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Abstract

Atherosclerosis is an aging disease in which increasing age is a risk factor. Modified low-density lipoprotein

(LDL) is a well-known risk marker for cardiovascular disease. High-plasma LDL concentrations and

modifications, such as oxidation, glycosylation, carbamylation and glycoxidation, have been shown to be

proatherogenic experimentally in vitro and in vivo. Atherosclerosis results from alterations to LDL in the

arterial wall by reactive oxygen species (ROS). Evidence suggests that common risk factors for atherosclerosis

raise the likelihood that free ROS are produced from endothelial cells and other cells. Furthermore, oxidative

stress is an important factor in the induction of endothelial senescence. Thus, endothelial damage and cellular

senescence are well-established markers for atherosclerosis. This review examines LDL modifications and

discusses the mechanisms of the pathology of atherosclerosis due to aging, including endothelial damage and

oxidative stress, and the link between aging and atherosclerosis.
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E
vidence from the past several decades has sug-

gested that modification of low-density lipoprotein

(LDL) � especially oxidative changes � mediates

the pathogenesis of atherosclerosis in humans and

animals (1, 2). Although aging is a major risk factor that

precipitates atherosclerosis, there are many other factors

that can cause the disease (3, 4). The major risk factors

for atherosclerosis are serum lipid concentrations, smok-

ing, and hypertension (5).

Gender appears to be another determinant (6). Men are

approximately twice as likely to develop atherosclerosis

compared with age-equivalent women. Yet, merely half of

the variability in the incidence of atherosclerosis and

coronary heart disease is because of these factors. Genetics

might have some influence, but age-related conditions

might have a more prominent function for the develop-

ment of the disease (7). Furthermore, excess food intake

affects obesity and diabetes, both of which are well-known

independent risk factors of atherosclerosis and growing

epidemics in an aging population (8).

The presence of multiple risk factors can accelerate the

progression of atherosclerosis. Modified LDL has a

significant function in the development of endothelial

dysfunction (9), which is considered an early marker of

atherosclerosis (10). More extensive modification of LDL

induces oxidative stress and accelerates senescence in

human endothelial progenitor cells and endothelial cells

(11, 12). The hallmark of endothelial dysfunction is im-

paired endothelium-dependent vasodilatation, which is

mediated by nitric oxide (NO). A defect in NO production

or activity has been proposed as a significant mecha-

nism of endothelial dysfunction and a contributor to

atherosclerosis (10).

The focus of this study is to discuss the function of

protein modifications, particularly those to LDL, in aging-

induced atherosclerosis, and how these molecules mediate

senescence-related signaling and endothelial damage dur-

ing atherosclerosis.

Chemical modifications to LDL related to

atherosclerotic processes

Cardiovascular disease (CVD) remains the leading cause

of mortality in developed countries, and LDL analysis is

one of the most widely used diagnostic indices to evaluate

and predict atherosclerosis risk (2). The levels of LDL and

other lipoproteins, however, usually have limited predic-

tive value because many factors affect LDL concentra-

tions in the arterial wall, the rate and extent of LDL
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modifications, and the accumulation of LDL in vascular

cells and disease progression (13).

Several chemically modified LDL species have been

reported since the 1970s, including oxidized LDL (oxLDL)

(14, 15), acetylated LDL (acLDL) (16, 17), ethylated (17),

methylated (17), and glycated LDL (gLDL) (18). Based

primarily on studies of oxLDL and acLDL, endothelial

cell injury by modified LDLs has been commonly accepted

to initiate atherosclerotic processes (19). These LDLs also

promote vascular injury by increasing oxidative stress and

accelerating senescence of endothelial progenitor cells

through modifications and damage to DNA (12).

It is widely believed that the modification of various

components of LDL alters the properties that contribute

to its atherogenic effects when interacting with cells of the

arterial wall. Specifically, changes in apoliprotein B

(apoB; the surface protein of LDL) destroy the ability

of LDL to bind LDL receptor (20). LDL modifications

and especially oxidation might mediate the induction of

atherogenesis through scavenger receptors (SRs) on

macrophages and endothelial cells (21).

