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Abstract

Deleterious alleles have long been proposed to play an important role in patterning pheno-

typic variation and are central to commonly held ideas explaining the hybrid vigor observed

in the offspring of a cross between two inbred parents. We test these ideas using evolution-

ary measures of sequence conservation to ask whether incorporating information about

putatively deleterious alleles can inform genomic selection (GS) models and improve phe-

notypic prediction. We measured a number of agronomic traits in both the inbred parents

and hybrids of an elite maize partial diallel population and re-sequenced the parents of the

population. Inbred elite maize lines vary for more than 350,000 putatively deleterious sites,

but show a lower burden of such sites than a comparable set of traditional landraces. Our

modeling reveals widespread evidence for incomplete dominance at these loci, and sup-

ports theoretical models that more damaging variants are usually more recessive. We iden-

tify haplotype blocks using an identity-by-decent (IBD) analysis and perform genomic

prediction analyses in which we weigh blocks on the basis of complementation for segregat-

ing putatively deleterious variants. Cross-validation results show that incorporating

sequence conservation in genomic selection improves prediction accuracy for grain yield

and other fitness-related traits as well as heterosis for those traits. Our results provide

empirical support for an important role for incomplete dominance of deleterious alleles in

explaining heterosis and demonstrate the utility of incorporating functional annotation in

phenotypic prediction and plant breeding.
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Author summary

A key long-term goal of biology is understanding the genetic basis of phenotypic varia-

tion. Although most new mutations are likely disadvantageous, their prevalence and

importance in explaining patterns of phenotypic variation is controversial and not well

understood. In this study we combine whole genome-sequencing and field evaluation of a

maize mapping population to investigate the contribution of deleterious mutations to

phenotype. We show that a priori prediction of deleterious alleles correlates well with

effect sizes for grain yield and that variants predicted to be more damaging are on average

more recessive. We develop a simple model allowing for variation in the heterozygous

effects of deleterious mutations and demonstrate its improved ability to predict both phe-

notypes and hybrid vigor. Our results help reconcile alternative explanations for hybrid

vigor and highlight the use of leveraging evolutionary history to facilitate breeding for

crop improvement.

Introduction

Understanding the genetic basis of phenotypic variation is critical to many biological endeav-

ors from human health to conservation and agriculture. Although most new mutations are

likely deleterious [1], their importance in patterning phenotypic variation is controversial and

not well understood [2]. Empirical work suggests that, although the long-term burden of dele-

terious variants is relatively insensitive to demography [3], population bottlenecks and expan-

sion may lead to an increased abundance of deleterious alleles over shorter time scales such as

those associated with domestication [4], postglacial colonization [5] or recent human migra-

tion [6]. Even when the impacts on total load are minimal, demographic change may have

important consequences for the contribution of deleterious variants to phenotypic variation

[3, 7–9]. Together, these considerations point to a potentially important role for deleterious

variants in determining patterns of phenotypic variation, especially for traits closely related to

fitness.

In addition to its global agricultural importance, maize has long been an important genetic

model system [10] and central to debates about the basis of hybrid vigor and the role of delete-

rious alleles [11, 12]. The maize domestication bottleneck has lead to an increased burden of

deleterious alleles in maize compared to its wild ancestor teosinte [13], and rapid expansion

following domestication likely lead to an increase in new mutations and stronger purifying

selection [4]. More recently, modern maize breeding has lead to dramatic reductions in effec-

tive population size [14], but inbreeding during the development of modern inbred lines may

have decreased load by purging recessive deleterious alleles [15]. Nonetheless, substantial evi-

dence suggests an abundance of deleterious alleles present in modern germplasm, from the

observed maintenance of heterozygosity during the processes of inbreeding [16, 17] and selec-

tion [18] to genome-wide association results that reveal an excess of associations with genes

segregating for damaging protein-coding variants [19].

Modern maize agriculture takes advantage of hybrid maize plants that result from the cross

between two parental inbred lines [12]. These crosses result in a phenomenon known as hybrid

vigor or heterosis, in which the hybrid plant shows improved agronomic qualities compared

to its parents. Heterosis cannot be easily predicted from parental phenotype alone, and the

genetic underpinnings of heterosis remain largely unknown. The most straightforward expla-

nation for heterosis has been simple complementation of recessive deleterious alleles that are

homozygous in one of the inbred parents [20, 21]. While this model is supported by
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considerable empirical evidence [22, 23], it fails in its simplest form to explain a number of

observations such as heterosis and inbreeding depression in polyploid plants [11, 24, 25].

Other explanations, such as single-gene heterozygote advantage, clearly may play an important

role in some cases [26], [27], but mapping studies suggest such models are not easily generaliz-

able [28].

In this study, we set out to investigate the contribution of deleterious alleles to phenotypic

variation and hybrid vigor in maize. We created a partial diallel population from 12 maize

inbred lines which together represent much of the ancestry of present-day commercial U.S.

corn hybrids [29, 30]. We measured a number of agronomically relevant phenotypes in both

parents and hybrids, including flowering time (days to 50% pollen shed, DTP; days to 50%

silking, DTS; anthesis-silking interval, ASI), plant size (plant height, PHT; height of primary

ear, EHT), grain quality (test weight which is a measure of grain density, TW), and grain yield

(GY). We conducted whole genome sequencing of the parental lines and characterized

genome-wide deleterious variants using genomic evolutionary rate profiling (GERP) [31]. We

then test models of additivity and dominance for each phenotype using putatively deleterious

variants and investigate the relationship between dominance and phenotypic effect size and

the long-term fitness consequences of a mutation as measured by GERP. Finally, we take

advantage of a Bayesian genomic selection framework [32] approach to explicitly test the utility

of including GERP scores in phenotypic prediction for hybrid traits and heterosis.

Materials and methods

Plant materials and phenotypic data

We formed a partial diallel population from the F1 progeny of 12 inbred maize lines (S1 Table,

S1 Fig). Field performance of the 66 F1 hybrids and 12 inbred parents were evaluated along

with two current commercial check hybrids in Urbana, IL over three years (2009-2011) in a

resolvable incomplete block design with three replicates. To avoid competition effects, inbreds

and hybrids were grown in different blocks within the field. Plots consisted of four rows (5.3 m

long with row spacing of 0.76 m at a plant density of 74,000 plants ha−1), with all observations

taken from the inside two rows to minimize effects of shading and maturity differences from

adjacent plots. We measured plant height (PHT, in cm), height of primary ear (EHT, in cm),

days to 50% pollen shed (DTP), days to 50% silking (DTS), anthesis-silking interval (ASI, in

days), grain yield adjusted to 15.5% moisture (GY, in bu/A), and test weight (TW, weight of 1

bushel of grain in pounds).

We estimated Best Linear Unbiased Estimates (BLUEs) of the genetic effects in ASReml-R

(VSN International) with the following linear mixed model:

Yijkl ¼ mþ Bi þ dij þ bkij þ al þ Bi � al þ ε

where Yijkl is the phenotypic value of the lth genotype evaluated in the kth block of the jth repli-

cate within the ith year; μ, the overall mean; Bi, the fixed effect of the ith year; δij, the random

effect of the jth replicate nested within the ith year; βkij, the random effect of the kth block nested

within the ith year and jth replicate; αl, the fixed genetic effect of the lth individual; Bi � αl, the

random interaction effect of the lth individual with the ith year; and ε, the model residuals. We

calculated the broad sense heritability (H2) of traits based on the analysis of all individuals

(inbred parents, hybrid progeny, and checks) following the equation:

H2 ¼ VG=ðVG þ VG�E=iþ VE=ði� jÞÞ

where i = 3 (number of years) and j = 3 (number of replicates per year).
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The BLUE values for each cross can be found in S1 Table; values across all hybrids were rel-

atively normally distributed for all traits (Shapiro-Wilk normality tests P values >0.05, S1 Fig),

though some traits were highly correlated (e.g. Spearman correlation r = 0.98 for DTS and

DTP, S2 Fig).

We estimated mid-parent heterosis (MPH) as:

MPHij ¼ Ĝij � meanðĜi; ĜjÞ

where Ĝij, Ĝi and Ĝj are the BLUE values of the hybrid and its two parents i and j. Note that

for ASI, lower trait values are considered superior. General combining ability (GCA) was esti-

mated following Falconer and Mackay [33], and the estimated values can be found in S2 Table.

Sequencing and genotyping

We extracted DNA from the 12 inbred lines following [34] and sheared the DNA on a Covaris

(Woburn, Massachusetts) for library preparation. Libraries were prepared using an Illumina

paired-end protocol with 180 bp fragments and sequenced using 100 bp paired-end reads on a

HiSeq 2000. Raw sequencing data are available at NCBI SRA (PRJNA381642).

