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Abstract

The worldwide spread of Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-

2) has ubiquitously impacted many aspects of life. As vaccines continue to be manufactured

and administered, limiting the spread of SARS-CoV-2 will rely more heavily on the early

identification of contagious individuals occupying reopened and increasingly populated

indoor environments. In this study, we investigated the utility of an impaction-based bioaero-

sol sampling system with multiple nucleic acid collection media. Heat-inactivated SARS-

CoV-2 was utilized to perform bench-scale, short-range aerosol, and room-scale aerosol

experiments. Through bench-scale experiments, AerosolSense Capture Media (ACM) and

nylon flocked swabs were identified as the highest utility media. In room-scale aerosol

experiments, consistent detection of aerosol SARS-CoV-2 was achieved at an estimated

aerosol concentration equal to or greater than 0.089 genome copies per liter of room air (gc/

L) when air was sampled for eight hours or more at less than one air change per hour

(ACH). Shorter sampling periods (75 minutes) yielded consistent detection at ~31.8 gc/L of

room air and intermittent detection down to ~0.318 gc/L at (at both 1 and 6 ACH). These

results support further exploration in real-world testing scenarios and suggest the utility of

indoor aerosol surveillance as an effective risk mitigation strategy in occupied buildings.

Introduction

Since the onset of the Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) pan-

demic, all aspects of typical life and society have been altered to limit the spread of Coronavirus

Disease 2019 (COVID-19). As knowledge has accrued and a better understanding of the

spread of SARS-CoV-2 in the environment has developed, aerosols have been increasingly

implicated in the spread of COVID-19 [1–5]. Aerosols are found in a variety of sizes ranging

from sub-micron to larger particles (>100 μm) and can stay suspended in indoor air for min-

utes to hours [4–6]. Built environments, including offices, schools, gyms, places of worship,

cars, public transportation, and other human-inhabited indoor spaces [7], can be especially
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vulnerable to aerosol-based pathogen transmission [8, 9]. The presence of indoor biocontami-

nants can be exacerbated by poor indoor air exchange rates, low proportions of outside air,

poor filtration efficiency, and low indoor humidity, leading to prolonged exposure to potentially

infectious aerosols [6, 10–12]. While many healthcare-focused built environments utilize

increased ventilation, outside air fraction, and enhanced filtration to limit the potential for aero-

sols to spread pathogens [13], most building infrastructure does not implement these enhanced

ventilation practices and has limited capability to improve ventilation and filtration [14].

As vaccine rollout increases [15–17], reopening will continue and indoor spaces will

become more crowded. In addition, new variants are emerging, some of which may escape

vaccine-induced immune responses [18–22]. Given this landscape, environmental surveillance

for SARS-CoV-2 and identification of asymptomatic individuals shedding SARS-CoV-2

indoors, will become essential to provide early warning of potential outbreaks within a build-

ing [23] and to focus further diagnostic testing and guide increased environmental risk reduc-

tion strategies.

Previously, high flow aerosol sampling has been employed for biohazard surveillance to

combat bioterrorism and accidental release of high-level biohazards [24]. We evaluated a

novel aerosol sampling system for its ability to identify virus-containing aerosols within the

built environment. Utilizing heat-inactivated SARS-CoV-2, we tested the utility for multiple

media to capture and release viral RNA as well as a prototype aerosol sampler in bench-scale

and room-scale virus-containing aerosol capture trials.

Materials and methods

Bench series 1: Capture media testing

Five unique media types including flocked swabs (Typenex, Catalog #SW0202) [25–29], cotton

swabs (Puritan, Catalog #25-8061WC) [25, 26, 28, 29], glass fiber filters (Millipore, Catalog

#HAWP04700) [30–33], FTA cards (Whatman, Catalog #29277432) [34–37], and Aerosol-

Sense Capture Media (ACM) that have demonstrated previous success in nucleic acid isolation

were tested within an aerosol sampling platform [24] (Thermo Fisher Scientific, Catalog

#2900-AA). SARS-CoV-2 deposited by the Centers for Disease Control and Prevention (CDC)

and obtained through BEI Resources, NIAID, NIH (SARS-Related Coronavirus 2, Isolate

USA-WA1/2020, NR-52281) were cultured using Vero E6 cells (ATCC CRL-1586) for three to

four days in Dulbecco’s Minimum Essential Medium (DMEM, ATCC, Catalog #30–2002) at

5% CO2. Viral supernatants were inactivated through heat inactivation and 254 nm ultraviolet

(UV) light inactivation. Viral supernatants in 1.5 mL screw-cap tubes were incubated at 65˚C

for 20 minutes, following previously established protocols [38]. Tubes were then transferred to

chilled Armor Beads (Lab Armor, LLC) to end the inactivation reaction. For UV-inactivation,