Several pathways and processes lead to harmful

modification of LDL (Fig. 1).

LDL oxidation

In 1981, Henriksen et al. (22) discovered that native LDL,

which is incubated overnight with cultured endothelial

cells, converts to a form (endothelial cell-modified LDL)

Fig. 1. LDL modifications. (a) Oxidation: oxidized product-induced native LDL oxidation and modifications of apoB amino
acids. (b) Glycosylation: modification of LDL and apoB by advanced glycosylation end-products (AGEs). (c) Carbamylation:
cyanate from urea, which binds to NH2 groups in proteins � inducing their carbamylation � is generated by spontaneous
dissociation from urea.
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that is recognized specifically by peritoneal macrophages

with high affinity. They proposed that this endothelium-

induced modification is the step that permits rapid LDL

uptake and foam cell formation. Later studies reported

that during its incubation with endothelial cells (and with

several cell types), LDL undergoes oxidative changes (23),

constituting the basis of the oxidative modification

hypothesis of atherogenesis.

Oxidative modification of lipid and proteins occurs

frequently in many pathophysiological processes in vivo,

and it is well established that LDL undergoes oxidative

alterations that confer atherogenic properties to it (24).

Under oxidative stress (free radicals, hydroperoxides,

and lipooxigenases), lipid molecules that contain native

lipids in LDL are easily oxidized. A variety of lipid

oxidation products is formed, and subsequently, apoB is

covalently modified by these oxidized lipids (25) (Fig. 1a).

OxLDL is taken up by SRs on macrophages, which then

become lipid-laden foam cells, the pathological hallmark

of early atherosclerotic lesions (26). The concentration of

LDL that is needed to induce foam cell formation (2 mg/

ml) is 40-fold greater than that of oxLDL (50 mg/ml) (27).

OxLDL has a wide range of properties that are expected

to be proatherogenic, many of which are affected by

oxidized phospholipids in oxLDL (28). Oxidized phos-

pholipid products are also the principal epitopes that are

recognized by autoantibodies as oxLDL and the major

structural feature by which SRs recognize oxLDL as a

ligand.

Recently, oxLDL has been associated with changes

in endothelial cell homeostasis through the suppression

of important endothelial microRNAs (miRNAs) (29).

Further, the miRNAs are a link between endothelial injury

and inflammation and can mediate inflammatory activa-

tion and lipid accumulation in macrophages during

atherosclerosis (29).

LDL glycosylation

Clinical studies have demonstrated increased levels of

advanced glycosylation end products (AGEs) on LDL

from diabetics compared to normal individuals (30).

AGEs accumulate continuously on long-lived vessel wall

proteins with aging and at higher rates in diabetes (31).

One of the mechanisms of accelerated atherosclerosis in

diabetes is the non-enzymatic reaction between glucose

and proteins or lipoproteins in arterial walls. The degree

of non-enzymatic glycation is determined primarily by

glucose concentrations and the time of exposure (31).

Although non-enzymatic glycosylation of LDL occurs in

all subjects, it has more adverse effects in people with

diabetes mellitus.

Glycosylation of LDL apoB (Fig. 1b) occurs mainly on

positively charged lysine residues in the putative LDL

receptor-binding domain, which is essential for the

specific recognition of LDL by LDL receptor (32). This

modification leads to a loss of electropositive charges on

gLDL, decreasing its affinity toward LDL receptor and

consequently increasing its mean lifetime in plasma (33).

Greater LDL glycosylation correlates with glucose levels,

and AGE�apoB levels are up to fourfold higher in

diabetic patients (30). Once formed, AGE-protein ad-

ducts are stable and virtually irreversible.