We trimmed raw sequence reads for adapter contamination with Scythe (https://github.

com/vsbuffalo/scythe) and for quality and sequence length (�20 nucleotides) with Sickle

(https://github.com/najoshi/sickle). We mapped filtered reads to the maize B73 reference

genome (AGPv2) with bwa-mem [35], keeping reads with mapping quality higher than 10 and

with a best alignment score higher than the second best one for further analyses.

We called single nucleotide polymorphisms (SNPs) using the mpileup function from sam-

tools [36]. To deal with known issues with paralogy in maize [15], SNPs were filtered to be het-

erozygous in fewer than 3 inbred lines, have a mean minor allele depth of at least 4, have a

mean depth across all individuals less than 30 and have missing alleles in fewer than 6 inbred

lines. Data on the total number of SNPs called and the rate of missing data per line are shown

in S3 Table. We estimated the allelic error rate using three independent data sets: for all indi-

viduals using 41,292 overlapping SNPs from the maize SNP50k bead chip [14]; for all individu-

als using 180,313 overlapping SNPs identified through genotyping-by-sequencing (GBS) [37];

and for B73 and Mo17 using 10,426,715 SNP from the HapMap2 project [15]. Alignments and

genotypes for each of the 12 inbreds are available at CyVerse (https://doi.org/10.7946/

P2WS60). Because these parents are highly inbred, knowing their homozygous genotype also

allows us to know the genotype of the F1 derived from any two of the parents.

To test whether alignment to the B73 reference introduces a bias in relatedness estimation,

we computed kinship matrices using both our SNP data as well as genotyping-by-sequencing

data (version AllZeaGBSv2.7 downloaded from (www.panzea.org)) obtained from alignments

to a set of sequencing reads ascertained from a broad germplasm base [38]. The two matrices

were nearly identical (Pearson’s correlation coefficient r = 0.995), suggesting the degree of

relatedness among lines is not sensitive to using B73 as the reference genome.

Identifying putatively deleterious alleles

We used genomic evolutionary rate profiling (GERP) [39] estimated from a multi-species

whole-genome alignment of 13 plant genomes [40] including Zea mays, Coelorachis tubercu-
losa, Vossia cuspidata, Sorghum bicolor, Oryza sativa, Setaria italica, Brachypodium distachyon,

Hordeum vulgare, Musa acuminata, Populus trichocarpa, Vitis vinifera, Arabidopsis thaliana,

and Panicum virgatum; the alignment and estimated GERP scores are available at CyVerse

(https://doi.org/10.7946/P2WS60). We define “GERP-SNPs” as the subset of SNPs with GERP
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score >0, and at each SNP we assign the minor allele in the multi-species alignment as the

likely deleterious allele. Finally, we predicted the functional consequences of GERP-SNPs

based on genome annotation information obtained from SnpEff [41]. The multi-species align-

ment made use of the B73 AGPv3 assembly, and to ensure consistent coordinates, we ported

our SNP coordinates from AGPv2 to AGPv3 using the Gramene assembly converter (http://

ensembl.gramene.org/Zea_mays/Tools/AssemblyConverter?db=core).

To compare GERP scores (for all SNPs with GERP > 0) to recombination rate and allele

frequencies, we obtained the NAM genetic map [42] from the Panzea website (http://www.

panzea.org/) and allele frequencies from the > 1,200 maize lines sequenced as part of Hap-

Map3.2 [43]. To compare the burden of deleterious alleles in modern inbred lines to landraces,

we extracted genotypic data of 23 specially-inbred traditional landrace cultivars (see [15] for

more details) from HapMap3.2. For each line, we calculated burden as the count of minor

alleles present across all GERP-SNPs divided by the total number of non-missing sites. We

separated sites into fixed (present in all individuals of a group) and segregating for landrace

and modern maize samples separately.

Estimating effect sizes and dominance of GERP-SNPs

We estimated the additive and dominant effects of individual GERP-SNPs using a GBLUP

model [44] implemented in GVCBLUP [45]:

Yi ¼ mþ
Xn

j¼1

Xijaj þ
Xn

j¼1

Wijdj þ ε

where Yi is the BLUE value of the ith hybrid, μ is the average genotypic value, αj is the allele

substitution effect of the jth GERP-SNP, dj is the dominant effect of the jth GERP-SNP, Xij =

{2p, 2p − 1, 2p − 2}, ε is the model residuals, and Wij = {−2p2, 2p(1 − p), −2(1 − p)2} are the

genotype encodings for genotypes A1 A1, A1 A2, and A2 A2 in the ith hybrid for the jth
GERP-SNP with p of the A1 allele.

The additive and dominance SNP encoding ensures that the effects are independent for a

given GERP-SNP. We extracted additive (a = α − 2p(1 − p)d) and dominant (d) effects from

the GVCBLUP output file (see supplemantary file of Da et al., [44] for more details). We first

estimated the total variance explained under models of complete additivity (d = 0) or complete

dominance (α = 0). Then, to assess correlations between SNP effects and GERP scores, we cal-

culated the degree of dominance (k = d/a) [46] for SNPs that each explained greater than the

genome-wide mean per-SNP variance (total variance explained divided by total number of

GERP-SNPs). Because this approach can lead to very large absolute values of k, we truncated

GERP-SNPs with |k = d/a|>2 for all further analyses.

To compare the variance explained by our model to that explained by random SNPs, we

used a 2-dimensional sampling approach to create 10 equal-sized datasets of randomly sam-

pled SNPs (including SNPs with GERP score< = 0) matched for allele frequency (in bins of

10%) and recombination rate (in quartiles of cM/Mb). For each dataset we fit the above model

separately and estimated SNP effects and phenotypic variance explained by each SNP.

To test the relationship between GERP score and dominance under a simple model of

mutation-selection equilibrium, we estimated the selection coefficient s by assuming that yield

is a measure of fitness. We assigned the yield-increasing allele at each GERP-SNP a random

dominance value in the range of 0� k� 1 and calculated its equilibrium allele frequency p
under mutation-selection balance using p ¼

ffiffi
m

s

p
for values of k> 0.98 and p ¼ 2m

kþ1
for

k� 0.98. We then simulated datasets using binomial sampling to choose SNPs in a sample of

size n = 12 inbreds.
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Haplotype analysis

We imputed missing data and identified regions of identity by descent (IBD) between the 12

inbred lines using the fastIBD method implemented in BEAGLE [47]. We then defined haplo-

type blocks as contiguous regions within which there were no IBD break points across all pair-

wise comparisons of the parental lines (S3 Fig). Haplotype blocks at least 1 Kb in size were

kept for further analyses.

Because there is no recombination in an inbred parent, this allows us to project the diploid

genotype of each F1 based on the haplotypes of the two parents. In the projected diploid geno-

type of each F1, haplotype blocks were weighted by the summed GERP scores of all

GERP-SNPs (python script ‘gerpIBD.py’ available at https://github.com/yangjl/zmSNPtools);

blocks with no SNPs with positive GERP scores were excluded from further analysis. For a par-

ticular SNP with a GERP score g, the homozygote for the conserved (major) allele was assigned

a value of 0, the homozygote for the putatively deleterious allele a value of 2g, and the heterozy-

gote a value of (1 + k) × g, where k is the dominance estimated from the GBLUP model above.

Genomic selection

We used the BayesC option from GenSel4 [32] for genomic selection model training with

41,000 iterations. We removed the first 1,000 iterations as burn-in. We used the model

Yi ¼ mþ
Xn

j¼1

rjIij þ ε

where Yi is the BLUE value of the ith hybrid, rj is the regression coefficient for the jth haplotype

block, and Iij is the sum of GERP scores under an additive, dominance or incomplete domi-

nance model for the ith hybrid in the jth haplotype block.

We used a 5-fold cross-validation method to conduct prediction, dividing the diallel popu-

lation randomly into training (80%) and validation sets (20%) 100 times. After model training,

we obtained prediction accuracies by comparing the predicted breeding values with the

observed BLUE values in the corresponding validation sets. For comparison, we permuted

GERP scores using 50k SNP (� 100Mb or larger) windows which were circularly shuffled 10

times to estimate a null conservation score for each IBD block. We conducted permutations

on all GERP-SNPs as well as on a restricted set of GERP-SNPs only in genic regions to control

for GERP differences between genic (N = 221,960) and intergenic regions (N = 123,216). We

conducted permutation cross-validation experiments using the same training and validation

sets.

