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Abstract

Histone acetylation and deacetylation are important epigenetic mechanisms that regulate gene expression
and transcription. Histone deacetylase 6 (HDAC6) is a unique member of the HDAC family that not only
participates in histone acetylation and deacetylation but also targets several nonhistone substrates, such

as a-tubulin, cortactin, and heat shock protein 90 (HSP90), to regulate cell proliferation, metastasis, invasion,
and mitosis in tumors. Furthermore, HDAC6 also upregulates several critical factors in the immune system,

such as program death receptor-1 (PD-1) and program death receptor ligand-1 (PD-L1) receptor, which are
the main targets for cancer immunotherapy. Several selective HDAC6 inhibitors are currently in clinical trials
for cancer treatment and bring hope for patients with malignant tumors. A fuller understanding of HDAC6

appealing drug target.

as a critical regulator of many cellular pathways will help further the development of targeted anti-HDAC6
therapies. Here, we review the unique features of HDAC6 and its role in cancer, which make HDAC6 an
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Background

Tumorigenesis is a multistep process whereby normal
cells are transformed into malignant cells, leading to an
abnormal cell growth. Such transformational events are
associated with major biological changes that are shared
by most neoplastic cells, called hallmarks of cancer [1].
Mutations in key driver genes are the most potent
contributors to cancer development. In addition to gene
mutations, the deregulation of these epigenetic mecha-
nisms (heritable changes in gene expression that do not
involve DNA sequence modifications), including histone
acetylation and deacetylation, is widely accepted to be an
underlying cause of the cancer hallmarks [2]. As one of
the key steps of post-translational modification in gene
regulation and chromatin remodeling, the balance of
acetylation and deacetylation of lysine residues is critical
to maintaining body homeostasis, and disruption of this
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balance can contribute to the development of human
diseases, including cancer [3-5].

As a key factor of histone acetylation and deacetyla-
tion, the expression of HDAC6 has been observed in
normal heart, liver, kidney, testis, brain, and pancreas
[6]. The increase of its expression or the destruction of
its functional integrity can lead to a variety of diseases,
such as Alzheimer [7, 8], Parkinson [9], and cardiovascu-
lar disease [10]. Meanwhile, the relationship between
HDACS6 and tumors is also inseparable [11-13]. Some
studies have reported the overexpression of HDAC6 in
bladder cancer, malignant melanoma, and lung cancer
[14-16]. While HDAC6 functions in deacetylating
histones, recent reports have identified several critical
nonhistone protein substrates for HDACS6, including
a-tubulin, heat shock protein 90 (HSP90), and cortactin.
HDACS6 can participate in the process of tumorigenesis
and development through various pathways, such as
oncogenic cell transformation and cancer cell migration
and invasion [17-19]. In addition, the HDAC6 activity
can affect the gene expression of some critical immune
system molecules, including tumor-associated antigens,
programmed death receptor-1 (PD-1), and programmed
death receptor ligand-1 (PD-L1), which are central
targets in cancer immunotherapy [20, 21].
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Investigations of how HDAC6 regulates cancer-asso-
ciated signaling pathways indicate that HDAC6 could
be a potential therapeutic target for cancer patients [22—
24]. Because of the unique molecular structure of HDAC6
and the diversity of its substrates, several groups have de-
veloped relatively isoform-specific inhibitors of its enzym-
atic action and some of these inhibitors are currently in
clinical trials [25, 26]. In this review, we discuss how
HDAC6 affects tumor development through its various
substrates and the status of selected HDAC6 inhibitors.

Structure of HDAC6 and differences from other
HDACs

The histone deacetylase (HDAC) family in mammals
contains 18 HDAC members that are grouped into four
classes according to their homology to yeast deacetylases
[27]. The class I HDACs, which include four isoforms
(HDACI, 2, 3, and 8); the class II HDACSs, which con-
tain HDAC4, 5, 6, 7, 9, and 10; and HDAC11, which is
classified separately in class IV. All these three classes
belong to Zn*-dependent proteases. However, the class
III HDACs, which include Sirtl-7, work through
NAD"-dependent mechanisms.