Glycosylation of apoB results in significant impairing

of LDL receptor-mediated uptake, decreasing the in vivo

clearance of LDL compared with native LDL (34). Thus,

gLDL is poorly recognized by LDL receptor and binds

preferentially to SRs on human macrophages. As LDL

glycosylation enhances its uptake by human aortic

intimal cells (30) and monocyte-derived macrophages

(35) on stimulation of foam cell formation, the recogni-

tion of gLDL by the SR pathway is believed to promote

intracellular accumulation of cholesteryl esters and

atherosclerosis.

Prolonged hyperglycemia is now recognized to be the

primary casual factor in the pathogenesis of diabetic

complications (36, 37). Hyperglycemia induces a large

number of alterations in vascular tissue that potentially

accelerate atherosclerosis. Two major mechanisms have

emerged that account for most of the pathological altera-

tions observed in the vasculature of diabetic animals and

humans: [1] non-enzymatic glycosylation of proteins and

lipids and [2] oxidative stress. Notably, these mechanisms

are not independent (38).

Another atherogenic effect of glycation is the increased

susceptibility of gLDL to oxidative modification (39)

(Fig. 2). Glycosylation process occurs on the apoB (40)

and phospholipid (30) components of LDL. Therefore,

glycation raises the susceptibility of LDL to oxidative

modification (41), which is considered a critical step in its

atherogenicity. Doubly modified LDL might have greater

pro-atherosclerotic potential compared with gLDL. A

number of reports from different groups have described

shortened oxidative lag periods during Cu2� -mediated

oxidation of gLDL and LDL in diabetic patients (42, 43).

Thus, glycosylation of LDL is not only noxious per se but

also it promotes oxidation of LDL.

LDL carbamylation

Carbamylation is a post-translational and non-enzymatic

modification in which amine-containing residues react

Fig. 2. LDL double modification. The glycation of LDL
particles renders it more prone to oxidation.
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with cyanate, a compound that derives from urea or

thiocyanate. The carbamylation of LDL occurs due to

spontaneous, non-enzymatic chemical modification of

apoB by urea-derived cyanate. Urea dissociates sponta-

neously to cyanate and ammonia in aqueous solutions,

elevating cyanate levels (OCN-) (44) (Fig. 1c). The active

form of cyanate, isocyanic acid, reacts irreversibly with

the NH2 and N-terminal groups of amino acids (45).

When a molecule of cyanate is removed by carbamyla-

tion, a new molecule of cyanate is formed to restore the

equilibrium between urea and cyanate. Carbamylation of

a protein is usually associated with a partial loss of

function (46, 47), but carbamylated proteins usually have

no positive effect in humans or animals and are

dispensable for normal metabolism.

Protein carbamylation is frequent in patients with

chronic renal failure (CRF) and heavy smokers (48).

CVD rates are up to 30 times higher in patients with

CRF compared with the general population, and morbid-

ity and mortality rates rise, even in the initial stages of the

disease (48, 49). In particular, the incidence of athero-

sclerosis is high in CRF patients with uremia, but the

pathogenic events that contribute to uremic atherosclerosis

are poorly understood (50). As suggested above, modified

LDLs are significant atherogenic factors (51, 52), and

carbamylated LDL (cLDL) has been recognized to be a

type of modified LDL (12). Essentially, carbamylation of

LDL could be is an important mechanism that impacts

high-risk atherosclerotic individuals with increased urea

(renal insufficiency) or thiocyanate (tobacco smoking).

LDL carbamylation is more extensive in patients with end-

stage kidney disease, especially those with atherosclerosis

(45, 53).

It remains unknown whether protein carbamylation

induces atherosclerosis and whether the atherogenic

process proceeds through LDL or other targets. Notwith-

standing, there is a report that demonstrates the role of

carbamylated plasma proteins have been implicated in the

development of cardiovascular complications (54). For

animals, uremic mice with high-plasma cLDL have more

severe atherosclerosis (3). However, future therapies

might be aimed at reducing cLDL and its effects.

