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Introduction: Insulin resistance plays a major role in metabolic syndrome and is recog-
nized as the most common risk factor for non-alcoholic fatty liver disease (NAFLD). 
Identifying predictors for insulin resistance could optimize screening and prevention.
Purpose: To evaluate the contribution of multiple single nucleotide polymorphisms across 
genes related to NAFLD and choline metabolism, in predicting insulin resistance in children 
with obesity.
Methods: One hundred fifty-three children with obesity (73 girls), aged 7–18 years, were 
evaluated within the NutriGen Study (ClinicalTrials.gov-NCT02837367). Insulin resistance 
was defined by Homeostatic Model Assessment for insulin-resistance cut-offs that accom-
modated pubertal and gender differences. Anthropometric, metabolic, intake-related vari-
ables, and 55 single nucleotide polymorphisms related to NAFLD and choline metabolism 
were evaluated. Gene–gene interaction effects were assessed using Multiple Data Reduction 
Software.
Results: Sixty percent (93/153) of participants showed insulin resistance (58.7% of boys, 
63% of girls). Children with insulin resistance presented significantly higher values for 
standardized body mass index, triglycerides, transaminases and plasma choline when com-
pared to those without insulin resistance. Out of 52 single nucleotide polymorphisms 
analysed, the interaction between genotypes CHDH(rs12676) and PNPLA3(rs738409) pre-
dicted insulin resistance. The model presented a 6/10 cross-validation consistency and 0.58 
testing accuracy. Plasma choline levels and alanine aminotransferase modulated the gene 
interaction effect, significantly improving the model.
Conclusion: The interaction between genotypes in CHDH and PNPLA3 genes, modulated 
by choline and alanine aminotransferase levels, predicted insulin-resistance status in children 
with obesity. If replicated in larger cohorts, these findings could help identify metabolic risk 
in children with obesity.
Keywords: insulin-resistance, obesity, gene–gene interaction, CHDH-PNPLA3, choline, 
children

Introduction
Obesity prevalence is increasing worldwide, in both adults and children,1,2 con-
comitantly escalating the risk for type 2 diabetes and cardio-metabolic diseases.3 

Insulin resistance plays a major part in both metabolic syndrome and type 2 
diabetes mellitus.4 Furthermore, insulin resistance is recognized as the most com-
mon risk factor for non-alcoholic fatty liver disease (NAFLD) development and 
progression in adults.5,6 NAFLD has rapidly evolved into becoming the most 
common liver disease in the paediatric population in the United States, an inducer 
of insulin resistance, and being associated with increased adiposity.7 Evidence 
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suggests that NAFLD is associated with hepatic and non- 
hepatic morbidity and mortality, and could progress to 
cirrhosis and end-stage liver disease.8 Identifying predic-
tors of insulin resistance could help optimize screening 
and prevention.

Insulin resistance in children is influenced by several 
factors including degree and disposition of adiposity, gen-
der, pubertal stage, diet, lipid metabolism and genetic 
predisposition.9,10 Single Nucleotide Polymorphisms 
(SNPs) in several genes, including PNPLA3, TM6SF2, 
MBOAT7 and GCKR, have been identified to predict the 
development and severity of NAFLD in relation to insulin 
resistance in adults.10–12 Another study identified SNPs 
related to choline metabolism genes including PNPLA3, 
CHDH, PEMT, ABCB4, MTHFR, and SLC44A1, which 
were associated with liver steatosis in adults with obesity.13 

Choline was identified as an essential nutrient for liver, 
muscle, and brain function, having a key role in the synth-
esis of acetylcholine, methylation, gene expression and 
lipid metabolism.14 However, the potential roles of genetic 
variations on the risk of paediatric NAFLD are currently not 
well established.11 This study aimed to evaluate the con-
tribution of multiple SNPs across genes related to NAFLD 
and choline metabolism, and their interactions, in predicting 
insulin resistance in children with obesity.

