabolism can 
indeed guide the prognosis of GC patients.

Validation of the prognostic risk model in GEO
We used clinical information from GSE15459 and 
GSE84433 as test databases to verify the validity of prog-
nostic models for predicting GC outcomes. Similarly, GC 
patients were segmented into high-risk cohort and low-
risk cohort with cutoff score at 8.0 (Fig.  4D, Additional 
file  2: Fig. S2B). According to the ROC curve, the AUC 
of OS in 1, 2, and 3  year were 0.614, 0.608, and 0.614, 
indicating that our model was quite reliable in DEO too 
(Fig. 4E). The results are consistent with those in TCGA, 
all of these 3 genes are highly expressed in GC, patients 
in high-risk cohort had lower survival times than the 
low-risk cohort in this model (Fig. 4D, F).

The prognostic risk model is an important 
and independent clinical feature in GC
The OS was stratified according to general clinical fea-
tures, and the difference between the low-risk cohort 
and the high-risk cohort was analyzed. According to 
subgroup classification including age, gender, tumor 
stage and grade, the OS in high-risk cohort was gener-
ally worse than that in low-risk cohort (Fig. 5A). Similar 
result can be obtained in the GEO database. However, 
since there is no grade information in GEO database, we 
could not perform stratified survival analysis for grade in 
GEO database (Fig. 5B).

Next, in order to judge whether the model is an impor-
tant and independent clinical feature of GC prognosis, 
we carried out univariate and multivariate Cox regression 
analysis in TCGA and GEO respectively. In TCGA, the 
hazard ratio (HR) value of the risk score model was 1.152, 
and the 95% confidence interval (CI) was 1.061–1.250 in 
univariate analyses (p < 0.001) (Fig.  6A), suggesting that 
risk model was an important clinical feature. Similar 
conclusions were also verified in the GEO database, the 

hazard ratio (HR) value was 1.114, and the 95% CI was 
1.056–1.176 (p < 0.001). It was the second most important 
clinical feature after TNM stage (Fig.  6B). In multivari-
ate Cox regression analysis, the HR of this model based 
on pyrimidine metabolism was 1.092 and 95% CI was 
1.002–1.190 (p = 0.045) in TCGA (Fig.  6C), and the HR 
of the risk model was 1.112 and 95% CI was 1.054–1.174 
(p < 0.001) in GEO (Fig.  6D). These suggested that this 
model could be utilized as an independent clinical feature 
to judge the prognosis of GC. We have noticed that there 
are some differences between the results in TCGA and 
GEO databases. For example, the clinical factor TNM 
stage was not an independent factor in TCGA database, 
but it was indeed shown as an independent clinical factor 
in GEO database, which may be related to the difference 
of cases contained in the two databases.

Establishment and validation of a prognostic nomogram
According to above analysis, we know that prognostic 
risk model is one of the important and independent clini-
cal features that can guide the prognosis of GC. Here we 
carried out a multivariate Cox regression on this model 
and found that the AUC of this model was higher than 
other clinical indictors, showing that the prognostic risk 
model was comparatively dependable (Fig. 7A, B). There-
fore, for purpose of intuitively describing the influence 
of various clinical factors on patients’ OS, including the 
prognostic risk model we established. We made nomo-
grams to predict the incidence of OS at 1, 2, and 3 years 
in the TCGA and GEO databases, respectively (Fig. 7C, 
D).

GSEA pathway analysis
To identify pathways that might be affected by pyrimi-
dine metabolism disorders, GSEA pathway analysis was 
carried out. The five representative pathways enriched 
in the high-risk cohort were apoptosis, pathogenic 
Escherichia coli infection, pyrimidine metabolism, 
sphingolipid metabolism and vibrio cholerae infection 
(Additional file  3: Fig. S3A, B), the five representative 
pathways enriched in low-risk cohort were drug metabo-
lism cytochrome p450, histidine metabolism, long term 
depression, metabolism of xenobiotics by cytochrome 
p450 and tryptophan metabolism, but the five represent-
ative pathways enriched in the low-risk cohort were not 
statistically significant in TCGA (Additional file  3: Fig. 
S3C, D).