Endothelial damage and atherosclerosis

Endothelial dysfunction of large- and medium-sized

arteries is characterized by impaired NO-mediated vaso-

dilatation and appears to play a pivotal role in athero-

sclerosis; both endothelial dysfunction and atherosclerosis

are induced by coronary artery disease risk factors, such

as cigarette smoking, hypertension, diabetes mellitus,

hyperhomocysteinemia, serum lipid concentrations, and

hypercholesterolemia (55). Several processes, such as

senescence and increased oxidative stress, affect endothe-

lial dysfunction and the development of atherogenesis

(56, 57).

Aging endothelial cells

Aged endothelial cells become flatter and more enlarged

and have an increasingly polypoid nucleus � all of which

are associated with cellular senescence (58, 59). These

changes are accompanied by alterations in cytoskeleton

integrity, proliferation, angiogenesis, and cell migration.

Senescent endothelial cells produce less NO (60) and

release more endothelin-1 (ET-1) (61). Late-passage

endothelial cells also downregulate adhesion molecules,

vascular cell adhesion protein 1 (VCAM-1), and intra-

cellular adhesion molecule-1 (ICAM-1); show increased

activation of nuclear factor (NF)-kB; and experience

greater susceptibility to apoptosis (59). In addition, NF-

kB activation enhances endothelial cell senescence and

can, therefore, reduce endothelial regeneration at sites

that are prone to atherosclerosis (62).

Furthermore, there are marked age-associated changes

in function and activity (63). Thus, endothelial cell

senescence is associated with a loss of endothelial cell

function and a shift toward a pro-inflammatory and pro-

apoptotic state � which are predicted to enhance monocyte

migration into the vessel wall (64). In addition, it has been

shown that both oxLDL and LDL induce accelerated

senescence, as evidenced by telomere shortening and

b-galactosidase activity (12). All of these processes corre-

late with increasing severity of atherosclerosis (Fig. 3).

Oxidative stress in endothelial cells

NO is a free radical signaling molecule that is produced

by nitric oxide synthase enzymes (65, 66). Some of the

beneficial properties of NO include vasodilatation, pro-

motion of endothelial cell survival, and inhibition of cell

proliferation and migration (67), which might protect

against atherosclerosis. Several studies have reported a

decrease in nitric oxide activity with aging.

Oxidative stress might be involved more broadly in

atherogenesis. Reactive oxygen species (ROS) are produced

in the endothelium, smooth muscle cells, and adventitia.

There is a significant amount of evidence that implicates

them in vasomotor activity, smooth muscle cell growth,

expression of adhesion molecules, apoptosis, activation of

metalloproteinases and, of course, lipid oxidation (68).

These oxidation-related processes can accompany oxida-

tion of LDL or occur independently of it. Indeed, lipid

peroxidation seems to be an important mechanism in

the development of endothelial dysfunction in certain

pathologies (69, 70).

Aging and atherosclerosis

Age is a non-modifiable risk factor of atherosclerosis.

Aging is not simply wear and tear but is an active process,

like atherosclerosis, with which it shares mechanisms, such

as endothelial dysfunction. Several studies have shown

that endothelial cell function is compromised with aging

and that endothelial cell senescence mediates the evolution
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of age-associated CVDs, such as atherosclerosis (71, 72).

Older primates and rodents develop more extensive

atherosclerosis than younger animals when both groups

are fed an atherogenic diet (73).

Age-accelerated vascular injury is commonly consid-

ered to result from increased oxidative stress, leading to

inflammation and endothelial dysfunction, but no defi-

nite mechanisms have been identified (74). The accumu-

lation of oxidative damage is believed to contribute to

aging and its associated diseases (75). Tissues from aged

animals show an increased generation of ROS, leading to

altered mitochondrial function, damage to vascular cells

with age-associated remodeling, and oxidation of lipids,

rendering them more atherogenic (76).