Participants and Methods
Participants and Samples
Two hundred children (95 males, 105 females) aged 7–18 
years, with obesity defined using the World Health 
Organization 2007 reference, if more than +2 Standard 
Deviation (SD),15 were evaluated within the NutriGen 
Study protocol. The trial is registered at ClinicalTrials. 
gov, NCT02837367. Clinical evaluation was performed 
in a paediatric hospital in Timisoara, Romania. Exclusion 
criteria were previously described elsewhere16 and 
included diagnosis of cancer, or medical history of cancer; 
auto-immune disease; psychiatric disorder; blood coagula-
tion disorders; history of drug abuse; familial hypercho-
lesterolemia; endocrine-induced obesity, hypothalamus- 
induced obesity, genetic syndromes; deposition diseases; 
personal history for: convulsive disorders, nephrotic syn-
drome, or asthma that required corticoid treatment. 
Subjects with incomplete sequencing data (1 SNP missing) 
were excluded from this study (n=47). Consequently, the 
present analysis included 153 children (80 boys, 73 girls). 

The term “children” will be used in this manuscript to also 
include adolescents.

The study was approved by the Ethics Committee of 
the “Victor Babes” University of Medicine and Pharmacy 
(6/20.06.2016), Timisoara, Romania, and conducted in 
accordance with the Declaration of Helsinki. Participants 
and their parents or legal guardians were informed about 
the aims and methods of the study. Written consent was 
signed by parents or legal guardians of the participants and 
children provided verbal consent to be included in the 
study.

Anthropometric Measurements
Anthropometric measurements were performed following 
international guidelines,17 as described previously.16 

Standardized BMI-for-age z-scores (zBMI) were calcu-
lated according to the World Health Organization guide-
lines taking into account the age and gender of the child.15 

Waist circumference was measured with an inextensible 
anthropometric tape, by a trained person, to the nearest 
0.1 cm, in standing position, at the midpoint between the 
end of the rib cage and the top of the iliac crest. Hip 
circumference was measured around the widest portion 
of the hip.18 Waist to hip ratio (WHR) was calculated by 
dividing waist circumference (cm) to hip circumfer-
ence (cm).

Food and Drink Intakes
Food and drink intakes were evaluated using 5-pass 24-h 
dietary recalls as previously described.19 In short, four 
recalls were performed on each participant, if older than 
13 years of age, or to both a parent and the child, if the 
participant was younger. The declared amounts for each 
day investigated (foods and drinks) were converted to 
energy and nutrient intakes using a web-application 
(Nutritio, Bucharest, Romania, https://nutritioapp.com), 
using the United States Department of Agriculture Food 
and Nutrient Database for Dietary Studies and other data-
bases for local foods, and with appropriate adaptations 
described elsewhere.19 Resting energy expenditure 
(REE), validated in children with obesity, was computed 
using the formula proposed by Lazzer et al,20 in order to 
compare food and drink intakes across different ages and 
genders. Energy intake and macronutrient percentage (car-
bohydrate and fat) were calculated as means of the four 24 
h recalls for each child. The fraction of energy intake from 
REE was computed as energy intake (kcal)/REE (kcal) and 
further used as a variable.
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Participants’ intakes were evaluated during the period 
when they followed medical recommended diet and super-
vision, following recommendations from Endocrine 
Society Clinical Practice 2017 Guideline.3 In brief, the 
main recommendations were to reduce portion size, 
decrease consumption of fast foods, high-fat, high-sodium, 
processed foods, added table sugar and the elimination of 
sugar-sweetened beverages.

Biochemistry
Blood samples were collected in the morning, following 
overnight fasting (for at least 8 h), in EDTA sterile vacu-
tainers. Total plasma concentrations of aspartate amino-
transferase (AST), alanine aminotransferase (ALT), total 
cholesterol, high-density lipoprotein (HDL) cholesterol, 
triglycerides, and glucose were performed using its stan-
dardized reagents and following the manufacturer’s proto-
cols, as presented previously.16 Insulin measurements were 
performed using ELISA method, as shown.16