HDACS6, a unique member of the type II HDACs, was
first discovered by two different groups, Grozinger et al.
[6] and Verdel and Khochbin [28]. The HDACS6 gene is lo-
cated in Xp11.23 (Fig. 1) and encodes a protein of 1215
amino acids, the largest protein of the HDAC family.
What is special about HDACE is that it contains two func-
tional catalytic domains, and both domains are homolo-
gous and functionally independent of the overall activity
of HDACS6 [6, 29-31]. Additionally, the C-terminal end of
HDACS6 contains an ubiquitin-binding zinc finger domain
(ZnF-UBP domain, also known as the PAZ, BUZ, or
DAUP domain) that is related to the regulation of
ubiquitination-mediated degradation [32]. Furthermore,
unlike other HDAC:s that are localized in the nucleus [31],
HDACS6 is mainly localized to the cytoplasm due to the
presence of a nuclear export sequence (NES) and the
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SE14 motif, which is required for cytoplasmic retention
(Fig. 1) [31, 33].

Physiological function of HDAC6

Histone acetylation and deacetylation are among the key
mechanisms of gene transcription regulation and are modi-
fied by histone acetyltransferases (HAT) and histone deacety-
lation enzyme (HDACsS), respectively, leading to a complex
chromosome configuration reconstruction and chromosome
configuration change. HATs promote chromosome
depolymerization and activate transcription. HDACs, on the
other hand, block DNA and inhibit transcription. In addition
to histones, HDAC6 also works on maintaining the acetyl-
ation balance of some nonhistone substrates, such as
a-tubulin, cortactin, and HSP90 [14, 34, 35].

Microtubules (MTs) are key regulators of cell movement
and are assembled by cytoplasmic «-tubulin. Notably,
a-tubulin was the first identified nonhistone substrate of
HDACS, and the reversible deacetylation of a-tubulin by
HDACS6 can affect MT stabilization and function [35, 36].
In addition, a-tubulin acetylation participates in mitotic
events by affecting intracellular trafficking events through
the protein encoded by the cylindromatosis gene
(CYLD), which is essential for cell cycle progression
[18, 37-39]. The N-terminal region of CYLD contains
three CAP-Gly motifs, two of which (CAP-Glyl and
CAP-Gly2) associate directly with a-tubulin and pro-
mote tubulin polymerization [40].

In addition to its role in MT-dependent cell motility,
HDACS also acts on another nonhistone substrate, cortac-
tin, to influence actin-dependent cell motility [14, 15, 34,
39, 41]. As an F-actin-binding protein, cortactin promotes
polymerization and branching, and it is usually found in
areas of dynamic actin assembly, such as the leading edge
of migrating cells [14, 37, 42]. Through binding to the dea-
cetylase domains of HDACS, cortactin is deacetylated [14].
Deacetylated cortactin then shows an increased ability to
bind to F-actin through activating the small GTPase
Racl and the actin-nucleating complex Arp2/3, thus
promoting F-actin-dependent cell movement [14, 43]
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Fig. 1 Structure of the HDAC6 gene and protein. The gene-encoding HDACG is located in Xp11.23 (left). The HDAC6 protein (right) contains two
functional catalytic domains (DD1 and DD2), which catalyze deacetylation activity for a-tubulin, HSP90, and cortactin. The nuclear export signal (NES)
promotes cytoplasmic localization of the protein, and the Ser-Glu-containing tetrapeptide (SE14) region ensures stable anchorage of the enzyme in
the cytoplasm. Although the HDAC6 protein contains a nuclear localization sequence (NLS), HDAC6 mainly exists in the cytoplasm owing to the actions of
the NES and SE14 motifs. The ubiquitin-binding zinc finger domain (ZnF-UBP domain, also known as the PAZ, BUZ, or DAUP domain) in its C-terminal
region interacts with ubiquitinated proteins and mediates the regulation of ubiquitination-mediated degradation
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(Fig. 2). In contrast, when cortactin is highly acetylated, it
cannot activate Racl or Arp2/3 and does not translocate
to the cell periphery. With less cortactin in the cell periph-
ery, the binding between cortactin and F-actin is de-
creased and cell motility is reduced [14, 43] (Fig. 2).