Age and other atherosclerotic risk factors upregu-

late pathways that increase ROS production, whereas

antioxidant mechanisms are enhanced and decrease in

aging (77, 78). Caloric restriction attenuates the increases

in inflammation, oxidative stress, and endothelial dysfunc-

tion that accompany aging and extend the median lifespan

in several animals (79, 80). Conversely, caloric excess that

leads to obesity worsens these factors and promotes

insulin resistance, metabolic syndrome, and diabetes, all

of which are frequently associated with aging and are

established contributors to the accelerated atherosclerosis

(81, 82). Hypertensive patients are more prone to athero-

sclerotic lesions and acute ischemic events than normo-

tensive individuals (83).

The risk factors of atherosclerosis are well known,

including hypertension (84, 85), diabetes (86, 87), serum

total LDL cholesterol (88�90), smoking (91, 92), and

obesity (93, 94). Increasing evidence indicates that aging is

also an important risk factor for atherosclerosis and per-

sists as an independent contributor when all other factors

are controlled for. Premature or accelerated vascular aging

can be promoted by cardiovascular risk factors (95, 96),

and cellular senescence is observed in patients with athero-

sclerosis. Atherosclerosis is thus a disease of organismal

aging and cellular senescence.

Atherosclerosis is a condition caused by lipid-induced

inflammation of the vessel wall that is orchestrated by the

complex interplay of various types of cells, such as endo-

thelial cells, smooth muscle cells, and macrophages.

Hypercholesterolemia, especially high concentrations of

serum LDL cholesterol � is considered a major factor of

atherosclerosis. However, oxidation of LDL appears to

have significant function in the early development of

atherosclerosis through the formation of macrophage-

derived foam cells on the arterial wall (97, 98). Macro-

phages bind and take up oxLDL particles � but not

nonoxidized, native LDL particles � via SRs (99).

Aged vessels undergo several characteristic pathologi-

cal processes, many of which are also seen in athero-

sclerosis (100, 101).

Conclusions

CVD remains one of the most significant chronic diseases

worldwide with regard to morbidity and mortality.

Although CVD is associated with aging, accumulating

evidence supports that CVD is linked to vascular cell

senescence; considering that CVD occurs in aged people

when vascular cells undergo replicative senescence and in

patients whose risk factors promote premature senescence.

In particular, senescence in endothelial cells seems to be

the initial step in the cascade of events that lead to CVD.

Thus, the factors that affect senescence in endothelial cells

and the mechanisms by which they do so must be identified

to develop new biomarkers and therapeutic tools against

CVD. In this regard, determining how endothelial cells are

affected by structural changes in lipoproteins, such as

LDL, is a promising approach for future studies on CVD.

Fig. 3. Mechanisms of endothelial cell senescence during
aging, initiating the atherogenic process.

LDL modifications and aging

Citation: Food & Nutrition Research 2015, 59: 29240 - http://dx.doi.org/10.3402/fnr.v59.29240 5
(page number not for citation purpose)

http://www.foodandnutritionresearch.net/index.php/fnr/article/view/29240
http://dx.doi.org/10.3402/fnr.v59.29240


Authors’ contributions

RR chose the topic of the review and enlisted MA, CL, and

JC as coauthors. RR, JC, and MA defined the article topic

and outline. MA, RR, and JC drafted the paper, which was

subsequently edited by the other authors, all of whom have

approved the final version.

Acknowledgements

This work was supported by Plan Nacional Proyectos de Investiga-

ción en Salud of Instituto de Salud Carlos III (ISCIII) Fondos

Feder Grants (PI11/01536, PI12/01489 and PI14/00806), Junta de

Andalucı́a Grants (JA0797-2010, P010-CTS-6337, P11-CTS-7352),

and Fundación Nefrológica. JC was supported by a contract from

Fundación de Investigaciones Biomédicas de Córdoba (Servicio
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