We estimated the posterior phenotypic variance explained using all of the data to derive

correlations between breeding values estimated from the prediction model and observed

BLUE values. Note that the correlation used here is different from the prediction accuracy (r)
used for the cross-validation experiments, where the latter is defined as the correlation

between real and estimated values; the two statistics will converge to the same value when

there is no error in SNP/haplotype effect estimation [48].

Finally, to compare our genomic prediction model to a classical model of general combin-

ing ability, we used the following equations:

Yij ¼ mþ GCAi þ GCAj þ ε

Yij ¼ mþ GCAi þ GCAj þ Gij þ ε

where Yij is the BLUE value of the hybrid of the ith and jth inbreds, μ is the overall mean, GCAi

Deleterious alleles and heterosis in maize
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and GCAj are the general combining abilities of the ith and jth inbreds, Gij is the breeding value

of the hybrid of the ith and jth inbreds as estimated by our genomic prediction model, and ε the

model residuals.

Data and code accessibility

Sequencing data have been deposited in NCBI SRA (SRP103329) database, and code for all

analyses are available in the public GitHub repository (https://github.com/yangjl/GERP-

diallel).

Results

Heterosis in a partial diallel population

We created a partial diallel population from 12 maize inbred lines which together represent

much of the ancestry of present-day commercial U.S. corn hybrids (S1 Table) [29, 30]. We

measured a number of agronomically relevant phenotypes in both parents and hybrids,

including flowering time (days to 50% pollen shed, DTP; days to 50% silking, DTS; anthesis-

silking interval, ASI), plant size (plant height, PHT; height of primary ear, EHT), test weight

(TW; a measure of quality based on grain density), and grain yield (GY). In an agronomic

setting GY—a measure of seed production per unit area—is the primary trait selected by

breeders and thus analogous to fitness. Plant height and ear height, both common measures

of plant health or viability, were significantly correlated to GY (S2 Fig).

For each genotype we derived best linear unbiased estimators (BLUEs) of its phenotype

from mixed linear models (S1 Table) to control for spatial and environmental variation (see

Methods). We estimated mid-parent heterosis (MPH, Fig 1a) for each trait as the percent dif-

ference between the hybrid compared to the mean value of its two parents (see Methods, S1

Table). Consistent with previous work [28], we find that grain yield (GY) showed the highest

level of heterosis (MPH of 182% ± 60%). While flowering time (DTS and DTP) is an important

adaptive phenotype globally [49], it showed relatively little heterosis in this study, likely due to

the relatively narrow geographic range represented by the parental lines.

Annotation of deleterious alleles

We resequenced the 12 inbred parents to an average depth of� 10×, resulting in a filtered set

of 13.8M SNPs. Compared to corresponding SNPs identified by previous studies (see Meth-

ods), we observed a mean genotypic concordance rate of 99.1%. In order to quantify the dele-

terious consequences of variants a priori, we made use of Genomic Evolutionary Rate Profiling

(GERP) [39] scores of the maize genome [50]. GERP scores provide a quantitative measure of

the evolutionary conservation of a site across a phylogeny that allows characterization of the

long-term fitness consequences of both coding and noncoding positions in the genome [51].

Sites with more positive GERP scores are inferred to be under stronger purifying selection,

and SNPs observed at such sites are thus inferred to be more deleterious. At each site with

GERP scores > 0 (hereafter called GERP-SNPs), we designated the minor allele from the mul-

tispecies alignment as putatively deleterious. Of the 350k total segregating GERP-SNPs in our

parental lines, 14% are detected in coding regions, equally split between synonymous

(N = 64,439) and non-synonymous (N = 65,376) sites (S4 Table). Each line carries, on average,

139k potential deleterious SNPs, 19k of which are in coding regions (S5 Table). The reference

genome B73 contains only� 1/3 of the deleterious SNPs of the other parents, likely due to ref-

erence bias in identifying deleterious variants. The F1 hybrids of the diallel each contain an

Deleterious alleles and heterosis in maize

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1007019 September 27, 2017 7 / 21

https://github.com/yangjl/GERP-diallel
https://github.com/yangjl/GERP-diallel
https://doi.org/10.1371/journal.pgen.1007019


average of� 56,000 homozygous deleterious SNPs, ranging from 47,219 (PH207 x PHG35) to

77,210 (PHG84 x PHZ51) (S6 Table).

To compare the burden of deleterious variants between our elite maize lines and tradition-

ally cultivated landraces, we used genotypes from the maize HapMap3.2 [43] for our diallel

parents and 23 specially-inbred landrace lines [15] (S5 Table). Compared to landraces, the

parents of our diallel exhibited a greater burden of fixed (allele frequency of 1) deleterious

Fig 1. Heterosis and deleterious variants. (a) Boxplots (median and interquartile range) of percent mid-parent heterosis (MPH). (b) Proportion of

deleterious alleles in landraces (LR, green) and elite maize (MZ, blue) lines. (c) The allele frequency of the minor alleles in the multi-species alignment

in bins of 0.01 GERP score (including GERP < = 0 sites). (d) The mean GERP score for putatively deleterious sites (GERP >0). Each point represents a

1 Mb window. In (c) and (d) the solid blue and dashed black lines define the best-fit regression line and its 95% confidence interval.

https://doi.org/10.1371/journal.pgen.1007019.g001
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variants but a much smaller burden of segregating SNPs, resulting in a slightly lower overall

proportion of deleterious sites (mean of 1.3M deleterious alleles out of 6.5M total sites vs. 0.6/

3.3M; Fig 1b).

Population genetic theory predicts that deleterious variants should be at low overall fre-

quencies, and that such variants should be enriched in regions of the genome with extremely

low recombination [52]. Using data from more than 1,200 lines in maize HapMap3.2 [43], we

find that allele frequency of the minor alleles in the multi-species alignment shows a strong

negative correlation with GERP score (Fig 1c). This negative correlation holds using allele fre-

quency derived from our 12 parental lines (S4 Fig), though as expected is less significant given

the smaller sample size. SNPs found in regions of the genome with low recombination also

show higher overall GERP scores (Fig 1d), a trend particularly noticeable around centromeres

(S5 Fig). These results match previous empirical findings in maize that deleterious alleles are

rare [19] and most abundant in the lowest recombination regions [17, 40, 53], and support the

use of GERP scores as a quantitative measure of the long-term fitness effects of an observed

variant.

Phenotypic effects of deleterious SNPs

We first investigate the impacts of deleterious variants on phenotype using simple linear

regressions. Across all hybrids, the number of homozygote GERP-SNPs was negatively corre-

lated with grain yield, plant height, and ear-height per se (see S6 Table for complementation

data and S7 Table for correlations with all traits).

We next applied a genomic best linear unbiased prediction (GBLUP) [44] modeling

approach to estimate the effect sizes and variance explained by GERP-SNPs for each of the

phenotypes per se across our diallel (see Methods). GERP-SNPs had larger average effects and

explained more phenotypic variance than the same number of randomly sampled SNPs

(including SNPs with GERP score< = 0) matched for allele frequency and recombination (Fig

2a). We found the cumulative proportion of dominance variance explained by GERP-SNPs

was higher for traits showing high heterosis (Spearman correlation P value < 0.01, r = 0.9),

from� 0 for flowering time traits to as much as 24% for grain yield (S6 Fig). Distributions of

per-SNP dominance k ¼ d
a (see Methods) across traits were consistent with the cumulative par-

titioning of variance components (Fig 2b) and matched well with expectations from previous

studies showing a predominantly additive basis for flowering time [54] and plant height [55]

but meaningful contributions of dominance to test weight and grain yield [28, 30]. Although

our diallel population is relatively small, our estimated values explain as much (for traits with

low dominance variance like flowering time) or more variance (for traits with substantial dom-

inance variance like grain yield) than sets of data with randomly shuffled values of dominance

(n = 10 randomizations of k per trait; S7 Fig).

We then evaluated the relationship between GERP score and SNP effect size, dominance,

and contribution to phenotypic variance. We found weak or negligible correlations between

effect size and GERP score for flowering time and grain quality, but a strong positive correla-

tion for fitness-related traits (Fig 2c and 2d). The variance explained by individual SNPs, how-

ever, was largely independent of GERP score (S8 Fig), likely due to the observed negative

correlation between allele frequency and GERP score (Fig 1c). Finally, we observed a positive

relationship between GERP score and the degree of dominance (k) for grain yield (Fig 2e),

such that the putatively deleterious allele at SNPs with higher GERP scores are also estimated

to be more recessive for their phenotypic effects on grain yield (larger k for the major allele).