1.5 mL screw-cap tubes with viral supernatants were exposed to UV light (266 nm) for 10 min-

utes. Subsequently, viral supernatant from these treated cultures were serially diluted (10-fold)

in viral transport medium (Rocky Mountain Biologicals, Catalog #VTM-CHT) and inoculated

onto Vero E6 cells and incubated for 1 hour at 5% CO2 to facilitate infection. Cells were then

overlaid with a diffusion limiting agent (0.75% methylcellulose, 1X DMEM, and 2% fetal

bovine serum). After incubation for four days, the absence of plaques was observed to confirm

inactivation. Heat-inactivated viral stocks were selected due to superior genome stability com-

pared to those inactivated through ultraviolet radiation [38]. The number of viral genomes in

each supernatant was determined through absolute quantification using the Charité/Berlin

(WHO) protocol primer and probe panel [39], and artificial RNA standards targeting the

SARS-CoV-2 RdRP (ORF1ab) and E gene regions [38]. The stock solution was found to have a

concentration of genomes per μL.
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To assess the ability of each media to uptake and release SARS-CoV-2, five replicates of

each media type were incubated for four hours in 10-fold serial dilutions of viral supernatants

with concentrations ranging from 3.2 � 106 to 3.2 � 101 genomes/μL diluted with viral transport

medium. Following a 4 hour incubation, each media was transferred to a 5 mL tube with a

very small amount of the media trapped in the snap-top lid, centrifuged for three minutes at

1,500 x g to remove all liquid from the media, and the media was discarded after centrifuga-

tion. An equal volume of DNA/RNA Shield (Zymo Research, Catalog #R1200) as recovered

supernatant was added to each tube and stored at 4˚C until RNA extraction. RNA was

extracted from 400 μL of the recovered supernatant using the Quick-DNA/RNA Viral Mag-

bead kit (Zymo Research, Catalog #R2141) following the manufacturer protocol. The success

of the extraction was determined using Escherichia coli virus MS2 spike-in [40]. The presence

of SARS-CoV-2 RNA was detected using the TaqPath COVID-19 Combo Kit (Thermo Fisher

Scientific, Catalog #A47814) targeting the N, S, and ORF1ab (RdRP) gene regions. Reaction

mixtures contained 5 μL TaqPath 1-Step Multiplex Mastermix without ROX (Thermo Fisher

Scientific, Catalog #A28521), 9 μL nuclease free water (Invitrogen, Catalog #4387936), 1 μL

COVID-19 Real Time PCR Assay Multiplex Mix (Thermo Fisher Scientific, Catalog #A47814),

and 5 μL of extracted RNA. Thermocycling was performed using a QuantStudio5 (Applied

Biosystems, Catalog #A28140) using the following conditions: 25˚C for 2 minutes, 53˚C for 10

minutes, 95˚C for 2 minutes, and 40 cycles of 95˚C for 3 seconds and 60˚C for 30 seconds. A

sample was considered positive for the presence of SARS-CoV-2 RNA if amplification was

observed in two out of the three genome targets, following the FDA Emergency-Use Authori-

zation guidelines in the assay instructions for use [41]. All reaction plates included an extrac-

tion control and a PCR no template control (NTC) to assess potential contamination during

RNA extraction and PCR preparation respectively. A positive result in either of these controls

invalidated the full plate and required a re-extraction (positive extraction control) or a rerun

of the qRT-PCR reaction (positive PCR NTC). All work surfaces were decontaminated using a

10% bleach solution and RNaseAway (Thermo Scientific, Catalog #7003)

Bench series 2 and 3: Aerosol sample collection

A prototype model of the AerosolSense Air Sampler (Thermo Fisher Scientific, Catalog

#2900-AA) was utilized to capture SARS-CoV-2 containing aerosols (Fig 1A). Air was sampled

at a rate of 200 L/min through a vertical collection pipe and impacted onto the collection

media. The AerosolSense Air Sampler is designed to collect aerosolized particles with a diame-

ter between 0.1–15μm [42]. The collection media was held by a removable cartridge, allowing

the cartridge to be removed and decontaminated between sampling events (Fig 1A). The col-

lection media was tested for the presence of SARS-CoV-2 using the same molecular methods

described above.

Aerosolization took place inside an 818-GB glovebox (Plas Labs, Catalog #818-GB) with an

inside height of 104 cm, an inside depth of 71 cm, an inside width of 66 cm, and an internal

volume of 489 L (Fig 1B). Previous investigations at healthcare facilities guided the aerosolized

concentrations of SARS-CoV-2 tested [1, 5, 43]. Aerosol concentrations in real-world scenar-

ios are typically measured by genome copies captured per liter (gc/L) of air collected. Previous

work has demonstrated that captured concentrations of SARS-CoV-2 in built environments

range from 3 gc/L [1] to 94 gc/L [5] of room air. First, the AerosolSense system was tested

across a large range of potential indoor aerosol doses (bench series 2) and then tested at a nar-

rower range of doses (bench series 3) against potential scenarios more typical of indoor envi-

ronments. The doses tested in bench series 2 included 0.0032 gc/L (1.6 genome copies total),