HSP90 is another nonhistone substrate of HDACS,
and its main function is to promote the maturation
and maintenance of protein structures [44]. As the
HSP90 deacetylation enzyme, HDAC6 can induce
HSF1 activation, leading to the subsequent induction
of molecular chaperone heat shock genes, including
the gene-encoding HSP90. HDACS6 also directly inter-
acts with HSP90 through its two catalytic domains
and the ubiquitin zinc finger domain [34, 45],
contributing to the deacetylation of HSP90 and inter-
fering with its biological function, leading to a contin-
ued increase of its substrate proteins [46].

Importantly, the existence of the ZnF-UBP domain
allows HDACG6 to function as a regulator of the ubi-
quitin and proteasome system (UPS), which regulates
the cell response to protein misfolding [47]. After
HDACS6 binding to ubiquitin-protein via its ZnF-UBP
domain, the dynein protein-binding domain allows
HDACS6 to bind to dynein and transport its misfolded
proteins through microtubules to the perinuclear
aggresomes. The polymers degrade misfolded proteins
by autophagy [47]. On the one hand, HDAC6 promotes
autophagy by recruiting and deacetylating cortactin,
which is necessary for autophagosome and lysosomes.
HDACS6, on the other hand, also forms complexes with
HSP90 and HSF1, which are then involved in activating
the heat shock transcription factor 1 (HSF1), inducing
the expression of HSP25 and HSP70, guiding of protein
folding, and participating in the repair and degradation
of misfolded proteins [33].

HDAC6 in cancer

HDACES is required for oncogenic cell transformation
Anchorage-independent proliferation allows cells to sur-
vive by escaping anoikis, a special kind of programmed
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cell death that can result from the cell disengaging from
the extracellular matrix and surrounding basement
membrane [17]. A study performed by Lee et al. [17]
indicated that HDAC6 promotes tumor formation and
oncogenic transformation by facilitating anchorage-in-
dependent proliferation in transduced cells. First, the
mouse embryonic fibroblasts (MEFs) derived from
wild-type or HDAC6-null embryos were transduced
with retrovirus-expressing SV40 early region and
RasS'?Y, which can transform cells from different
sources into tumor cells, and then analyzed for
anchorage-independent growth in soft agar. From the
result, we can see that the number of colonies in the
wild-type group was more than ten times that in the
null group. Furthermore, knockdown of HDAC6 in
SKOV3 ovarian cancer, MCF7 breast cancer, and
SKBR3 breast carcinoma cell lines reduced anchorage-
independent growth to 3-20% [17]. To further valid-
ate these findings in vivo, stably expressed HDAC6-
scrambled control and specific ShARNA cells were injected
independently into immunocompromised severe com-
bined immunodeficient-Beige mice respectively. Two
weeks later, the mice injected with HDAC6-shRNA
showed fewer tumors than control mice [17].

Another interesting function of HDACS6 is found in
the inflammatory breast cancer (IBC) cells. It is sug-
gested that functional HDAC6 dependency is not only
completely consistent with the change of protein ex-
pression but also related to the activity of HDACS.
Although HDACG6 is not overexpressed in the IBC
cells, its activity is significantly higher in IBC cells
compared with non-IBC cells [48]. The HDAC6 in-
hibitor ACY1215 (ricolinostat) can significantly inhibit
the proliferation of IBC cells, both in vitro and in
vivo, but it is less sensitive in non-IBC cells [48].
Therefore, HDAC6 functions in cancer cells not only
involve alterations in its expression but also activities
that control its cellular deacetylation. This represents
a novel opportunity to develop therapeutic regimens
specifically suited for IBC patients [48].
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Fig. 2 Targets and pathways of HDAC6. (A) HDAC6 binds to cortactin and induces its deacetylation, thereby activating the small GTPase Rac1 and
actin-nucleated complex Arp2/3. Therefore, cortactin can be easily transferred to the cell edge and bind with F-actin to stimulate cell movement.
(B) Under high levels of HDAC6, STAT3 is accumulated in its phosphorylation state, which reduces the interaction of STAT3 and PP2A. After
entering into the nucleus, pSTAT3 and HDAC6 together bind the PD-L1 promoter to promote the expression of PD-L1. (C) In response to the
high expression of HDAC6, the acetylation of MTs is decreased, and the interaction of CYLD and BCL3 is increased. CYLD is translocated to the
cell periphery to bind acetylated microtubules, which allows BCL3 to enter into the nucleus, thereby promoting the expression of cyclin D1
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HDAC6 modulates tumor development through
nonhistone substrates