We investigated a number of possible caveats to the results presented in Fig 2. First, to con-

trol for the potential inflation of SNP effect sizes in regions of high linkage disequilibrium, we
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removed SNPs from regions of the genome in the lowest quartile of recombination. While

some individual correlations changed significance, our overall results appear robust to the

removal of low recombination regions (S9 Fig). Second, we tested the impact of reference bias

caused by inclusion of the B73 genome in the multi-species alignment used to estimate GERP

scores. To do so, we removed the 11 hybrids which include as one parent the reference genome

line B73 and repeated the above analyses. Doing so dramatically reduces the size of our dataset,

but we nonetheless find significant correlations between complementation and phenotype (S7

Table), that GERP-SNPs explain a greater proportion of overall variation than randomly sam-

pled SNPs (S10a Fig), and that the relative pattern of dominance among traits remains the

same (S10b Fig). While most of the correlations between effect size and GERP score lose signif-

icance (S10c and S10d Fig), likely due to the decreased sample size, the positive correlation

between dominance and GERP score remains significant even in the absence of B73-derived

hybrids (S10e Fig). Finally, because natural selection will maintain dominant deleterious alleles

at lower frequencies than their recessive counterparts, we investigated whether the ascertain-

ment bias against rare alleles present in our small sample would lead to the observed

Fig 2. Variance explained and degree of dominance (k) of GERP-SNPs for traits per se. (a) Total per-SNP variance explained for grain yield trait

per se by GERP-SNPs (red lines) and randomly sampled SNPs (grey beanplots). (b) Density plots of the degree of dominance (k). Extreme values of k

were truncated at 2 and -2. (c-e) Linear regressions of additive effects (c), dominance effects (d), and degree of dominance (e) of seven traits per se

against SNP GERP scores. Solid and dashed lines represent significant and nonsignificant linear regressions, with grey bands representing 95%

confidence intervals. Data are only shown for SNPs that explain more than the mean genome-wide per-SNP variance (see Methods for details).

https://doi.org/10.1371/journal.pgen.1007019.g002

Deleterious alleles and heterosis in maize

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1007019 September 27, 2017 10 / 21

https://doi.org/10.1371/journal.pgen.1007019.g002
https://doi.org/10.1371/journal.pgen.1007019


correlation between GERP and dominance. Simulations of SNPs with random dominance at

mutation-selection balance (see Methods), however, failed to find any relationship between

dominance and GERP score (S11 Fig), though we caution that the dramatic demographic

shifts involved in the recent history of maize [4] make such a simulation approximate at best.

Genomic prediction by incoporating GERP information

To explicitly test the informativeness of alleles identified a priori as putatively deleterious, we

implemented a genomic prediction model that evaluates complementation at the haplotype

level by incorporating GERP scores of individual SNPs as weights (see Methods). We explored

the explanatory power with several different models and found that a model which incorpo-

rates both GERP scores and dominance (k) estimated from our GBLUP model explained a

greater amount of the posterior phenotypic variance for most traits per se (Fig 3a) and hetero-

sis (MPH) (Fig 3b). A simple additive model showed superior explanatory power for flowering

time, however, consistent with previous association mapping results that flowering time traits

are predominantly controlled by a large number of additive effect loci [54].

To explicitly test the utility of incorporating GERP information in prediction models, we

compared cross-validation prediction accuracies of the observed GERP scores to those from

datasets in which GERP scores were circularly shuffled along the genome (see Methods). Mod-

els incorporating our observed GERP scores out-performed permutations (Fig 3c and 3d),

even when considering only SNPs in genes (S12 Fig). Our model improved prediction accu-

racy of grain yield by more than 4.3%, and improvements were also seen for plant height

(0.8%) and testing weight (3.3%). While our model showed no improvement in predicting het-

erosis for traits showing low levels of heterosis (Fig 1a), including GERP scores significantly

improved prediction accuracy for heterosis of grain yield (by 1%). Finally, our approach also

significantly improved model fit for phenotypes of all traits per se as well as heterosis for GY

and PHT compared to traditional models of genomic selection that use general combining

ability (see Methods, S2 Table) calculated directly from the pedigree of the hybrid population

[56] (ANOVA FDR<0.01 and difference in AIC< 0, S8 Table).

Discussion

We combine a priori prediction of deleterious alleles from whole genome sequence data with

multi-year field evaluation of important agronomic phenotypes to test the role of incomplete

dominance in determining hybrid phenotypes and heterosis in maize.

We first show that GERP scores are meaningful quantitative estimates of the fitness conse-

quences of individual alleles, as SNPs with higher GERP scores are found at lower allele fre-

quencies (Fig 1c), enriched in regions of low recombination (Fig 1d), and associated with

larger effect sizes on grain yield (Fig 2c and 2d). Although a number of other methods exist to

identify deleterious alleles from sequence data, GERP scores include both coding and noncod-

ing sequence, do not require additional functional annotation, and show higher sensitivity and

specificity than other related approaches [51]. While the GERP scores used here reflect conser-

vation across relatively deep phylogenetic time, future efforts may be able to increase power by

incorporating information from within-species polymorphism data [57, 58] as well as other

types of annotations that have been shown to contribute substantially to phenotypic variation

(e.g. Wallace et al., [59] and Rodgers-Melnick et al., [50]).

Using GERP scores as a proxy for deleterious alleles, we then ask whether our elite maize

inbreds show an increased burden of deleterious alleles compared to a set of traditional land-

race varieties. We find that modern inbreds are characterized by an increase in the proportion

of deleterious variants fixed within the population (Fig 1b), consistent with the strong impact
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of drift associated with rapid decreases in effective population size during modern breeding

[14]. In contrast, modern maize inbreds exhibit a much smaller proportion of segregating dele-

terious variants than landraces. This latter result is likely due to increased inbreeding in

smaller populations, an effect exacerbated by the transition from traditional open-pollinated

maize to the intentional formation of inbred lines. Inbreeding facilitates purging of deleterious

variants, as evidenced by the striking inbreeding depression exhibited by open-pollinated

maize [60]. Domestication and modern breeding have been predicted to result in decreased

genetic load in elite cultivars compared to landraces, but increased load in domesticates com-

pared to their wild progenitors [61]. Our results, combined with those of Wang et al. [13], sup-

port these general predictions, but do not suggest an important role for positive selection.

Wang et al. find no evidence for hitch-hiking associated with selective sweeps during

Fig 3. Genomic prediction models incorporating GERP. (a-b) Total phenotypic variance explained for traits per se (a) and heterosis (MPH) (b)

under models of additivity (red), dominance (green), and incomplete dominance (blue). (c-d) Beanplots represent prediction accuracy estimated from

cross-validation experiments for traits per se (c) and heterosis (MPH) (d) under a model of incomplete dominance. Prediction accuracy using estimated

values for each GERP-SNP under an incomplete dominance model is shown on the left (red) and permutated values on the right (grey). Horizontal bars

indicate mean accuracy for each trait and the grey dashed lines indicate the overall mean accuracy. Stars above the beans indicate prediction

accuracies significantly (FDR < 0.05) higher than permutations. Results for pure additive and dominance models are shown in S13 Fig.

https://doi.org/10.1371/journal.pgen.1007019.g003
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domestication, and the differences we observe in the burden of deleterious variants closely

mimic results from simulations of partially recessive deleterious alleles in populations that

have recently undergone demographic bottlenecks, but no additional selection [3].

We next use the set of SNPs with GERP> 0 scores (or GERP-SNPs) to investigate the phe-

notypic effects of deleterious variants. Across phenotypes, our results largely mirror previous

work, finding that dominance contributes substantially to grain yield [28] while traits such as

flowering time appear to be largely additive [54]. At the level of individual SNPs, we find corre-

lations between GERP score and phenotypic effect size for yield and ear height, suggesting that

long-term evolutionary constraint as measured by GERP is a useful predictor of the pheno-

typic effects of variants on traits related to fitness. These results are consistent with the idea

that deleterious variants may contribute substantially to variation in fitness-related quantita-

tive traits, especially in species like maize that have undergone recent demographic expansion

[7–9]. Both yield and ear height are well explained by a model allowing for incomplete domi-

nance (Fig 3a), as is plant height, which shows a positive but not significant correlation

between effect size and GERP score. Though our population size is small, our partial diallel

crossing design and genomic selection model circumvent some of the problems with standard

genome-wide association analyses, including genome-wide multiple testing thresholds and dif-

ficulties in assessing the effects of rare alleles due to limited replication. While there is likely

substantial error in our individual SNP estimates, permutation analyses show that overall our

approach nonetheless are produces meaningful results (Fig 2a, S7 Fig).