0.032 gc/L (16 genome copies total), 0.32 gc/L (160 genome copies total), 3.2 gc/L (1600
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genome copies total), 32 gc/L (16,000 genome copies total), 320 gc/L (160,000 genome copies

total), and 3,200 gc/L (1,600,000 genome copies total). The doses in bench series 3 included 0.032

gc/L (16 genome copies total), 32 gc/L (16,000 genome copies total), and 320 gc/L (160,000

genome copies total). All doses are reported as dosed gc/L of air volume in the glove

box irrespective of time (Table 1). Viral supernatants were nebulized using the Harvard Appara-

tus Aerosol Nebulizer (Harvard Apparatus, Catalog #73–1963). Aerosol collection proceeded as

follows: the sampler and nebulizer were turned on simultaneously, virus was aerosolized for two

minutes (1 mL of viral supernatant aerosolized), and the AerosolSense was allowed to run for

three additional minutes, resulting in ~2 volumetric air captures to occur in the glove box. Fol-

lowing aerosolization, the capture media was removed from the glove box, 500 μL of DNA/RNA

Shield and 500 μL of 1X phosphate buffered saline (PBS) were added to the capture media, incu-

bated for 10 minutes, vortexed for 5 seconds, then centrifuged as described above. RNA isola-

tion, SARS-CoV-2 quantification, and interpretation were performed as described above.

The potential for real-world factors to impact the air sampler’s utility in detecting SARS-

CoV-2 RNA was also investigated. Particularly, we investigated the impact of 1) glove

Fig 1. (a) AerosolSense sampler and media cartridge; republished from [75] under a CC BY license, with permission from Thermo Fisher Scientific,

original copyright 2021. (b) Glove box layout for bench-scale aerosol sample collection.

https://doi.org/10.1371/journal.pone.0257689.g001

Table 1. Dosed aerosol concentrations and predicted total genomes aerosolized in bench-scale and room-scale aerosolization experiments.

Bench-Scale Aerosols (bench series 2+3) Room-Scale Aerosols

Dosed Aerosol Concentration Dosed Genome Copies Dosed Aerosol Concentration Dosed Genome Copies

0.0032 gc/L 1–2 genome copies 3.2 gc/L 89,728 genome copies

0.032 gc/L 16 genome copies 32.0 gc/L 897,280 genome copies

0.32 gc/L 160 genome copies 320 gc/L 8,972,800 genome copies

3.2 gc/L 1,600 genome copies 3,200 gc/L 89,728,000 genome copies

32.0 gc/L 16,000 genome copies 32,000 gc/L 897,280,000 genome copies

320 gc/L 160,000 genome copies

https://doi.org/10.1371/journal.pone.0257689.t001
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box relative humidity (RH) levels, 2) delayed sample processing, and 3) high dust loads. The

glove box naturally maintained a consistent relative humidity between 40%-60% RH (mid RH

condition) based upon ambient laboratory conditions during testing. A high RH condition

(>70%) was achieved by misting water into the enclosed glove box and a low RH condition

(<30%) was achieved through the use of lithium chloride [44]. The temperature and RH were

monitored throughout the course of all experiments using HOBO UX100-011A data loggers.

Delayed processing samples were transported directly from the glove box to airtight plastic

boxes. Replicate samples were held for periods of 24, 48, and 72 hours, then processed as

described previously. Additionally, the delayed sample airtight plastic boxes were maintained at

three different RH conditions to match the conditions in which the aerosol sampling took place

(high, mid, or low RH). The temperature and RH within these containment boxes were moni-

tored using HOBO UX100-011A data loggers. The impact of household dust on SARS-CoV-2

aerosol detection was tested by rolling the collection media in vacuumed dust collected from a

home in Eugene, Oregon. The household had no history of COVID-19 infection and four ali-

quots of the dust tested negative for the presence of SARS-CoV-2 prior to use in experiments.

Room-scale aerosol sample collection

To investigate the ability of the AerosolSense sampler to perform under real-world conditions,

heat-inactivated SARS-CoV-2 was aerosolized within a rapid deployable module (RDM, West-

ern Shelter Systems, Eugene) (Fig 2). The interior volume of the RDM was 28,040 L. The viral

doses aerosolized into the room were 3.2 gc/L, 32 gc/L, 320 gc/L, 3,200 gc/L, and 32,000 gc/L.