Homeostatic model assessment for insulin resistance 
(HOMA-IR) was calculated using the formula: fasting 
insulin (mIU/L) × fasting glucose (mmol/L)/22.5. In 
order to account for differences between boys and girls 
and for the physiological insulin resistance during 
puberty,21 different HOMA-IR cut-offs were used to define 
insulin resistance, stratified by gender and by age groups. 
For boys 13 years old or younger, HOMA-IR above 2.67 
was used to define insulin resistance, while for boys older 
than 13 years, insulin resistance was defined if HOMA-IR 
was higher than 5.22. For girls, 11 years old or younger, 
HOMA-IR above 2.22 was used to define insulin resis-
tance, while for girls older than 11 years, insulin resistance 
was defined if HOMA-IR was higher than 3.82, similarly 
to that described by Kurtoğlu et al 2010.22

Fatty Acids Quantification
Fatty acids quantification from red blood cell (RBC) mem-
brane was performed by high-performance liquid chroma-
tography–tandem mass spectrometry (LC-MS/MS), using 
an adaptation of a previously described protocol.16

Quantification of Plasma Choline and 
Betaine
Choline and betaine were measured from plasma by liquid 
chromatography-tandem mass spectrometry (LC-MS/MS) 
using a previously described method,23 with adaptations 
for the laboratory specifics. Method is described in the 

supplementary material (Table S1 and supplementary 
“Quantification of plasma choline and betaine” section).

Genetic Analysis of Single Nucleotide 
Polymorphisms (SNPs)
Genotyping was performed on a MiSeq sequencer (Illumina, 
San Diego, CA, USA) using a custom-made hotspot sequen-
cing kit for 55 SNPs within 14 genes involved in choline/1- 
carbon metabolism,16 selected based on their previous asso-
ciation with increased lipids, non-alcoholic fatty liver, or 
cardiovascular disease.13 Three SNPs (rs12103822 in 
PEMT, rs7525338 and rs868014 in MTHFR) were excluded 
from analysis due to lack of variation in the participants (only 
homozygous status was identified).

Statistical Analysis
Data analysis was performed using IBM-SPSS version 
25 (IBM, Armonk, New York, U.S.A.). Descriptive statis-
tics for numerical variables included means and standard 
deviations. For categorical variables, frequency as percen-
tage (%) and/or count (n) were included. The t-test with 
two-factor comparisons was used for variables assuming 
normal distribution. For variables with non-parametric 
distribution, the Mann–Whitney test was used. Normal 
distribution was assessed with the Kolmogorov–Smirnov 
test. Chi-square was used for proportion comparison. The 
multiple comparisons were adjusted for false discovery 
rate (FDR), using an online tool (https://tools.carboca 
tion.com/FDR). This method adjusted the p values 
obtained by statistical tests to the number of tests per 
each research hypothesis. The threshold of statistical sig-
nificance for adjusted p-values was p<0.05. Gene-gene 
interaction effects were assessed using Multifactor 
Dimensionality Reduction (MDR) version 3.0.2 (http:// 
epistasis.org/). MDR software was used to evaluate the 
influence of the SNPs tested and/or their interactions on 
the insulin resistance, set as categorical outcome (no/yes), 
using the HOMA-IR (gender- and puberty-specific) cut- 
offs. Choline levels and ALT levels were grouped in 
tertiles and introduced in the model as covariates.

Results
Sixty percent (93/153) of the children with obesity (58.7% 
of boys and 63% of girls) included in the present study 
presented insulin resistance, defined by HOMA-IR cut- 
offs that accommodate for pubertal and gender differences 
(see Materials and Methods). None of the children 
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presented type 2 diabetes mellitus. Proportions of 
increased ALT levels (>40 U/L) were similar between 
children with or without insulin resistance 20.0% (12), 
respective 33.3% (31), p=0.073. Descriptive statistics pre-
sented in Table 1 show the mean ± SD values of anthro-
pometric, metabolic and intake-related variables, overall 
and separately for gender and insulin-resistance status. 
Between-gender comparisons showed higher mean values 
of zBMI, WHR and fraction of energy intake form REE 
for boys, as compared to girls. Participants with insulin 
resistance (defined by HOMA-IR status) presented signifi-
cantly higher values for zBMI, triglycerides, AST, ALT 
and choline, compared to those without insulin resistance.

Age distribution of HOMA-IR values depicted as box-
plot separately for boys and girls in Figure 1, showed 
a peak value of 5.25 at age 12 years in girls and a peak 
value of 6.67 at age 14 years in boys. The number of 
children in each age group is presented in supplementary 
material (Table S2).