We also find that more strongly deleterious alleles (those with higher GERP score and a

larger negative effect on yield) are more likely to be recessive for grain yield. Such a genome-

wide relationship between dominance and fitness has not been well demonstrated in other

multicellular organisms, but supports previous empirical evidence from gene knockouts in

yeast [62, 63]. This relationship has been predicted based on models of metabolic pathways

[64], though other models may also generate such a relationship [65] and recent work suggests

incorporating information on gene expression may better fit empirical patterns [66].

After showing that GERP-SNPs explain a substantial portion of the observed phenotypic

variation when combined with our estimates of dominance and effect size, we more rigorously

test the direct utility of GERP scores using cross-validation prediction methods. We show that

for both plant height and grain yield, our GERP-enabled prediction model has significantly

improved accuracy compared to randomized data, even when only considering SNPs within

genes (S12 Fig). As genotyping costs continue to decline, genomic prediction models are

increasing in popularity [67]. Most previous work on genomic prediction, however, focuses

exclusively on the statistical properties of models, ignoring potentially useful biological infor-

mation (but see Edwards et al., [68] for a recent example). Identifying deleterious alleles may

prove a useful tool for crop breeding [69], and our results suggest that incorporating additional

annotations—in particular information on evolutionary constraint—can provide additional,

inexpensive benefits to existing genomic prediction frameworks.

Finally, our results also have implications for understanding the genetic basis of heterosis.

We observed substantial heterosis for a number of traits in our diallel (Fig 1), including high

levels of heterosis for grain yield consistent with reports in other maize diallel populations

[70]. Heterosis has been observed across many species, from yeast [71] to plants [72] and verte-

brates [73], and a number of hypotheses have been put forth to explain the phenomenon [11,

21]. Of all these explanations, complementation of recessive deleterious alleles [12, 21] remains

the simplest genetic explanation and is supported by considerable empirical evidence [22, 23,

74]. It remains controversial, however, because complementation of completely recessive

mutations cannot fully explain a number of empirical observations including unexpected dif-

ferences in heterosis and inbreeding depression among polyploids [11, 75]. For example, a
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model of simple complementation of purely recessive alleles is unable to explain differing lev-

els of heterosis between triploid hybrids with different numbers of parental genomes (e.g. AAB

vs ABB) [24] or why the cross of two tetraploid F1 hybrids shows greater heterosis than the

original F1 [25]. Our results, however, indicate although the degree of complementation

appears to correlate with hybrid yield (S7 Table), most deleterious SNPs show incomplete

dominance (Fig 2b) for traits with high levels of heterosis, and our genomic prediction models

find improvement in predictions of heterosis when incorporating GERP scores under such a

model (Fig 3d). These results are in line with other empirical evidence suggesting that new

mutations tend to be partially recessive [76] and that GWAS hits exhibit incomplete domi-

nance for phenotypes per se among hybrids [27]. We argue that allowing for incomplete domi-

nance effectively unifies models of simple complementation with those of gene dosage [24].

Combined with observations that deleterious SNPs are enriched in low-recombination peri-

centromeric regions [40] (Fig 1d), such a model can satisfactorily explain changes in heterozy-

gosity during breeding [18, 53], enrichment of yield QTL and apparent overdominance in

centromeric regions [28], and even observed patterns of heterosis in polyploids (S14 Fig). It is

unlikely of course that any single explanation is sufficient for a phenomenon as complex as

heterosis, and other processes such as overdominance likely make important contributions

(e.g. Guo et al., [77] and Huang et al., [27]), but we argue here that a simple model of incom-

pletely dominant deleterious alleles may provide substantial explanatory power not only for fit-

ness-related phenotypic traits but for hybrid vigor as well.

Conclusion

In this study, we use genomic and phenotypic data from a partial diallel population of maize to

show that an incomplete dominance model of deleterious mutation both fits predictions of

population genetic theory and explains phenotypic variation for fitness-related phenotypes

and hybrid vigor. We find genome-wide support for hypotheses predicting that more damag-

ing variants are more recessive. Finally, we show that leveraging evolutionary annotation

information in silico enables us to predict grain yield and other traits, including heterosis, with

greater accuracy. Together, these results help reconcile alternative explanations for hybrid

vigor and point to the utility of leveraging evolutionary history to facilitate breeding for crop

improvement.
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S1 Fig. A half-diallel population and distributions of phenotypes. (a) Twelve maize inbred

lines were selected and crossed in a half-diallel fashion. Each inbred lines was used as both

male and female and the resulting F1 seed was bulked. (b) Density plots of normalized BLUE

values for the seven phenotypic traits. We used the “scale” function in R to normalize the

BLUE values by first centering on zero and then dividing the numbers by their standard devia-

tion. The seven phenotypic traits are plant height (PHT), height of primary ear (EHT), days to

50% pollen shed (DTP), days to 50% silking (DTS), anthesis-silking interval (ASI), grain yield

adjusted to 15.5% moisture (GY), and test weight (TW).

(PDF)

S2 Fig. Pairwise correlation plots of seven phenotypic traits. The upper right panels show

the scatter plots of all possible pairwise comparisons of two traits. The red line is a fitted loess

curve. In the lower left panels, the numbers are the Spearman correlation coefficients (r) and

the asterisks (�) indicate the correlation coefficients are statistically significant (Spearman cor-

relation test P value< 0.05). Units for various traits are plant height (PHT, in cm), height of
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primary ear (EHT, in cm), days to 50% pollen shed (DTP), days to 50% silking (DTS), anthe-

sis-silking interval (ASI, in days), grain yield adjusted to 15.5% moisture (GY, in bu/A), and

test weight (TW, weight of 1 bushel of grain in pounds).

(PDF)

S3 Fig. Haplotype block identification using an IBD approach. In the upper panel, regions

in red are IBD blocks identified by pairwise comparison of the two parental lines of a hybrid.

The vertical dashed lines define haplotype blocks. In the lower panel, hybrid genotypes in each

block are coded as heterozygotes (0) or homozygotes (1).

(PDF)

S4 Fig. The minor allele frequency estimated from 12 parental lines in bins of 0.01 GERP

score. Red solid and grey dashed lines define the best-fit regression line and its 95% confidence

interval.

(PDF)

S5 Fig. Segregating genetic load across ten maize chromosomes. ots indicate mean GERP

scores of putatively deleterious SNPs (GERP scores > 0) carried by the 12 parental maize lines

(bin size = 1 cM). Vertical red lines indicate centromeres.

(PDF)

S6 Fig. Cumulative variance explained by GERP-SNPs. Additive and dominance effects are

indicated by red and blue colors respectively.

(PDF)

S7 Fig. Phenotypic variance explained for observed data and for randomly shuffled data

using the genomic selection model. Histograms show the results for the randomly shuffled

(10 times) degrees of dominance (k) in each trait. Red lines show the phenotypic variance

explained using the observed k.

(PDF)

S8 Fig. Linear regressions of GERP-SNPs’ additive variance, dominance variance and total

variance of seven traits per se against their GERP scores. Solid and dashed lines represent

significant and non-significant linear regressions, with grey bands representing 95% confi-

dence intervals. Data are only shown for SNPs which explain more phenotypic variance than

the genome-wide mean.

(PDF)

S9 Fig. Linear regressions after filtering out GERP-SNPs located in regions in the lowest

quartiles of recombination. Solid and dashed lines represent significant and non-significant

linear regressions, with grey bands representing 95% confidence intervals. Data are only

shown for GERP-SNPs which explain more variance than the genome-wide mean and found

in regions above the first quantile of the recombination rate (cM/Mb).

(PDF)

S10 Fig. Phenotypic variance explained for grain yield and degree of dominance (k) of

GERP-SNPs after removing 11 hybrids that B73 as one parent. (a) Total per-SNP variance

explained for grain yield per se by deleterious (red lines) and randomly sampled SNPs (grey

beanplots). (b) Density plots of the degree of dominance (k). Extreme values of k were trun-

cated at 2 and -2 for visualization. (c-e) Linear regressions of additive effects (c), dominance

effects (d), and degree of dominance (e) of seven traits per se against SNP GERP scores. Colors

in (c-e) are the same as the legend for (b). Solid and dashed lines represent significant and

nonsignificant linear regressions, with grey bands representing 95% confidence intervals. Data
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are only shown for deleterious alleles that explain more variance than the genome-wide mean.