As described above, HDAC6 mainly participates in cell
movement by acting on the nonhistone substrates. In-
creased cell mobility leads to MT depolymerization (i.e.,
de-adhesion events) as cells move and the remodeling of
new adhesions at the continually forming front of the
spreading cells. This process enhances tumor cell move-
ment, metastasis, and invasion [27, 39]. In the research
of Li et al, HDAC6 was highly expressed in human pan-
creatic cancer tissues at both the mRNA and protein
levels, and the interaction of HDAC6 with cytoplasmic
protein-170 increased cell motility, but had no obvious
effect on pancreatic cancer cell proliferation and cell
cycle progression [49]. As an estrogen-regulated gene,
the expression of HDAC6 in estrogen receptor-positive
breast cancer MCEF-7 cells was also increased, and high
HDACS6 expression increased cell motility by promoting
HDACS6 binding to a-tubulin and enhancing MT activity
[4, 50]. Consistently, cell motility studies in neuroblast-
oma showed that HDAC6 inhibitors decrease MT
dynamics, leading to focal adhesion accumulation and
reduced fibroblast motility [51].

In addition to cell motility, HDAC6 regulates the cell
cycle through deacetylating a-tubulin and promoting the
interaction of CYLD and BCL3 [18, 38] (Fig. 2). As re-
ported, HDACS is highly expressed in malignant melan-
oma. When HDAC6 is silenced or knocked down,
acetylated a-tubulin is increased, acetylated MTs are ac-
cumulated, and CYLD is translocated to the perinuclear
region, leading to a reduced interaction between CYLD
and BCL3 [18, 52, 53]. BCL3 is thus increased in the
cytoplasm, and its transfer into the nucleus is decreased.
Less BCL3 in the nucleus prevents the transcriptional
activity of nuclear factor NF- B, leading to the reduced
expression of cyclin D1 and a significant delay of the cell
cycle in the G;/S transition (Fig. 2) [18]. Thus, the regu-
lation of a-tubulin by HDAC6 can enhance cell motility
and mitosis, which in turn affects proliferation, metasta-
sis, and invasion [18, 38, 54, 55].

The epidermal growth factor receptor (EGFR) and fur-
ther activation of its downstream pathways lead to cell
proliferation, especially in lung cancer [7, 8]. Therefore, af-
fecting the synthesis and degradation of EGFR may affect
the role of EGFR in tumors. Gao et al. reported that
HDACS6 expression is closely involved in cell endocytosis
and controls EGFR trafficking and degradation via deace-
tylation of a-tubulin [56]. With the loss of HDACS6, acety-
lated a-tubulin is accumulated, leading to the deregulation
of microtubule-dependent endocytic vesicle trafficking
and accelerating EGFR degradation [57-59].

Previous studies have demonstrated that HSP90 is es-
sential for the stability and function of proteins that are
involved in tumor metastasis [60], and HSP90 can affect
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the growth of tumor cells through stabilizing the levels
of key chaperone proteins, especially AKT. HSP90 bind-
ing to AKT protects AKT from phosphates and thus
maintaining AKT phosphorylation and activity. In turn,
AKT binding of HSP90 protects HSP90 from degrad-
ation by proteasomes [34]. Further, as HSP90 affects the
functional stability of AKT, it influences the PI3K/AKT
signaling pathway, thereby affecting the cell survival, mi-
gration, differentiation, and angiogenesis [34, 61]. The
targeted inhibition of HDACG6 also elevates acetylation
of HSP90, which decreases the binding between HSP90
and ATP, thus reducing the combination of chaperone
and oncogene [62], which could be of great importance
in cancer treatment.