These concentrations are reported as dosed gc/L of air volume in the RDM irrespective of time

(Table 1). Virus was aerosolized using three 4-jet Blaustein Atomizing Modules (CH Technol-

ogies) with a flow rate of 16 L/min at 50 psi for each nebulizer. Nebulization occurred for 60

minutes for all 75-minute sampling durations and 240 minutes for all sampling durations of

8-hours or more. At the beginning of each sampling day, negative control sampling took place

Fig 2. Layout of environment, AerosolSense samplers, and dimensions for room-scale aerosol testing.

https://doi.org/10.1371/journal.pone.0257689.g002
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through the aerosolization of VTM to confirm the environment was negative for SARS-CoV-2

contamination. While the total quantity of aerosolized SARS-CoV-2 dosed into the RDM air

volume resulted in the nominal aerosol doses listed in Table 1, the rate of nebulization over

time, room air movement, room air exchange rates during sampling, and air infiltration

resulted in estimated concentrations that were substantially lower than reported in Table 1 at

any given point in time. To address this in relation to the observed results, a model taking into

account the number of genome copies aerosolized, nebulization rate and duration, room vol-

ume and air exchange rate, deposition in the room, and imperfect nebulization and viral cap-

ture was utilized to estimate the aerosol SARS-CoV-2 concentration throughout the course of

the sampling time (Fig 3). Based on this model, aerosol SARS-CoV-2 concentrations were esti-

mated to be ~9.95% and ~2.75% of the nominal concentration described in Table 1 for the

75-minute and>8 hour room-scale experiments respectively (Table 2).

Nebulization aerosol particle characterization

The Harvard Apparatus Aerosol Nebulizer emits particles ranging from <0.1 μm to 10.5 μm,

based upon the literature available from the manufacturer. There was no formal data available

on the 4-jet Blaustein Atomizing Modules (BLAM nebulizer). In order to better contextualize

the detection capability of the AerosolSense sampler and its potential application in real-world

scenarios, a characterization of the particle output of the nebulizer was performed. A single

BLAM nebulizer was placed in a sealed Purifier Logic+ Class II, Type A2 biosafety cabinet

(LabConco, Catalog #302420001) with an Aerotrak 9306-V2 particle counters recording parti-

cle counts in 6 size bins (0.3–1 μm, 1–2.5 μm, 2.5–3 μm, 3–5 μm, 5.0–10 μm and 10 μm). VTM

was nebulized for 20 minutes in order to achieve steady state particle concentrations. A sum-

mary of the overall particle output can be found in Table 3.

For all 75-minute experiments, interior temperature was maintained at 22˚C +/- 4˚C with

two portable electric resistance fan heaters and RH was maintained at 50% +/- 10% using a sin-

gle portable humidifier. Additional air circulation was provided in the space from two oscillat-

ing fans each moving 24,975 liters per minute. Air exchange rate was controlled and

maintained at either one or six air changes per hour (ACH) through timed operation of HEPA

filtered exhaust air removal from the RDM with make-up air via infiltration. Temperature and

RH were monitored and recorded using two Onset HOBO MX1102A data loggers. Exhaust air

flow rate was confirmed using an Omega HHF92A CFM Master II anemometer. For high dust

(interference) experiments, household vacuum dust was continuously emitted to room air via

a modified single drum rotary rock tumbler (Harbor Freight Tools, Calabasas) placed over one

of the oscillating fans. Three TSI Aerotrak 9306-V2 particle counters recorded particle counts

in six bin sizes (0.3–1 μm, 1–2.5 μm, 2.5–3 μm, 3–5 μm, 5.0–10 μm and 10–25 μm) during all

experiments. After each experimental trial, air in the RDM was filtered at ~30 ACH for 10

+ minutes using a CL-ACXE1200 HVAC system (Western Shelter Systems) fitted with an

additional in-line HEPA filter. This unit was also used to maintain temperature in the RDM in

between each experimental trial. For all long duration experiments, viral supernatants were

diluted to 24 mL of total liquid in each nebulizer to allow for a longer nebulization duration

(240 minutes). Additionally, ambient temperature was not maintained for longer trials (range

of 25˚C-5˚C) and the air exchange rate was maintained at approximately 0.8 ACH.

Ethics statement

The research described did not require institutional review board approval. However, bench-

scale capture media testing protocols were reviewed and approved by the University of Oregon

Institutional Biosafety Committee (Registration #2020–19). All protocols relating to the room-

PLOS ONE COVID19 and bioaerosols

PLOS ONE | https://doi.org/10.1371/journal.pone.0257689 November 15, 2021 6 / 20

https://doi.org/10.1371/journal.pone.0257689


PLOS ONE COVID19 and bioaerosols

PLOS ONE | https://doi.org/10.1371/journal.pone.0257689 November 15, 2021 7 / 20

https://doi.org/10.1371/journal.pone.0257689


scale aerosol captures trials that took place in the RDM were reviewed and approved by

Advarra IBC (Protocol #202000110). Advarra IBC is an authorized external IBC for the Uni-

versity of Oregon and is registered with the National Institute of Health (NIH). Data and anal-

ysis are available at https://github.com/BioBE/AerosolSense-LabTests.

Statistical analyses

One-way ANOVA with Tukey’s HSD was used to compare the results of the different capture

media. Student’s t-tests were used to compare the detected viral load between differential envi-

ronmental conditions and treatments. Differences were considered significant with P< 0.05.
All statistical analyses were conducted with the statistical programming language, R [46].