The frequency of the 52 SNPs studied in our cohort of 
153 children with obesity is presented in Supplementary 
Material (Table S3). Using 52 SNPs, in a multifactor 
dimensionality reduction statistical model, the interactions 
between genotypes in rs12676 (CHDH) and rs738409 
(PNPLA3) were identified as the best predictor for insulin 
resistance. The nine interactions between the two SNPs 
were grouped in high and low risk, as shown in Table 2 
and further used in Table 3. The high and low risk for 
insulin-resistance model presented a cross-validation con-
sistency of 6/10 and a testing accuracy of 0.58, which 
exceeded the threshold 0.5 expected under the null hypoth-
esis. Considering that, CHDH and PNPLA3 genes are 
involved in choline metabolism, and that choline plasma 
concentrations were different between participants with 
and without insulin resistance, we further evaluated the 
modulating effect of choline on the model. When using 
choline as covariate, an improvement in the model’s cross- 
validation consistency (9/10) and testing accuracy (0.63) 
was detected. When using ALT as covariate, the model has 
improved even further with cross-validation consistency 
(10/10) and testing accuracy (0.69).

Comparisons of anthropometric, metabolic and intake- 
related variables between high and low risk for insulin 
resistance, classified by the interaction between rs12676 
and rs738409, are presented in Table 3. The only signifi-
cant difference was for HOMA-IR levels, with higher 
values in the high-risk group.

Discussion
Obesity is increasingly prevalent in adults and children.1,2 

Obesity-related complications, such as cardiovascular dis-
ease and type 2 diabetes are also rising, and are frequently 
diagnosed in the paediatric population with obesity.1 In 
Romania, almost one in four children, aged 6–19 years, 
was either overweight or with obesity, in a pooled analysis 
performed between 2006 and 2015.24 Insulin resistance was 
recognized as the most common risk factor for non-alcoholic 
fatty liver disease (NAFLD), in the setting of excess adipos-
ity, in adults and children.7 Recognizing the predictors of 
insulin resistance is crucial for optimal screening. However, 
considering normal physiological changes that occur in chil-
dren during puberty, it is difficult to establish a standard 
definition for insulin resistance across paediatric age groups.

Defining Insulin Resistance
The gold standard to determine insulin resistance is the 
euglycemic-hyperinsulinemic clamp study. However, this 
invasive method is not routinely used in daily clinical 
practice. HOMA-IR is the most widely used surrogate 
measure for insulin resistance.25 In a systematic review 
of 298 articles, 51 different HOMA-IR cut-off values were 
used to classify patients as having insulin resistance.25 The 
authors indicated that 85.6% of studies used a predeter-
mined fixed cut-off value, with the most frequently used 
HOMA-IR cut-offs of 3.16 and 2.5.25 Nonetheless, chil-
dren normally experience transient insulin resistance at 
puberty.22 This circumstance needs to be accounted for 
in defining insulin resistance in children. A systematic 
review, summarizing population-based studies on the epi-
demiology of insulin resistance during childhood, showed 
that prevalence rates vary widely due to the variety of 
definitions used.26 A European study identified insulin 
resistance (using HOMA-IR>3.4) in 16.6% of prepubertal 
children (<10 years) with obesity and 47.3% of adoles-
cents (11–18 years) with obesity,4 comparable to the pre-
valence identified by this study.

In this study, HOMA-IR distribution across ages and 
genders was similar to that identified by Kurtoğlu et al 
2010.22 Notably in this study, the age of the HOMA-IR 
peak was higher in boys and girls when compared to 
Kurtoğlu et al 2010.22 We defined insulin resistance 
using HOMA-IR cut-offs that accommodated gender and 
puberty,22 in order to avoid classifying physiological pub-
ertal values as pathologic status. Insulin resistance in our 
cohort was observed in 60.7% of the children with obesity 
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(58.7% of boys and 63% of girls) using HOMA-IR cut- 
offs that accommodate gender and pubertal differences.