Essential role of HDAC6 in the regulation of immunity in
cancer

Immunotherapeutic strategies show great promise for
cancer patients, especially those with tumors that lack
molecular targets [63, 64]. Therefore, obtaining insights
into the mechanism of immune tolerance may signifi-
cantly improve the prognosis of patients.

HDACS6 has been shown to modulate the expression
of specific tumor-associated antigens, MHC class I
proteins, co-stimulatory molecules and cytokine produc-
tion [20, 65]. In human melanoma cell lines, melanoma
antigens gp100, MARTI1, TYRP1, and TYRP2 were up-
regulated at the mRNA level following treatment with
HDACS6 inhibitors (Nexturastat A or Tubastatin A). Pro-
tein expression of gpl00 and MARTI1 also increased
after genetic disruption of HDAC6 [20]. Furthermore,
HDAC6 seems to be an important regulator of the
STAT3 pathway [66]. As an important transcriptional
promoter, STAT3 is involved not only in the pathogen-
esis and sustainable development of many malignancies
but also in the induction and maintenance of tumor im-
mune tolerance [67]. Recent studies have clarified that
STAT3 regulates the expression of PD-L1 in antigen-
presenting cells as well as in a number of tumor cells,
including lung cancer and melanoma, to inhibit the
tumor immune response [21, 68]. Research by Woan et
al. have also shown that HDAC6 can participate in anti-
tumor immunity through STAT3-PD-L1 pathway [21].
High HDAC6 expression leads to STAT3 phosphoryl-
ation and ectopia into the nucleus at an invariant acetyl-
ation level and without an acetylation change in PP2A,
Shp-2, and JAK2 proteins, which are directly involved in
the homeostasis of phospho-STAT3 [69]. However,
HDAC6 also reduces the interaction between STAT3
and PP2A, which is another mechanism affecting the ac-
tivity of STAT3, thus phospho-STAT3 in the nucleus
binding to its target genes and increasing their expres-
sion [21]. After entering the nucleus, pSTAT3 and
HDACS6 are recruited to the promoter of PD-L1, where
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they activate PD-L1 gene transcription (Fig. 2). Conversely,
upon knockdown of HDAC6, STAT3 was not detected at
the PD-L1 promoter, indicating a requirement for HDAC6
in STAT3-mediated PD-L1 expression [21]. Furthermore,
in antigen-presenting cells (APCs), HDAC6 binds STAT3
through the 503-840 amino acid region in HDAC6, and
the complex then binds a specific sequence in the promoter
of the anti-inflammatory and immunosuppressive cytokine
IL-10 to increase its gene expression [70]. Decreased
HDACS6 expression results in decreased IL-10 by reducing
phosphorylation of STAT3 and the induction of inflamma-
tory APCs that effectively activate antigen-specific naive T
cells and the reactive ability of CD4+ T cells [66, 70]. To-
gether, these findings suggest that HDACS is indispensable
in tumor immunity.

Meanwhile, recent preclinical trials have also demon-
strated that the use of HDACS6 inhibitor ACY-241 in com-
bination with a PD-L1 antibody enhances pDC-induced
T- and NK cell-mediated cytolytic activities in multiple
myeloma patient cells [71]. This provides a theoretical
basis for the ongoing clinical trials combining a HDAC6
inhibitor with anti-PD-L1 treatment.

HDACG inhibitors

Anti-HDAC6 therapy in cancer pre-clinical trials
According to the different structure of HDAC inhibitors,
they can be divided into four categories, namely, hydro-
xamates, cyclic peptides, aliphatic acids, and benzamides
[72]. By regulating the acetylation state of histone, they
interfere with the balance of histone acetylation and dea-
cetylation in tumor cells; inhibit tumor cell angiogenesis
[73], invasion, and metastasis [74, 75]; and induce apop-
tosis [76-78]. Due to the poor selectivity of HDAC
inhibitor subtypes, they can lead to dose dependence
and a series of toxic and side effects [79, 80]. Therefore,
the research and development of a new selective HDAC
inhibitor has an important role in improving the efficacy
of anti-cancer treatment.