Results

Capture media testing—qualitative assessment

Each capture media was qualitatively evaluated and scored based on a variety of characteristics

using a 5-point Likert scale during the laboratory testing (Table 4), with “1” acting as the low-

est score and “5” acting as the highest score [47]. The stability of each media was assessed fol-

lowing incubation, vortexing, and centrifugation. ACM, cotton swabs, and flocked swabs

demonstrated no change throughout this process, thus earning a five on the Likert scale. FTA

cards and glass fiber filters become soft and fell apart throughout the process, earning them

lower marks. All liquid could be centrifuged from both the ACM and flocked swabs and

earned a score of five. The eluate was also easily retrieved from the cotton swabs, but the

wooden shaft on the model tested led to some retention of liquid. When the FTA cards and

glass fiber filters remained intact, liquid retrieval was comparable with that of other materials.

However, media disintegration during processing led to difficulty retrieving the liquid. Due to

the lack of stability, the FTA card and glass fiber filters were given lower ease of use scores. The

cotton swab did not have a preset tip breakpoint, complicating processing for this capture

media. This resulted in a decreased score in the ease-of-use category. ACM and flocked swabs

were easily integrated into the sample processing workflow and received the top score for ease

of use. Lastly, when frozen, all media types performed similarly and received top scores in this

category.

Fig 3. Estimated number of aerosolized genome copies throughout the course of 75-minute trials at (a) 1 ACH (b) 6ACH and (c)

overnight room-scale aerosol sampling trials. The red dashed line represents the point when the nebulizers were estimated to no

longer be nebulizing any supernatant containing heat-inactivated SARS-CoV-2.

https://doi.org/10.1371/journal.pone.0257689.g003

Table 2. Estimated steady-state aerosol concentrations.

1 ACH 6 ACH Overnight (0.8 ACH)

Nominal Aerosol

Concentration (gc/L)

Estimated Steady-State Genome

Concentration (gc/L)

Nominal Aerosol

Concentration (gc/L)

Estimated Steady-

State Genome

Nominal Aerosol

Concentration (gc/L)

Estimated

Steady-State

3.2 0.318 3.2 0.197 3.2 0.089

32 3.18 32 1.97 32 0.89

320 31.8 320 19.7 320 8.9

3,200 318 3,200 197 3,200 89

32,000 3,180 32,000 1,970 32,000 890

https://doi.org/10.1371/journal.pone.0257689.t002
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Bench series 1: Capture media testing—quantitative assessment

The choice of capture media was found to have a significant impact on the observed cycle

threshold (Ct) values (F5, 405 = 3.722, P<0.05, Fig 3A). No significant differences were observed

in Ct values between the viral supernatants and liquid eluted from ACM, cotton swabs, flocked

swabs, or FTA cards (Fig 3B) in “bench series 1” experiments. A significant difference was found

in the observed Ct values (higher, less abundance) between the viral supernatants and the liquid

eluted from glass fiber filters (Fig 3B). Due to the significant difference in observed Ct values,

the glass fiber filter was removed from future experiments. Because there was no significant dif-

ference in the observed Ct values between ACM, FTA cards, flocked swabs, and cotton swabs,

the qualitative survey was used to determine the capture media that would continue on to the

“bench series 2 and 3” aerosol experiments. The difficulty in working with FTA cards in the pro-

cessing pipeline led to its removal from consideration. Lastly, although similar results were

observed between the ACM, flocked swabs, and cotton swabs, the lack of breakpoint and slight

variation in elution caused by the wooden handle of the cotton swab, it was decided to perform

the “bench series 2 and 3” aerosol experiments with the ACM and flocked swabs only (Table 5).

Bench series 2 and 3: Aerosol testing

Throughout all bench-scale aerosol tests, the chamber temperature was maintained at

23.8˚C ± 1.32, 25.5˚C ± 2.07˚C, and 24.1˚C ± 0.427˚C for the low, mid, and high RH condi-

tions respectively. A full outline of environmental summary statistics can be found in the sup-

plementary data. Similar to the previous media tests, capture media was not found to

significantly impact (P = 0.89) observed Ct values across seven decades of concentration and

in potential scenario testing (P> 0.05), but Ct values did demonstrate a significant relation-

ship to aerosolized viral genome copies (P< 0.001). SARS-CoV-2 RNA was detected at least

50% of the time at a concentration of 0.32 gc/L (dosed into glove box) and 3.2 gc/L by the

Table 3. Characterization of nebulizer aerosolized particle distribution.

Harvard Apparatus Aerosol Nebulizer BLAM Nebulizer

Particle Bin Size % of Total Particles Particle Bin Size % of Total Particles
0–1.22 μm 52.0% 0.3–1.0 μm 91.7%

1.22–2.4 μm 9.5% 1.0–2.5 μm 7.9%

2.4–3.04 μm 6.8% 2.5–3.0 μm 0.22%

3.04–4.97 μm 23.9% 3.0–5.0 μm 0.17%

4.97–8.19 μm 7.5% 5.0–10 μm 0.05%

8.19–10.5 μm 0.2% 10–25 μm <0.01

Data describing the particle distribution of the Harvard Apparatus Aerosol Nebulizer (left) was adapted from

product literature [45].

https://doi.org/10.1371/journal.pone.0257689.t003

Table 4. Qualitative characteristics of each capture media tested and ratings of four factors based upon common laboratory activities.