(PDF)

S11 Fig. Regression of degree of dominance (k) on GERP scores for simulated data. The

solid blue line indicates the regression line fitted to data simulated under mutation-selection

balance (see Methods for details).

(PNG)

S12 Fig. Cross-validation accuracy using GERP-SNPs in genic regions. Beanplots represent

prediction accuracy estimated from cross-validation experiments for traits per se (a, b, c) and

heterosis (d, e, f) under additive (a, d), dominance (b, e), and incomplete dominance (c, f)

models. Prediction accuracy using real data is shown on the left (green) and permutation

results on the right (grey). Horizontal bars indicate mean accuracy and the grey dashed lines

indicate the overall mean accuracy. Stars indicate real data having significantly (t-test P

value < 0.05) higher cross-validation accuracy than permuted data.

(PDF)

S13 Fig. Cross-validation prediction accuracy for trait per se and heterosis. Beanplots repre-

sent prediction accuracy estimated from cross-validation experiments for traits per se (a, b)

and heterosis (c, d) under additive (a, c) and dominance (b, d) models. Prediction accuracy

using real data is shown on the left (red) and permutation results on the right (grey). Horizon-

tal bars indicate mean accuracy of each trait and the grey dashed lines indicate the mean accu-

racy of all traits. Stars indicate real data having significantly (t-test P value < 0.05) higher

cross-validation accuracy than permuted data.

(PDF)

S14 Fig. Breeding values of grain yield for diploid and simulated triploid hybrids. Each line

represents the posterior breeding values of a diploid hybrid (red circle), its best parent (black

diamond), and predicted breeding values of simulated AAB triploid (blue square) and ABB

triploid (green triangle) plants based on estimated effect sizes and dominance values for each

SNP.

(PDF)

S1 Table. Best Linear Unbiased Estimator (BLUE) values and levels of heterosis of the

seven phenotypic traits for the 66 hybrids. Abbreviations for phenotypic traits are plant

height (PHT, in cm), height of primary ear (EHT, in cm), days to 50% pollen shed (DTP), days

to 50% silking (DTS), anthesis-silking interval (ASI, in days), grain yield adjusted to 15.5%

moisture (GY, in bu/A), and test weight (TW, weight of 1 bushel of grain in pounds).

(CSV)

S2 Table. General combining ability and specific combining ability of the seven phenotypic

traits.

(CSV)

S3 Table. SNP missing rate in our diallel parental lines.

(CSV)

S4 Table. Summary statistics of SNP annotation results.

(XLSX)

S5 Table. Number of deleterious SNPs carried per line.

(CSV)
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S6 Table. Number of complementation and homozygote deleterious load for GERP-SNPs

in hybrids.
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S7 Table. The correlation between the number of homozygote GERP-SNPs and the hybrid

phenotypes.

(CSV)

S8 Table. Model comparisons P values and AICs.
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tem Shape The Genome-Wide Impact Of Purifying Selection In Arabis alpina. bioRxiv. 2017; p. 127209.

6. Peischl S, Dupanloup I, Foucal A, Jomphe M, Bruat V, Grenier JC, et al. Relaxed selection during a

recent human expansion. bioRxiv. 2016; p. 064691.

7. Lohmueller KE. The impact of population demography and selection on the genetic architecture of com-

plex traits. PLoS Genet. 2014; 10(5):e1004379. https://doi.org/10.1371/journal.pgen.1004379 PMID:

24875776

8. Uricchio LH, Zaitlen NA, Ye CJ, Witte JS, Hernandez RD. Selection and explosive growth alter genetic

architecture and hamper the detection of causal rare variants. Genome research. 2016; 26:863–873.

https://doi.org/10.1101/gr.202440.115 PMID: 27197206

9. Sanjak J, Long AD, Thornton KR. The Genetic Architecture of a Complex Trait is more Sensitive to

Genetic Model than Population Growth. bioRxiv. 2016;

10. Nannas NJ, Dawe RK. Genetic and genomic toolbox of Zea mays. Genetics. 2015; 199(3):655–669.

https://doi.org/10.1534/genetics.114.165183 PMID: 25740912

11. Birchler JA, Auger DL, Riddle NC. In search of the molecular basis of heterosis. The Plant Cell. 2003;

15(10):2236–2239. https://doi.org/10.1105/tpc.151030 PMID: 14523245

12. Crow JF. 90 years ago: the beginning of hybrid maize. Genetics. 1998; 148(3):923–928. PMID:

9539413

13. Wang L, Beissinger TM, Lorant A, Ross-Ibarra C, Ross-Ibarra J, Hufford M. The interplay of demogra-

phy and selection during maize domestication and expansion. bioRxiv. 2017; p. 114579.

14. van Heerwaarden J, Hufford MB, Ross-Ibarra J. Historical genomics of North American maize. Pro-

ceedings of the National Academy of Sciences. 2012; 109(31):12420–12425. https://doi.org/10.1073/

pnas.1209275109

15. Chia JM, Song C, Bradbury PJ, Costich D, de Leon N, Doebley J, et al. Maize HapMap2 identifies extant

variation from a genome in flux. Nat Genet. 2012; 44(7):803–7. https://doi.org/10.1038/ng.2313 PMID:

22660545

16. McMullen MD, Kresovich S, Villeda HS, Bradbury P, Li H, Sun Q, et al. Genetic properties of the maize

nested association mapping population. Science. 2009; 325(5941):737–740. https://doi.org/10.1126/

science.1174320 PMID: 19661427

17. Gore Ma, Chia JM, Elshire RJ, Sun Q, Ersoz ES, Hurwitz BL, et al. A first-generation haplotype map of

maize. Science (New York, NY). 2009; 326(5956):1115–7. https://doi.org/10.1126/science.1177837

18. Gerke JP, Edwards JW, Guill KE, Ross-Ibarra J, McMullen MD. The genomic impacts of drift and selec-

tion for hybrid performance in maize. Genetics. 2015; 201(3):1201–1211. https://doi.org/10.1534/

genetics.115.182410 PMID: 26385980

19. Mezmouk S, Ross-Ibarra J. The pattern and distribution of deleterious mutations in maize. G3

(Bethesda, Md). 2014; 4(January):163–71. https://doi.org/10.1534/g3.113.008870

20. Crow JF. 90 years ago: the beginning of hybrid maize. Genetics. 1998; 148(3):923–928. PMID:

9539413

21. Charlesworth D, Willis JH. The genetics of inbreeding depression. Nature reviews Genetics. 2009; 10

(11):783–96. https://doi.org/10.1038/nrg2664 PMID: 19834483

22. Garcia AAF, Wang S, Melchinger AE, Zeng ZB. Quantitative trait loci mapping and the genetic basis of

heterosis in maize and rice. Genetics. 2008; 180(3):1707–1724. https://doi.org/10.1534/genetics.107.

082867 PMID: 18791260

23. Xiao J, Li J, Yuan L, Tanksley SD. Dominance is the major genetic basis of heterosis in rice as revealed

by QTL analysis using molecular markers. Genetics. 1995; 140(2):745–754. PMID: 7498751

24. Yao H, Gray AD, Auger DL, Birchler JA. Genomic dosage effects on heterosis in triploid maize. Pro-

ceedings of the National Academy of Sciences. 2013; 110(7):2665–2669. https://doi.org/10.1073/pnas.

1221966110

25. Birchler JA, Yao H, Chudalayandi S, Vaiman D, Veitia RA. Heterosis. The Plant Cell. 2010; 22(7):2105–

2112. https://doi.org/10.1105/tpc.110.076133 PMID: 20622146

26. Krieger U, Lippman ZB, Zamir D. The flowering gene SINGLE FLOWER TRUSS drives heterosis for

yield in tomato. Nature genetics. 2010; 42(5):459–463. https://doi.org/10.1038/ng.550 PMID: 20348958

27. Huang X, Yang S, Gong J, Zhao Q, Feng Q, Zhan Q, et al. Genomic architecture of heterosis for yield

traits in rice. Nature. 2016; 537(7622):629–633. https://doi.org/10.1038/nature19760 PMID: 27602511