Sirtuins, as the only type of HDACs that plays a role
through a NAD+-dependent mechanism, can maintain and
renew mice hematopoietic stem cells, which provide a basis
for selective inhibition and application [81]. For a new type
of bendamustine-derived molecule with added HDACi ac-
tivity, EDO-S101 is more effective than bendamustine and
retained and increased the alkylation activity of deacetylase
in multiple myeloma [82]. It can play a role in vitro in mul-
tiple myeloma cell lines and in vivo mice model by increas-
ing the acetylation of a-tubulin and histones as well as the
addition of potent DNA damage induction and impairment
of DNA repair. Most importantly, EDO-S101 is the only
single drug that has been shown to be effective in a
multidrug-resistant Vk12653 mouse model [82]. All these
findings provide the basis for clinical investigation of
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EDO-S101, either as a single agent or in combination with
other chemotherapy drugs.

The first synthesized HDAC6-specific inhibitor was
Tubacin [39]. However, the complexity of its synthesis
and lipophilicity eventually prevented its use in vivo
[39]. As the most commonly used HDAC6 inhibitor in
clinical trials, ricolinostat has attracted wide clinical at-
tention because it can inhibit the HDAC6-mediated ag-
gregation pathway, increase the acetylation of tubule
proteins, disrupt the transport of aggregates, and lead to
protein aggregation and cell death accumulation [83]. At
the same time, proteasome inhibits the misfolding/ubi-
quitination proteins produced by aggregation, which
provide a rationale for the combination of proteasome
inhibitors and HDAC6 inhibitors [84, 85]. In Jennifer E.
et al’s study on the effect and efficacy of the selective
HDACS6 inhibitor ACY-1215 alone or combined with
bortezomib in the preclinical model of lymphoma,
ACY-1215 alone does cause increased acetylated a-tubu-
lin, accumulated poly-ubiquitinated proteins, and upreg-
ulation of the unfolded protein response (UPR). In the
apoptosis experiment, the highest apoptosis rate of
OCI-LY10 cells occurred in 48 h after the treatment of
IC50 (apoptosis induced by ACY-1215, bortezomib, or
combined treatment were 9%, 20%, and 67%, respect-
ively) [86]. The results demonstrated that the combin-
ation greatly improved the pharmacodynamic effects.
This kind of combination has also led to a synergistic in-
crease in poly-ubiquitinated proteins. Meanwhile, in a
xenograft mouse model of diffuse large B cell lymphoma
(DLBCL) in vivo, ACY-1215 plus bortezomib could sig-
nificantly delay tumor growth and prolonged overall sur-
vival [86]. In another study, ACY-1215 could also
accelerate the death of melanoma cells with a BRAF mu-
tation caused by vemurafenib through inducing ER
stress and inhibiting ERK activation [87], which provides
a preclinical basis for the treatment of vemurafenib
resistant malignant melanoma patients.

Anti-HDAC6 therapy in cancer clinical trials

Structurally diverse HDAC inhibitors such as vorinostat
(or suberoylanilide hydroxamic acid, SAHA) [88], romi-
depsin [89], belinostat [60], panobinostat [90], and
chidamide [91] have recently been proposed as treat-
ments for hematological malignancies and solid tumors.
However, the non-selectivity of the HDAC inhibitors
leads to obvious toxicity and side effects and limits the
clinical application [92, 93].

According to a safety analysis from clinical trial of
panobinostat in high-risk MDS or AML patients after
allogeneic stem cell transplantation, 22/48 (52%) patients
experienced at least one G3/4 adverse events (AEs)
caused by panobinostat, the most common of which
were thrombocytopenia (24%) and neutropenia (19%)
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(Table 1) [79]. Until the article is received, the median
overall survival (OS) and relapse-free survival have not
been reached after a median follow-up of 22 months [79].
This result was also consistent with another phase Ia/Il
panobinostat clinical trial, whose panobinostat-related
G3/4 adverse events included thrombocytopenia (41.5%),
fatigue (21%), and neutropenia (21%) [94]. In separate
low-grade neuroendocrine tumors, although the adverse
effects rate of panobinostat decreased, no patients showed
a significant response with a 100% stable disease rate, and
the median progression-free survival (PFS) was 9.9 months
[95]. Similarly, for vorinostat, the high AE rate also limits
its clinical dose [96, 97]. When combined with bortezo-
mib, 16% G3/4 diarrhea, 22% G4 thrombocytopenia, and
17% G3/4 fatigue were observed [97].