Stability Eluate Retrieval Ease of Use Stability during Freeze Totals

ACM 5 5 5 5 20

Cotton Swab 5 4 3 5 17

Flocked Swab 5 5 5 5 20

FTA Card 2 4 3 5 14

Glass Fiber Filter 2 3 2 5 12

https://doi.org/10.1371/journal.pone.0257689.t004
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ACM and flocked swabs respectively (Fig 4B). SARS-CoV-2 RNA was never detected at doses

below 0.032 gc/L (Fig 4B). The ability to capture and detect SARS-CoV-2 RNA was not signifi-

cantly impacted by aerosol capture at low or high humidity levels across all doses tested (Fig

5B). Similarly, delayed processing across all RH levels and up to three days post-collection did

not demonstrate statistically significant results (Fig 5C).

Room-scale aerosol testing

Once again, the capture media was not found to have a statistically significant impact on the

measured Ct value (P = 0.661), and the presence of a higher dust load and increased distance

from the nebulization source were not found to significantly impact the detection of the aero-

solized virus (P = 0.308 and P = 0.622 respectively). However, increased aerosolized viral load

was associated with decreased Ct value on the capture media (P< 0.001) and the length of the

aerosol capture time was found to significantly decrease the measured Ct value (P< 0.001).
For the shorter sampling period (75 minutes), aerosolized SARS-CoV-2 RNA was detected at

least 50% of the time at 320 gc/L dosed into RDM air (Table 6) while SARS-CoV-2 RNA was

detected 100% of the time when the sampling time was increased to greater than 8 hours (at all

three doses, 3.2 gc/L, 32 gc/L, 320 gc/L) (Table 6).

Discussion

Overall, we sought to optimize and evaluate the potential utility of the AerosolSense sampler as

a surveillance tool to identify COVID-19 outbreaks when reopening built environments. To

this end, this study evaluated the ability of multiple types of media to capture, stabilize, and

integrate into a standard SARS-CoV-2 molecular diagnostic workflow [48]. The media tested

had previously demonstrated promise for the collection of viral RNA [24–37], either as a

media typically associated with prolonged stability of the collected nucleic acids, previous use

in aerosolized virus collection, or use in clinical specimen collection. In bench-scale trials,

there was a significant link between media that were capable of reliably releasing stored viral

supernatants (ACM, flocked swab, cotton swab) and higher concordance to viral supernatant

controls. Additionally, media that were found to be easier to handle (ACM, flocked swab, cot-

ton swab) were also found to have results more closely following those of the supernatant con-

trols (Fig 3). In order for environmental surveillance to occur and not place unnecessary strain

on capable molecular laboratories, it is essential that the media selection for aerosol sampling

fit into existing molecular workflows. Based on these criteria, it was decided that ACM, which

most readily released the captured supernatant; and flocked swabs, one of the most common

Table 5. Percent of media tested positive for the presence of SARS-CoV-2 RNA expressed as genome copied dosed per L of chamber air.

AerosolSense Capture Media Flocked Swabs

Dosed Aerosol Concentration Percentage Positive Dosed Aerosol Concentration Percentage Positive

0.0032 0% 0.0032 0%

0.032 33.3% 0.032 33.3%

0.32 50.0% 0.32 33.3%

3.2 66.6% 3.2 25.0%

32 100% 32 33.3%

320 87.5% 320 66.6%

3,200 100% 3,200 100%

Samples were considered positive if two out of the three genomic targets (N, S, ORF1ab) returned a Ct value�35.

https://doi.org/10.1371/journal.pone.0257689.t005
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media for clinical diagnostic specimen collection [25–27, 29, 49], would proceed to additional

bench-scale and room-scale aerosol trials. Similar media had previously demonstrated success

in environmental viral sampling [24, 50, 51].

Fig 4. Bench series 1 results. Capture testing media results. (a) Measured Ct values across the serial dilution curve, ranging from 3.2 � 106 genome copies per μL

(concentration 1) to 3.2 � 101 genome copies per μL (concentration 6) (b) Boxplots of measured Ct values of liquid eluted from capture media across all

concentrations tested. Concentrations are the same as in (a).

https://doi.org/10.1371/journal.pone.0257689.g004
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In the bench-scale aerosol experiments, the goal was to assess the ability of the AerosolSense

sampler and the selected capture media to detect aerosolized heat-inactivated SARS-CoV-2 in

a controlled environment. The published limit of detection of the TaqPath assay is ten genome