Gender Differences in Insulin Resistance
Gender differences in body composition and energy bal-
ance are well known.27 In this study, boys presented higher 

standardized BMI score when compared to girls (Table 1), 
in accordance with other studies from Romania regarding 
children with obesity.24 Boys presented higher mean 
values of waist-to-hip ratio when compared to girls, simi-
lar to other studies in this age group, showing differences 
in adiposity disposition between genders, especially after 

Figure 1 Distribution of HOMA-IR values depicted as boxplot separately for boys and girls, by age (rounded). 
Notes: Horizontal lines, within each boxplot, indicate minimum, first quartile (Q1), median, third quartile (Q3), and maximum. Outliers marked with circles are cases with 
values between 1.5 and 3 times the IQ range, beyond the whiskers. Outliers marked with a star are cases with values more than 3 times the IQ range.

Table 2 Description of Interaction Groups Formed by Genotypes in rs12676 in CHDH and rs738409 in PNPLA3 Gene to Predict 
Insulin Resistance Using the Gender and Puberty-Specific HOMA-IR Cut-Offs

HOMA-IR Mean ± SD, n rs12676 CHDH Gene

AA AC CC

rs738409 PNLAP3 gene CC High risk Low risk High risk
5.8 ± 4.3 3.9 ± 2.1 4.1 ± 2.6

n=7 n=31 n=41

CG High risk High risk Low risk
6.5 ± 3.1 6.8 ± 4.8 2.4 ± 2.0

n=4 n=11 n=14

GG High risk Low risk High risk

6.2 ± 3.1 3.9 ± 2.6 5.7 ± 4.3

n=6 n=22 n=17
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puberty.28 The mean fraction of energy intake from REE 
was higher for boys when compared to girls. In the same 
way, a large study on 6553 children aged 9–11 years from 
12 countries has shown that boys had a lower compliance 
with dietary recommendations as compared to girls.29 

These findings may provide insight into the pathogenesis 
of insulin resistance, visceral adiposity and obesity, with 
the potential to guide gender-tailored interventions for 
prevention and treatment.

Metabolic Predictors for Insulin 
Resistance
Participants with insulin resistance in our cohort presented 
significantly higher values for standardized BMI, triglycer-
ides, AST and ALT, as compared to those without insulin 
resistance. Similar findings were observed in many 
studies,4,5,30,31 reflecting the metabolic risk in children 
with obesity and insulin resistance.9 Furthermore, insulin 
resistance, dyslipidaemia and ALT are the recommended 
screening makers for NAFLD in all children with obesity 

or overweight starting at the age of 9–11 years, according 
to the NASPGHAN 2017 guidelines.7 Based on these 
recommendations, the children with insulin resistance in 
our cohort showed an increased risk for NAFLD.

No significant differences regarding the prevalence of 
insulin resistance between girls and boys were noted in 
this study, in the context of the variable cut-offs used, 
which were tailored for gender and pubertal status.

Choline was significantly higher in children with insu-
lin resistance when compared to those without. We did not 
identify other studies that investigated choline in children 
with obesity and in relationship with their insulin resis-
tance. In adults, higher levels of serum choline were asso-
ciated with a healthier body composition only in men.32 

Higher intakes of choline were found negatively asso-
ciated with insulin resistance,33 subclinical markers of 
cardiovascular disease and incidence of cardiovascular 
disease34 in both genders and risk of type 2 diabetes in 
men.35,36 Choline metabolism is involved in very low- 
density lipoprotein secretion in the liver, making this 

Table 3 Comparison Between Anthropometric, Biochemical and Intake-Related Variables in 153 Children with Obesity, Classified by 
the Interaction Between Rs12676 and Rs738409, to Predict High/Low Risk for Insulin Resistance Using the Gender and Puberty- 
Specific HOMA-IR Cut-Offs

Variables Mean ± SD Interaction Groups p-values

Low Risk n=67 High Risk n=86

Anthropometric Age (years) 12.2 ± 3.1 11.7 ± 3.0 0.289 *
zBMI 3.30 ± 0.94 3.49 ± 1.36 0.341 *
Wait to hip ratio 0.96 ± 0.09 0.98 ± 0.11 0.401 **

Metabolic HOMA-IR 3.6 ± 2.3 5.2 ± 3.6 0.001 *
Cholesterol (mg/dl) 174.9 ± 41.0 176.7 ± 41.4 0.787 *