Therefore, more selective novel HDAC inhibitors
may improve the prognosis of patients to a greater
extent. For the novel subtype-selective HDAC inhibi-
tors, chidamide selectively inhibits the activity of
HDACI, 2, 3, and 10 [91, 98]. The efficacy and safety
have been demonstrated in a phase II clinical trial for
relapsed or refractory peripheral T cell lymphoma
(PTCL) [98]. In this study, the overall response rate
(ORR) was 28% for all the T cell lymphoma patients.
AITL patients, however, tended to have higher ORR
(50%) rate. However, in the real-world, for the re-
lapsed or refractory peripheral T cell lymphoma pa-
tients treated with chidamide, the ORR was 39.06%.
When chidamide and chemotherapy are combined, ORR
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increases to 51.18% [91]. In addition, most AEs were of
grade 1 to 2 [91].

As a special member of type II HDACs, the unique
structure of HDAC6 also makes selective HDAC6 inhibi-
tors a hot topic in clinical trials (Table 2). Ricolinostat
(ACY-1215), a small selective HDACS6 inhibitor, is toler-
ated well as a monotherapy [99]. Ricolinostat with re-
duced class I HDAC activity, however, has minimal
clinical activity as a single agent [99]. In a multicenter
phase 1b clinical trial of ricolinostat together with lenali-
domide and dexamethasone, ricolinostat (160 mg once
daily on days 1-21 of a 28-day cycle as the recom-
mended dose) combined with lenalidomide (25 mg) and
dexamethasone (40 mg) were administered to 38 pa-
tients with relapsed or refractory multiple myeloma
[100]. The response rate for all evaluable patients was
55% (21/38 patients [95% CI 38-71]), with low
ricolinostat-related adverse events, according to the
International Myeloma Working Group (IMWG)
criteria. Notably, pharmacodynamics research results
also showed that ricolinostat selectively inhibited
HDAC6 with preserving the lower, tolerable level of
class I HDAC inhibition, and the pharmacokinetics of
ricolinostat and lenalidomide was not affected by
co-administration at clinically relevant doses [100]. In
another clinical trial of ricolinostat in the treatment of
relapsed or refractory multiple myeloma, patients well
tolerated a ricolinostat dose of 160 mg twice daily com-
bined with bortezomib and dexamethasone treatment

Table 1 The comparison of results and adverse events among pan-HDAC inhibitors in clinical trials for cancer

NCT numbers  Agent Other agents  Inclusion Phase Enrollment mPFS (months) AEs
NCT00985946 Panobinostat - Neuroendocrine tumors Il 15 9.9 Fatigue (27%)
Thrombocytopenia (20%)
Diarrhea (13%)
Nausea (13%)
NCT01451268  Panobinostat - Myelodysplastic syndrome /1l 62 - Thrombocytopenia (24%)
Acute myeloid leukemia Neutropenia (19%)
NCT00918489  Vorinostat - Soft tissue sarcoma Il 40 32 Hematological toxicity (15%)
Gastrointestinal disorders (13%)
Fatigue (10%)
NCT01087554  Vorinostat Sirolimus Advanced cancer 249 2.1 Thrombocytopenia (31%)
Everolimus Neutropenia (8%)
Temsirolimus
NCT02944812  Chidamide - Peripheral T cell lymphoma Il 12 - -
NCT02576496  EDO-5101 - Hematological malignancies | 84 - -