Fig 5. Bench series 3 results. Pink points represent samples collected from ACM and white points are samples collected from flocked swabs. Outliers are shown

as crossed out circles (a) Measured Ct values at three main concentrations (0.032, 32, and 320 gc/L respectively) tested recovered from each capture media. (b)

Measured Ct values at three measured aerosolized virus concentrations and RH levels. Outliers are shown as crossed out circles (c) Measured Ct values from

samples processed immediately, with a 24-hour delay, with a 48-hour delay, and with a 72-hour delay. The top panel box is the aerosol concentration tested (32

gc/L or 320 gc/L) and the second panel box is the humidity at which the particles were aerosolized and at which the samples were maintained until being

processed.

https://doi.org/10.1371/journal.pone.0257689.g005
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copy equivalents [41]. Limited detection began at an aerosol concentration of 0.032 gc/L (esti-

mated 16 genome copies) and consistent detection (�50%) was observed at 32 gc/L (estimated

16,000 total genome copies). Consistent detection of the RNA was likely not observed until

well above the published assay limit of detection due to deposition of the virus on the surfaces

within the glovebox, inefficiencies in the retrieval of eluate from the capture media, and poten-

tial inefficiencies during the RNA extraction process [52]. However, significant detection was

observed at 32 gc/L, a similar aerosol concentration as has been observed previously in SARS-

CoV-2- healthcare environments [1, 5, 43].

In order to assess two potential scenarios of aerosol surveillance in the real-world, the sam-

pling protocol was tested against varying levels of RH and delayed processing time to mimic

potential shipping or an inadvertent delay in sample collection or processing. In bench series

trials, we observed no significant difference in measured Ct value of samples collected at differ-

ent RH levels at any of the three different aerosol concentrations tested (Fig 2B). While previ-

ous research has demonstrated that coronavirus infectivity and survival can be significantly

impacted by differing humidity levels [53–56], our results were in the context of 1) already

inactive RNA, and 2) a very short aerosolization and sampling duration and distance. Since

the total sampling period was maintained for 5 minutes at a very short distance (~30 cm), it is

possible that any changes in RH may have required greater travel distance longer and poten-

tially more than 5 minutes for deposition-related effects to have been observed. Similarly,

delayed sample processing up to 72 hours was not found to have a statistically significant

impact on the ability to detect SARS-CoV-2 RNA (Fig 2C). While the CDC recommends clini-

cal samples remain under refrigeration at 4˚C if they will not be processed immediately [57],

Table 6. Percent of media tested positive for the presence of SARS-CoV-2 RNA expressed as genome copied

dosed per L of room air irrespective of time.

75 Minute Trials—1 ACH

Low Dust High Dust

Estimated Genome Copies / L Percent Positive Estimated Genome Copies / L Percent Positive

0.318 25% (1/4) 0.318 0% (0/4)

3.18 0% (0/4) 3.18 50% (2/4)

31.8 100% (4/4) 31.8 75% (3/4)

318 100% (4/4) 318 100% (4/4)

3,180 ❋ 3,180 100% (4/4)

75 Minute Trials—6 ACH

Low Dust High Dust

Estimated Genome Copies / L Percent Positive Estimated Genome Copies / L Percent Positive

0.197 25% (1/4) 0.197 0% (0/4)

1.97 25% (1/4) 1.97 50% (2/4)

19.7 25% (1/4) 19.7 75% (3/4)

197 100% (4/4) 197 100% (4/4)

1,970 100% (4/4) 1,970 100% (4/4)

8+ Hour Trials—0.8 ACH

Estimated Genome Copies / L Estimated Percent Positive

0.089 100% (8/8)

0.89 100% (8/8)

8.9 100% (8/8)

Samples were considered positive if two out of the three genomic targets (N, S, ORF1ab) returned a Ct value�35. ❋
denotes that the concentration was not tested in that condition.

https://doi.org/10.1371/journal.pone.0257689.t006
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SARS-CoV-2 RNA has been demonstrated to show limited degradation up to a week after col-

lection at room temperature as long as the viral envelope remains intact [58] and has been

detected weeks after deposition in some cases [59]. The bench series results demonstrated con-

sistent detection at and above previously measured aerosol concentrations in healthcare envi-

ronments. Furthermore, the results indicate robustness against degradation after collection on

the capture media at a range of RH values and processing delays. Therefore, additional experi-

mental trials were conducted at the scale of a full room.