Triglycerides (mg/dl) 150.9 ± 84.2 138.7 ± 63.3 0.691 **

HDL cholesterol (mg/dl) 46.3 ± 10.6 50.6 ± 15.1 0.200 **
AST (U/L) 34.5 ± 15.0 37.1 ± 35.4 0.800 **

ALT (U/L) 36.4 ± 18.9 40.9 ± 32.7 0.935 **

Choline (µmol/L) 8.5 ± 2.9 8.6 ± 2.9 0.721 *
Betaine (µmol/L) 21.7 ± 10.3 23.1 ± 10.4 0.387 *

ALA RBC (µmol/L) 1.6 ± 0.8 1.7 ± 1.2 0.564 **

DHA RBC (µmol/L) 176.4 ± 89.4 193.0 ± 131.6 0.589 **
LA RBC (µmol/L) 221.9 ± 94.2 237.1 ± 112.1 0.605 **

ARA RBC (µmol/L) 369.2 ± 150.6 387.5 ± 170.7 0.765 **

EPA RBC (µmol/L) 3.3 ± 2.2 3.9 ± 4.9 0.187 **

Intake related Percentage of energy intake from carbohydrates 46.1 ± 7.3 45.7 ± 7.1 0.711 *

Percentage of energy intake from fat 32.5 ± 6.4 32.6 ± 6.5 0.911 *
Fraction of energy intake from REE 0.66 ± 0.18 0.66 ± 0.25 0.932 *

Notes: *t-test, **Mann–Whitney test. All tests were adjusted for false discovery rate, p-values in bold denote statistical significance. 
Abbreviations: zBMI, standardized body mass index (BMI) to account for age and gender; HOMA-IR, homeostatic model assessment for insulin resistance; HDL, high- 
density cholesterol; g, grams; mg, milligrams; µmol/L, micromoles/liter; AST, aspartate aminotransferase; ALT, alanine aminotransferase; HDL cholesterol, high-density 
lipoprotein cholesterol; ALA, alfa-linolenic acid; ARA, arachidonic acid; DHA, docosahexaenoic acid; EPA, eicosapentaenoic acid; LA, linoleic acid; RBC, red blood cell 
membrane; SD, standard deviation; n, number of subjects in a group.
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nutritional pathway an important contributor to hepatic 
lipid homeostasis. It also intersects with multiple pathways 
that intervene in the deposition of lipids in the liver.13 The 
contribution of choline in the complexity of insulin-regu-
lated glycolytic and lipogenic homeostasis is insufficiently 
understood in children.

The fatty acid level of RBC could reflect their status in 
other organs and could potentially represent a proxy for 
the evaluation of polyunsaturated fatty acid homeostasis in 
the human body.16 In our study, fatty acids measured in 
RBC were not significantly different between those with 
and without insulin resistance. However, alfa-linolenic 
acid (ALA, Table 1) was higher in those with insulin 
resistance, and close to significance (p=0.08), suggesting 
the possibility that, in a larger cohort, the difference could 
reach significance. A study in Danish adolescents (10–17 
years old, out of which 8% with obesity) observed a 
tendency toward a significant association between 
HOMA-IR and RBC-DHA (0.052), but not with ALA.37 

Nonetheless, comparison is difficult as the population dif-
fered in obesity prevalence and feeding practices.

Genetic Predictors for Insulin Resistance
We used a machine-learning automatic approach, within a 
multifactor dimensionality reduction analysis to evaluate 
the association of 52 SNPs and/or their interactions with 
insulin resistance. Prediction for insulin resistance was 
identified for the interaction between genotypes rs12676 
(CHDH) and rs738409 (PNPLA3) (shown in Table 2), 
which was further modulated by choline plasma levels 
and ALT (used as a proxy for NAFLD). These findings 
were not reported in other studies, although many nutrige-
nomic studies investigated the influence of single or multi-
ple SNPs using multiple regression.38,39 Regression is 
limited due to the complex evaluation of the million pos-
sible genetic interactions between various SNPs. The 
MDR overcomes this limitation, being a non-parametric 
machine-learning method, proposed in 2001, that classifies 
multi-dimensional genotypes into one dimensional, binary 
approach.40,41 Thus, MDR is able to evaluate complex 
outcomes associated with multiple genetic and environ-
mental factors alone, as well as with their interactions. 
MDR is increasingly popular and has been recognized as 
a robust methodology for the evaluation of gene–gene 
interaction effects.42–44