Multiple myeloma

Hodgkin’s lymphoma

Peripheral T cell lymphoma

Non-Hodgkin's lymphoma

AEs adverse effects



Li et al. Journal of Hematology & Oncology (2018) 11:111 Page 7 of 10
Table 2 HDACG6 inhibitors in clinical trials for cancer
NCT numbers Agent Other agents Inclusion Phase Start End Enrollment
NCT02935790 ACY-241 Nivolumab Malignant melanoma I 2016.10 2017.8 1
Ipilimumab
NCT02635061 ACY-241 Nivolumab NSCLC I 2015.12 20185 4
NCT01583283 ACY-1215 Lenalidomide Multiple myeloma /1l 2012.7 2018.11 38
Dexamethasone
NCT01323751 ACY-1215 - Multiple myeloma /1l 20113 20174 120
NCT02091063 ACY-1215 - Lymphoma il 20143 20175 40
Lymphoid malignancies
NCT02632071 ACY-1215 Nab-paclitaxel Metastatic breast cancer 2015.12 2018.2 24
Breast carcinoma
NCT03008018 KA2507 - Solid tumor 2017.8 2019.3 30

NSCLS non-small cell lung cancer

with a favorable toxicity rates (5% grade 3/4 diarrhea,
20% grade 3/4 thrombocytopenia, and 5% grade 3/4 fa-
tigue) compared to those of vorinostat listed above [25].
Because the exposure doses of 160 mg and 240 mg per
day showed no differences in pharmacological effects,
ricolinostat at each of the two doses together with borte-
zomib and dexamethasone was studied. As a result, the
overall response rate with the combination including
daily ricolinostat at > 160 mg was 37%, and the clinical
benefit rate was 53% [25]. Together, these suggest that
selective  HDAC6 inhibitors combined with other
chemotherapy drugs may show promise and benefit for
cancer treatment.

Other epigenetic modification agents
In addition to histone modifications, epigenetic modifi-
cations also include DNA methylation and microRNAs
[101]. As the most frequently studied epigenetic modifi-
cation, methylation plays an important role in the mo-
lecular pathogenesis and prognosis of different types of
cancers [102]. As for DNA methylation is closely related
to the drug resistance of tumor cells, the use of epigen-
etic modification agents combined with chemotherapy
can improve patients’ drug resistance [103]. For
example, the prognosis of patients with malignant bone
marrow tumors after allogeneic stem cell transplantation
is still dismal. Considering the good efficacy and
moderate toxicity of hypomethylated agents in the non-
transplantation environment, the application of hypo-
methylated agents after transplantation has played a
good role in preventing and treating recurrence [104].
Furthermore, the combination of microRNAs and
other epigenetic drugs can also improve patient drug
resistance [101]. Recent epigenetic studies have identi-
fied a group of tumor suppressor microRNAs, known as
“epimiRNAs,” which were capable of regulating epigen-
etic modifications and being regulated by epigenetic

modification, suggesting a regulatory circuit between
microRNAs and epigenetic modification factors [105]. In
multiple myeloma, mir-29b, as a common epimiRNA, can
antagonize the carcinogenic effects of high HDAC4 expres-
sion [106]. In this interactive functional loop, silencing
HDAC4 or using pan-HDAC inhibitor SAHA inhibits
tumor cell growth and migration and increases cell apop-
tosis and autophagy. At the same time, the expression level
of mir-29b was increased by promoter hyperacetylation.
Similarly, the upregulation of mir-29b expression will
increase the anti-tumor activity of SAHA, confirming
the role of the HDAC4-mir-29b axis in regulating anti-
myeloma drugs [106].

Conclusion

The interaction of HDAC6 with histone and nonhistone
substrates (such as a-tubulin, HSP90, and cortactin) is in-
volved in gene transcription, DNA damage repair, and cell
movement. Once the expression level of HDAC6 changes
or its activity increases, it can lead to oncogenic cell trans-
formation and tumor cell proliferation, invasion, metastasis,
and mitosis. All these results provide the theoretical basis
for the clinical application of HDAC6 inhibitors. The effects
of HDAC6 on PD-L1 and the positive results of pre-clinical
trials provide new ideas for the clinical application of
HDACS inhibitors. Given the benign effects of HDACS6 in-
hibitors with lower adverse effects than HDAC inhibitors
plus proteasome inhibitor treatment in hematological ma-
lignancies. Whether these therapies will be applied to other
cancers remains to be seen. The present review expands
our understanding of the current field and future directions
and provides evidence that HDACS6, a cytosolic member
of the HDAC family, may be an important target in
anti-tumor strategies.
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