Discussion
In our study, we established a prognostic risk model 
based on three genes (NT5E, UPP1 and DPYS) found to 
be associated with GC pyrimidine metabolism and dem-
onstrated that this prognostic risk model is a reliable and 
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Fig. 5  Stratified Kaplan–Meier curves of OS between high-risk group and low-risk group. A Kaplan–Meier curves of OS differences stratified by age, 
gender, tumor grade and TNM stage between high-risk group and low-risk group in TCGA. B Kaplan–Meier curves of OS differences stratified by 
age, gender, tumor grade and TNM stage between high-risk group and low-risk group in GEO



Page 10 of 13Wu et al. Cancer Cell International          (2021) 21:668 

independent clinical feature of GC. We also performed 
GSEA pathway analysis to explore the pathways that may 
be affected by the disorder of pyrimidine metabolism. 
Finally, we made a nomogram to visually map the impact 
of the model and other important clinical measures on 
the OS of patients.

Although there have been reports that these three 
genes are more or less involved in cancer progression, we 
are the first to integrate all DEGs in pyrimidine metabo-
lism. NT5E is a cell surface protein anchored by glyco-
sylphosphatidylinositol [22, 23]. It is the first crucial 
enzyme in the purinergic signaling pathway [24, 25]. In 
recent years, purinergic signaling pathways with extra-
cellular adenosine, AMP and ATP as the main signal-
ing molecules have been found to play a significant part 
in the progression of some tumors, including GC [26]. 
NT5E overexpression was observed in GC tissues and 
serum, and it is connected to the clinical progression 
of GC patients [15, 16]. Overexpression of NT5E can 
promote tumor proliferation, migration and invasion 
[27, 28]. DPYS (also known as DHP) is a zinc metallo-
enzyme, which is highly expressed in tumors compared 

with the matching normal tissues, whose role is to 
degrade dihydropyrimidine [29]. Excessive accumulation 
of dihydropyrimidine will facilitate the constitution of 
DNA–protein crosslinks, leading to DNA replication and 
transcriptional stress [29]. Studies have shown that DPYS 
subtype DPYSL3 was a promising biomarker for GC 
malignant behavior [30]. UPP1 catalyzes the reversible 
phosphorylation of uridine or 2’- deoxyuridine to uracil 
and ribose-1-phosphate (or deoxyribose-1-phosphate), 
plays an essential role in pyrimidine recovery and uri-
dine homeostasis regulation [31]. UPP1 as an oncogene 
has been revealed to be involved in numerous malignant 
tumors, for example, colorectal cancer and thyroid can-
cer, etc. [32] Researches have investigated the connec-
tions between the expression of UPP1 and the prognosis 
of cancer patients. They demonstrated that the higher the 
level of UPP1 in the tumor, the worse the prognosis and 
the shorter the survival time of cancer patients [33]. But 
genes are not an isolated island, the interactions between 
genes form a beautiful pulsating map of life. Although 
all three genes have been reported to be involved in the 
progression of GC, further experiments are needed to 

Fig. 6  Univariate and multivariate analyses of factors associated with survival. A Univariate analysis of overall survival risk factors in pyrimidine 
metabolism in TCGA. B Univariate analysis of overall survival risk factors in pyrimidine metabolism in GEO. C Multivariate analysis of overall survival 
risk factors in pyrimidine metabolism in TCGA. D Multivariate analysis of overall survival risk factors in pyrimidine metabolism in GEO
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determine whether these genes can conjointly target GC 
or other types of cancer.

Our research also has many shortcomings. We noticed 
that except for NT5E, which is a key enzyme in puriner-
gic signaling pathway, neither UPP1 nor DPYS are key 
enzymes in pyrimidine metabolism. According to pre-
vious reports, rate-limiting enzymes such as CAD and 
DHODH are essential in the progress of tumors. In 
addition to the selection of samples, the TCGA dataset 
lacks clinical information on the clinical variables asso-
ciated with tumor progression and postoperatively, such 
as tumor size, vascular invasion, recurrence of GC, and 
postoperative treatment, which may also be influencing 
factors [34]. Therefore, our research cannot eliminate 
the survival of patients may be influenced by postopera-
tive treatment or other key clinical features. And due to 
incomplete clinical data, we excluded some part of the 
TCGA cohort for further analysis, this may influence the 

accuracy of the statistics too. In addition, like all studies 
that have identified genes in other metabolic pathways 
as prognostic factors for GC [35, 36], since our prog-
nostic risk model was constructed by us through the 
online database, its role in the current reality is not clear, 
which needs to be further confirmed by our subsequent 
experiments.

In conclusion, our research shows that pyrimidine 
metabolism is disturbed in GC, and predicts GC progno-
sis. The prognostic risk model composed of three pyrimi-
dine metabolism genes (NT5E, UPP1 and DPYS) could 
be used as an important and independent biomarker for 
predicting GC prognosis.
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