Different studies have chosen different SNPs to evalu-
ate the association with insulin resistance, using a hypoth-
esis-driven approach, as presented in the 2017 ISNN 

consensus regarding nutrigenetic, nutrigenomic and nutrie-
pigenetic approaches for precision nutrition involving the 
prevention and management of chronic diseases associated 
with obesity.39 Most of this research has used results from 
Genome Wide Association Studies (GWAS) to identify the 
effects of genetic variants on the disease risk. However, 
the identified SNPs have a modest effect, leading to the 
“missing heritability” problem. Many findings from 
GWAS are not replicated in smaller cohorts. For example, 
results on 53 loci, in several genes including INSR, IRS1 
and PIK3R1 genes, selected based on genome-wide ana-
lyses of fasting insulin adjusted for BMI, did not identify 
loci with a primary effect on higher adiposity and insulin 
resistance in a large study on adults.38 However, a genetic 
score, computed from the same 53 loci, was associated 
with insulin resistance, in children with overweight or 
obesity,45 suggesting that genomic approaches need to be 
integrative, and also envisaging gene–gene interaction 
effects. SNPs identified to be associated with NAFLD 
were not included in the 53 SNPs studied in relation to 
insulin resistance. Nonetheless, other studies have investi-
gated PNPLA3, TM6SF2, MBOAT7, GCKR, CHDH, 
PEMT, ABCB4, MTHFR, and SLC44A1 genes and identi-
fied associations with the development and severity of 
NAFLD in relation to insulin resistance in adults.10–13 

Genes in choline and 1-carbon metabolism, including 
CHDH and PNLAP3, were shown to influence hepatic 
lipid balance. The unfavorable balance between lipid 
intake and output contributes to hepatic steatosis. 
Secretion of very low-density lipoproteins requires synth-
esis of a lipid cover enclosing apoproteins and phosphati-
dylcholine. Several gene products interplay in the lipid 
balance in the liver, including CHDH and PNLAP3. 
CHDH is an important gene for the pathway forming 
phosphatidylcholine, which is used to make very low- 
density lipoproteins, or can be hydrolyzed in a pathway 
implicating PNPLA3, or secreted in bile by a flippase 
encoded by ABCB4 gene.13

The PNPLA3 rs738409 polymorphism may be the most 
investigated SNP in relation to the accumulation of lipids 
in the liver.10,13,39,46,47 Despite this, the variants’ effects on 
the risk of paediatric NAFLD are currently not well 
established.11 Findings from the current study bring addi-
tional clues into the elucidation of the insulin-regulated 
glucose and lipid metabolism in children with obesity.

A special discussion deserves the “U”-shaped associa-
tion between the combination of genetic variants and the 
outcome (high-risk versus low risk for HOMA-IR values), 
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presented in Table 2. With the exception of the AA 
rs12676 genotype (CHDH), which in any association 
with the rs738409 (PNLAP3) genotypes, had a higher 
risk, other gene–gene interactions suggested a “U”-shaped 
effect, as the heterozygosity of any of the two variants 
associated to the outcome does not fit a hypothetical gene 
dosage effect. However, a lack of linearity in gene dosage 
has been previously described for gene–gene interactions 
(e.g.48). The non-linear association of complex genotypic 
traits with health outcomes has been previously discussed 
in the context of gene–environment interactions, including 
nutrition.49 In the same context, the statistical approaches 
in analyzing gene–gene interactions have been also dis-
cussed in regard to why assumptions of linearity in gene– 
environment interactions, with consequences upon gene– 
gene interactions, are not necessarily always true.50 

Moreover, epigenetics is another factor that sometimes 
plays important roles in gene–environment interactions, 
and their association with defined phenotypes (e.g.51). 
The design of our study did not allow us to further explore 
such possible intricacies.