Respiratory aerosols typically range in diameter from 0.1–100 μm [60] and are typically cat-

egorized into two distinct categories: (i) coarse respiratory particles (> 5μm) and (ii) fine

respiratory particles (�5μm) [60]. Although respiratory aerosols produced by individuals

range in diameter from 0.1–100μm, laboratory simulation experiments [61, 62], SARS-CoV-2

RNA detection [1, 63–66], and infectious aerosol sample collection [67] have demonstrated

that the majority of SARS-CoV-2 infectious and potentially infectious particles are found in

aerosols with diameters�5μm (i.e. fine respiratory particles). The aerosols created by the neb-

ulizers in the previously described experiments, while not perfectly mimicking the total range

of human respiratory output, emitted the majority of viral particles in the highly relevant fine

respiratory particle range (Table 3). The AerosolSense Air Sampler has been rated to collect

aerosol particles with diameters between 0.1 and 15μm [42]. Even though this collection range

also does not encompass the entirety of human respiratory output, it could potentially collect,

at a minimum, at least 85% of the available aerosolized RNA (assuming perfect collection effi-

ciency). An important factor in determining if the sampler can collect the aerosol is whether

or not the particle of a given size may reach the sampler inlet. We would expect that the Aero-

solSense could also collect larger particles as long as the particles can make it to the sampler

inlet. The times for three particle sizes, 15μm, 20μm, and 30μm, to settle 1 meter in still air are

145 seconds, 82 seconds, and 30 seconds, respectively [68, 69; Full equations, including a

spreadsheet for calculations, can be found in the supplementary material]. This is the vertical

velocity of the particles. In the time the particles drop 1 meter, they will have traveled 1.116

meters, 0.66 meter, and 0.24 meter horizontally for the 15μm, 20μm, and 30μm particles with a

horizontal velocity of 0.008 m/sec (supplementary material). For the 20μm and 30μm particles,

by the time it takes for the particles to travel 1 meter, they will have fallen nearly 2 meters or

more, sufficient time to drop out of the air. This travel distance illustrates that unless the

release is very close to the inlet of the sampler, it is highly unlikely these particles will travel a

sufficient horizontal distance to be able to be collected by the sampler. This is similar to a

human subject; unless the release of these large particles is very close to the breathing zone,

they are not likely to be inhaled by the subject. Taken together, we conclude that the Aerosol-

Sense will reliably collect the majority of aerosolized SARS-CoV-2 particles that are present

within an enclosed space.

No statistical difference was observed in SARS-CoV-2 detection when impacted on flocked

swabs or ACM (P = 0.661). Although flocked swabs are currently the standard for the collec-

tion of clinical samples for most respiratory tract viruses [25–27, 29, 51, 57], media similar to

ACM has previously demonstrated superiority over flocked swabs for the sampling and detec-

tion of RNA viruses [50, 51]. Both materials reliably detected SARS-CoV-2 in aerosols and

were easily integrated into a typical molecular workflow. However, due to their popularity in

clinical diagnostics, flocked swabs may prove more difficult to obtain in times of extreme

demand, as has been documented throughout the progression of the COVID-19 pandemic

[70–72].

Room-scale aerosol trials demonstrated that detection was�50% at an estimated aerosol

concentration of 31.8 gc/L when sampling took place for 75 minutes. However, when sampling

took place for longer durations, the detection rate of SARS-CoV-2, even at an estimated
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aerosol concentration as low as 0.089 gc/L, increased to 100%. The amount of dust present in

the room, ranging from ambient dust to high dust load did not have a significant impact on

the ability of the sampler to detect SARS-CoV-2 in aerosols (Table 4; P = 0.308). Additionally,

the distance of the sampler from the aerosolization source (4’ or 14’) and the dust source did

not have a significant impact on the ability to detect aerosolized SARS-CoV-2 or the intensity

of the detected SARS-CoV-2 (P = 0.622).
Future investigations with the AerosolSense sampler should focus on the utility of bioaero-

sol sampling in real-world scenarios, both with and without the known presence of positive

COVID-19 individuals. When positive aerosol samples are identified, epidemiologic investiga-

tions may benefit from the genomes recovered and the potential linking with clinical diagnos-

tic genomes [73, 74]. Additionally, the sampler and sampling methods outlined throughout

this manuscript could provide utility beyond SARS-CoV-2 surveillance and could be beneficial

for the surveillance of other aerosol respiratory pathogens such as Influenza virus, Respiratory

Syncytial virus (RSV), other coronaviruses, adenoviruses, and Rubeola virus as well as other

pathogens of interest in healthcare and research settings such as antibiotic resistant organisms,

Mycobacterium tuberculosis, and Clostridioides difficile.

Conclusion

The results presented above demonstrate the utility of the AerosolSense sampler to detect

SARS-CoV-2 RNA when paired with either the AerosolSense Capture Media or flocked swabs.

Viral detection in aerosols was found to be consistent and reproducible when tested in a labo-

ratory bench-scale setting and in a full-scale built environment. Aerosol SARS-CoV-2 detec-

tion was found to be robust against high levels of household dust, even at low estimated viral

concentrations. Consistent detection of SARS-CoV-2 was achieved at estimated aerosol con-

centrations consistent with currently published aerosol concentrations found in healthcare set-

tings [1, 5, 43] and detection was not significantly impacted at higher levels of air changes per

hour or across different humidity levels and processing durations. All together, these results

provide strong evidence for the utility of the AerosolSense sampler as an environmental sur-

veillance tool for airborne pathogens like SARS-CoV-2 in a wide-range of indoor public

spaces.
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