Notably, the observed gene–gene interactions in chil-
dren might not be necessarily comparable with the effect 
observed in adults with obesity, as prolonged exposure to 
environmental factors and associated comorbidities might 
have more intricate effects in adults. Future studies are 
needed to examine the interaction between rs12676 in 
CHDH and rs738409 in PNPLA3 genes, and the potential 
modulating role of plasma choline, in larger populations 
andadults. Potentially, these findings could be used as a 
clinical tool for the identification of children with an 
increased risk of insulin resistance, to ultimately prevent 
type 2 diabetes mellitus and cardiovascular disease.

Limitations
This study presents relevant metabolic and genetic predic-
tors for insulin resistance in children with obesity, but with 
some limitations. Pubertal stage was not assessed using the 
Tanner method; however, age and HOMA-IR peaks were 
used as a proxy for puberty onset, in relation to other 
studies previously published.25,52 We did not assess liver 
steatosis using ultrasound, as the NASPGHAN 2017 
guidelines recommended against using it routinely for 
screening, and due to low sensitivity.7 Conversely, we 
have used ALT as proxy for NAFLD, in order to identify 
children at risk.7,10

Notably, due to study design, intake assessments do not 
reflect children’s usual diets, but rather the compliance to 

the dietary recommendations made by their doctors, in 
order to improve their body weight and metabolic status. 
Therefore, gene–diet interactions could not be addressed in 
our prediction model, as nutrition intakes would not neces-
sarily be causal to the phenotype.

Another limitation of the study was the relatively small 
number of cases, diminishing statistical power and 
strongly suggesting that these results need to be replicated 
in larger studies.

Conclusion
Participants with insulin resistance and obesity presented 
significantly higher values for standardized BMI, triglycer-
ides, transaminases, and choline when compared to those 
without insulin resistance, indicating increased risk for 
NAFLD. Out of 52 explored SNPs related to NAFLD, 
choline and 1-carbon metabolism, the interaction between 
rs12676 (CHDH) and rs738409 (PNPLA3) genotypes was 
identified to predict insulin resistance in children with 
obesity, using gender and puberty-specific HOMA-IR 
cut-offs. Plasma choline levels and ALT modulated the 
gene interaction effect, significantly improving the mod-
el’s cross-validation consistency and testing accuracy. If 
replicated in larger cohorts, this gene–gene interaction 
could help identify the metabolic risk in children with 
obesity.

Abbreviations
µmol/L, micromoles/litre; AA, homozygous for one allele 
(generic); ABCB4, ATP binding cassette subfamily B member 
4; AB, heterozygous (generic); ALA, alfa-linolenic acid, ALT, 
alanine aminotransferase; APOC3, apolipoprotein C3; ARA, 
arachidonic acid; AST, aspartate aminotransferase; BB, homo-
zygous for the other allele (generic); BMI, body mass index; 
CHDH, choline dehydrogenase; CHKB, choline/ethanolamine 
kinase beta; DHA, docosahexaenoic acid; EPA, eicosapentae-
noic acid; FADS2, fatty acid desaturase 2; g, grams; HDL chol, 
high-density lipoprotein cholesterol, HDL, high-density lipo-
protein cholesterol; HOMA-IR, Homeostatic model assess-
ment for insulin resistance; LA, linoleic acid; LC-MS/MS, 
high-performance liquid chromatography–tandem mass spec-
trometry; NAFLD, non-alcoholic fatty liver disease; MDR, 
Multifactor dimensionality reduction (software); mg, milli-
grams; MTHFD1, methylenetetrahydrofolate dehydrogenase; 
MTHFR, methylenetetrahydrofolate reductase; PCYT1A, 
phosphate cytidylyltransferase 1, choline, alpha; PCYT1B, 
phosphate cytidylyltransferase 1, choline, beta; PEMT, phos-
phatidylethanolamine N-methyltransferase; PNPLA3, patatin- 
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like phospholipase domain containing 3; RBC, red blood cell 
membrane; REE, resting energy expenditure; SCD, stearoyl- 
CoA desaturase; SD, standard deviation; SLC44A1, solute 
carrier family 44 member 1; SNP, Single Nucleotide 
Polymorphism; STAT3, signal transducer and activator of tran-
scription 3; zBMI, Standardized BMI-for-age z-scores; WHR, 
waist to hip ratio.
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