28. Larièpe a, Mangin B, Jasson S, Combes V, Dumas F, Jamin P, et al. The genetic basis of heterosis:

multiparental quantitative trait loci mapping reveals contrasted levels of apparent overdominance

among traits of agronomical interest in maize (Zea mays L.). Genetics. 2012; 190(2):795–811. https://

doi.org/10.1534/genetics.111.133447 PMID: 22135356

Deleterious alleles and heterosis in maize

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1007019 September 27, 2017 18 / 21

https://doi.org/10.1371/journal.pgen.1004379
http://www.ncbi.nlm.nih.gov/pubmed/24875776
https://doi.org/10.1101/gr.202440.115
http://www.ncbi.nlm.nih.gov/pubmed/27197206
https://doi.org/10.1534/genetics.114.165183
http://www.ncbi.nlm.nih.gov/pubmed/25740912
https://doi.org/10.1105/tpc.151030
http://www.ncbi.nlm.nih.gov/pubmed/14523245
http://www.ncbi.nlm.nih.gov/pubmed/9539413
https://doi.org/10.1073/pnas.1209275109
https://doi.org/10.1073/pnas.1209275109
https://doi.org/10.1038/ng.2313
http://www.ncbi.nlm.nih.gov/pubmed/22660545
https://doi.org/10.1126/science.1174320
https://doi.org/10.1126/science.1174320
http://www.ncbi.nlm.nih.gov/pubmed/19661427
https://doi.org/10.1126/science.1177837
https://doi.org/10.1534/genetics.115.182410
https://doi.org/10.1534/genetics.115.182410
http://www.ncbi.nlm.nih.gov/pubmed/26385980
https://doi.org/10.1534/g3.113.008870
http://www.ncbi.nlm.nih.gov/pubmed/9539413
https://doi.org/10.1038/nrg2664
http://www.ncbi.nlm.nih.gov/pubmed/19834483
https://doi.org/10.1534/genetics.107.082867
https://doi.org/10.1534/genetics.107.082867
http://www.ncbi.nlm.nih.gov/pubmed/18791260
http://www.ncbi.nlm.nih.gov/pubmed/7498751
https://doi.org/10.1073/pnas.1221966110
https://doi.org/10.1073/pnas.1221966110
https://doi.org/10.1105/tpc.110.076133
http://www.ncbi.nlm.nih.gov/pubmed/20622146
https://doi.org/10.1038/ng.550
http://www.ncbi.nlm.nih.gov/pubmed/20348958
https://doi.org/10.1038/nature19760
http://www.ncbi.nlm.nih.gov/pubmed/27602511
https://doi.org/10.1534/genetics.111.133447
https://doi.org/10.1534/genetics.111.133447
http://www.ncbi.nlm.nih.gov/pubmed/22135356
https://doi.org/10.1371/journal.pgen.1007019


29. Mikel MA, Dudley JW. Evolution of North American dent corn from public to proprietary germplasm.

Crop science. 2006; 46(3):1193–1205. https://doi.org/10.2135/cropsci2005.10-0371

30. Macke JA, Bohn MO, Rausch KD, Mumm RH. Genetic Factors Underlying Dry-Milling Efficiency and

Flaking-Grit Yield Examined in US Maize Germplasm. Crop Science. 2016; 56(5):2516–2526. https://

doi.org/10.2135/cropsci2016.01.0024

31. Cooper GM, Stone Ea, Asimenos G, Green ED, Batzoglou S, Sidow A. Distribution and intensity of con-

straint in mammalian genomic sequence. Genome research. 2005; 15(7):901–13. https://doi.org/10.

1101/gr.3577405 PMID: 15965027

32. Habier D, Fernando RL, Kizilkaya K, Garrick DJ. Extension of the Bayesian alphabet for genomic selec-

tion. BMC bioinformatics. 2011; 12(1):186. https://doi.org/10.1186/1471-2105-12-186 PMID: 21605355

33. Falconer DS, Mackay TFC. Introduction to Quantitative Genetics. Longman; 1996. Available from:

http://books.google.de/books?id=7ASZNAEACAAJ.

34. Doyle J, Doyle J. Genomic plant DNA preparation from fresh tissue-CTAB method. Phytochem Bull.

1987; 19(11):11–15.

35. Li H, Durbin R. Fast and accurate short read alignment with Burrows-Wheeler transform. Bioinformatics.

2009; 25(14):1754–60. https://doi.org/10.1093/bioinformatics/btp324 PMID: 19451168

36. Li H, Handsaker B, Wysoker A, Fennell T, Ruan J, Homer N, et al. The Sequence Alignment/Map format

and SAMtools. Bioinformatics. 2009; 25(16):2078–9. https://doi.org/10.1093/bioinformatics/btp352

PMID: 19505943

37. Romay MC, Millard MJ, Glaubitz JC, Peiffer JA, Swarts KL, Casstevens TM, et al. Comprehensive gen-

otyping of the USA national maize inbred seed bank. Genome Biol. 2013; 14(6):R55. https://doi.org/10.

1186/gb-2013-14-6-r55 PMID: 23759205

38. Glaubitz JC, Casstevens TM, Lu F, Harriman J, Elshire RJ, Sun Q, et al. TASSEL-GBS: a high capacity

genotyping by sequencing analysis pipeline. PloS one. 2014; 9(2):e90346. https://doi.org/10.1371/

journal.pone.0090346 PMID: 24587335

39. Davydov EV, Goode DL, Sirota M, Cooper GM, Sidow A, Batzoglou S. Identifying a high fraction of the

human genome to be under selective constraint using GERP++. PLoS computational biology. 2010; 6

(12):e1001025. https://doi.org/10.1371/journal.pcbi.1001025 PMID: 21152010

40. Rodgers-Melnick E, Bradbury PJ, Elshire RJ, Glaubitz JC, Acharya CB, Mitchell SE, et al. Recombina-

tion in diverse maize is stable, predictable, and associated with genetic load. Proceedings of the

National Academy of Sciences. 2015; 112(12):3823–3828.

41. Cingolani P, Platts A, Coon M, Nguyen T, Wang L, Land SJ, et al. A program for annotating and predict-

ing the effects of single nucleotide polymorphisms, SnpEff: SNPs in the genome of Drosophila melano-

gaster strain w1118; iso-2; iso-3. Fly. 2012; 6(2):80–92. https://doi.org/10.4161/fly.19695 PMID:

22728672

42. Ogut F, Bian Y, Bradbury PJ, Holland JB. Joint-multiple family linkage analysis predicts within-family

variation better than single-family analysis of the maize nested association mapping population. Hered-

ity. 2015; 114(6):552. https://doi.org/10.1038/hdy.2014.123 PMID: 25585918

43. Bukowski R, Guo X, Lu Y, Zou C, He B, Rong Z, et al. Construction of the third generation Zea mays

haplotype map. bioRxiv. 2015; p. 026963.

44. Da Y, Wang C, Wang S, Hu G. Mixed model methods for genomic prediction and variance component

estimation of additive and dominance effects using SNP markers. PloS one. 2014; 9(1). https://doi.org/

10.1371/journal.pone.0087666

45. Wang C, Prakapenka D, Wang S, Pulugurta S, Runesha HB, Da Y. GVCBLUP: a computer package for

genomic prediction and variance component estimation of additive and dominance effects. BMC Bioin-

formatics. 2014; 15(1):1–9. https://doi.org/10.1186/1471-2105-15-270

46. Lynch M, Walsh B, et al. Genetics and analysis of quantitative traits. vol. 1. Sinauer Sunderland, MA;

1998.

47. Browning BL, Browning SR. A unified approach to genotype imputation and haplotype-phase inference

for large data sets of trios and unrelated individuals. Am J Hum Genet. 2009; 84(2):210–23. https://doi.

org/10.1016/j.ajhg.2009.01.005 PMID: 19200528

48. Wray NR, Yang J, Hayes BJ, Price AL, Goddard ME, Visscher PM. Pitfalls of predicting complex traits

from SNPs. Nature Reviews Genetics. 2013; 14(7):507–515. https://doi.org/10.1038/nrg3457 PMID:

23774735

49. Navarro JAR, Willcox M, Burgueño J, Romay C, Swarts K, Trachsel S, et al. A study of allelic diversity

underlying flowering-time adaptation in maize landraces. Nature genetics. 2017; 49(3):476–480. https://

doi.org/10.1038/ng.3784

Deleterious alleles and heterosis in maize

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1007019 September 27, 2017 19 / 21

https://doi.org/10.2135/cropsci2005.10-0371
https://doi.org/10.2135/cropsci2016.01.0024
https://doi.org/10.2135/cropsci2016.01.0024
https://doi.org/10.1101/gr.3577405
https://doi.org/10.1101/gr.3577405
http://www.ncbi.nlm.nih.gov/pubmed/15965027
https://doi.org/10.1186/1471-2105-12-186
http://www.ncbi.nlm.nih.gov/pubmed/21605355
http://books.google.de/books?id=7ASZNAEACAAJ
https://doi.org/10.1093/bioinformatics/btp324
http://www.ncbi.nlm.nih.gov/pubmed/19451168
https://doi.org/10.1093/bioinformatics/btp352
http://www.ncbi.nlm.nih.gov/pubmed/19505943
https://doi.org/10.1186/gb-2013-14-6-r55
https://doi.org/10.1186/gb-2013-14-6-r55
http://www.ncbi.nlm.nih.gov/pubmed/23759205
https://doi.org/10.1371/journal.pone.0090346
https://doi.org/10.1371/journal.pone.0090346
http://www.ncbi.nlm.nih.gov/pubmed/24587335
https://doi.org/10.1371/journal.pcbi.1001025
http://www.ncbi.nlm.nih.gov/pubmed/21152010
https://doi.org/10.4161/fly.19695
http://www.ncbi.nlm.nih.gov/pubmed/22728672
https://doi.org/10.1038/hdy.2014.123
http://www.ncbi.nlm.nih.gov/pubmed/25585918
https://doi.org/10.1371/journal.pone.0087666
https://doi.org/10.1371/journal.pone.0087666
https://doi.org/10.1186/1471-2105-15-270
https://doi.org/10.1016/j.ajhg.2009.01.005
https://doi.org/10.1016/j.ajhg.2009.01.005
http://www.ncbi.nlm.nih.gov/pubmed/19200528
https://doi.org/10.1038/nrg3457
http://www.ncbi.nlm.nih.gov/pubmed/23774735
https://doi.org/10.1038/ng.3784
https://doi.org/10.1038/ng.3784
https://doi.org/10.1371/journal.pgen.1007019


50. Rodgers-Melnick E, Vera DL, Bass HW, Buckler ES. Open chromatin reveals the functional maize

genome. Proceedings of the National Academy of Sciences. 2016; 113(22):E3177–E3184. https://doi.

org/10.1073/pnas.1525244113

51. Kircher M, Witten DM, Jain P, O’roak BJ, Cooper GM, Shendure J. A general framework for estimating

the relative pathogenicity of human genetic variants. Nature genetics. 2014; 46(3):310–315. https://doi.

org/10.1038/ng.2892 PMID: 24487276

52. Haddrill PR, Halligan DL, Tomaras D, Charlesworth B. Reduced efficacy of selection in regions of the

Drosophila genome that lack crossing over. Genome biology. 2007; 8(2):R18. https://doi.org/10.1186/

gb-2007-8-2-r18 PMID: 17284312

53. McMullen MD, Kresovich S, Villeda HS, Bradbury P, Li H, Sun Q, et al. Genetic properties of the maize

nested association mapping population. Science (New York, NY). 2009; 325(5941):737–40. https://doi.

org/10.1126/science.1174320

54. Buckler ES, Holland JB, Bradbury PJ, Acharya CB, Brown PJ, Browne C, et al. The genetic architecture

of maize flowering time. Science. 2009; 325(5941):714–718. https://doi.org/10.1126/science.1174276

PMID: 19661422

55. Peiffer JA, Romay MC, Gore MA, Flint-Garcia SA, Zhang Z, Millard MJ, et al. The genetic architecture

of maize height. Genetics. 2014; 196(4):1337–1356. https://doi.org/10.1534/genetics.113.159152

PMID: 24514905

56. Greenberg AJ, Hackett SR, Harshman LG, Clark AG. A hierarchical Bayesian model for a novel sparse

partial diallel crossing design. Genetics. 2010; 185(1):361–373. https://doi.org/10.1534/genetics.110.

115055 PMID: 20157001

57. Joly-Lopez Z, Flowers JM, Purugganan MD. Developing maps of fitness consequences for plant

genomes. Current opinion in plant biology. 2016; 30:101–107. https://doi.org/10.1016/j.pbi.2016.02.008

PMID: 26950251

58. Huang Y, Gulko B, Siepel A. Fast, scalable prediction of deleterious noncoding variants from functional

and population genomic data. Nature gGenetics. 2017; 49(4):618. https://doi.org/10.1038/ng.3810

59. Wallace JG, Bradbury PJ, Zhang N, Gibon Y, Stitt M, Buckler ES. Association mapping across numer-

ous traits reveals patterns of functional variation in maize. PLoS Genet. 2014; 10(12):e1004845. https://

doi.org/10.1371/journal.pgen.1004845 PMID: 25474422

60. East EM. Inbreeding in corn. Rep Conn Agric Exp Stn. 1908; 1907:419–428.

61. Gaut BS, Dı́ez CM, Morrell PL. Genomics and the contrasting dynamics of annual and perennial domes-

tication. Trends in genetics. 2015; 31(12):709–719. https://doi.org/10.1016/j.tig.2015.10.002 PMID:

26603610

62. Phadnis N, Fry JD. Widespread correlations between dominance and homozygous effects of mutations:

implications for theories of dominance. Genetics. 2005; 171(1):385–392. https://doi.org/10.1534/

genetics.104.039016 PMID: 15972465

63. Agrawal AF, Whitlock MC. Inferences about the distribution of dominance drawn from yeast gene

knockout data. Genetics. 2011; 187(2):553–566. https://doi.org/10.1534/genetics.110.124560 PMID:

21098719

64. Kacser H, Burns JA. The molecular basis of dominance. Genetics. 1981; 97(3-4):639–666. PMID:

7297851

65. Manna F, Martin G, Lenormand T. Fitness landscapes: an alternative theory for the dominance of muta-

tion. Genetics. 2011; 189(3):923–937. https://doi.org/10.1534/genetics.111.132944 PMID: 21890744

66. Huber CD, Durvasula A, Hancock AM, Lohmueller KE. Gene expression drives the evolution of domi-

nance. bioRxiv. 2017; p. 182865.

67. Desta ZA, Ortiz R. Genomic selection: genome-wide prediction in plant improvement. Trends in plant

science. 2014; 19(9):592–601. https://doi.org/10.1016/j.tplants.2014.05.006 PMID: 24970707

68. Edwards SM, Sørensen IF, Sarup P, Mackay TF, Sørensen P. Genomic Prediction for Quantitative

Traits Is Improved by Mapping Variants to Gene Ontology Categories in Drosophila melanogaster.

Genetics. 2016; p. 110–116. https://doi.org/10.1534/genetics.116.187161

69. Kono TJ, Fu F, Mohammadi M, Hoffman PJ, Liu C, Stupar RM, et al. The role of deleterious substitu-

tions in crop genomes. bioRxiv. 2016; p. 033175.

70. Melchinger A, Lee M, Lamkey K, Hallauer A, Woodman W. Genetic diversity for restriction fragment

length polymorphisms and heterosis for two diallel sets of maize inbreds. TAG Theoretical and Applied

Genetics. 1990; 80(4):488–496. https://doi.org/10.1007/BF00226750 PMID: 24221007

71. Shapira R, Levy T, Shaked S, Fridman E, David L. Extensive heterosis in growth of yeast hybrids is

explained by a combination of genetic models. Heredity. 2014; 113(4):1–11. https://doi.org/10.1038/

hdy.2014.33

Deleterious alleles and heterosis in maize

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1007019 September 27, 2017 20 / 21

https://doi.org/10.1073/pnas.1525244113
https://doi.org/10.1073/pnas.1525244113
https://doi.org/10.1038/ng.2892
https://doi.org/10.1038/ng.2892
http://www.ncbi.nlm.nih.gov/pubmed/24487276
https://doi.org/10.1186/gb-2007-8-2-r18
https://doi.org/10.1186/gb-2007-8-2-r18
http://www.ncbi.nlm.nih.gov/pubmed/17284312
https://doi.org/10.1126/science.1174320
https://doi.org/10.1126/science.1174320
https://doi.org/10.1126/science.1174276
http://www.ncbi.nlm.nih.gov/pubmed/19661422
https://doi.org/10.1534/genetics.113.159152
http://www.ncbi.nlm.nih.gov/pubmed/24514905
https://doi.org/10.1534/genetics.110.115055
https://doi.org/10.1534/genetics.110.115055
http://www.ncbi.nlm.nih.gov/pubmed/20157001
https://doi.org/10.1016/j.pbi.2016.02.008
http://www.ncbi.nlm.nih.gov/pubmed/26950251
https://doi.org/10.1038/ng.3810
https://doi.org/10.1371/journal.pgen.1004845
https://doi.org/10.1371/journal.pgen.1004845
http://www.ncbi.nlm.nih.gov/pubmed/25474422
https://doi.org/10.1016/j.tig.2015.10.002
http://www.ncbi.nlm.nih.gov/pubmed/26603610
https://doi.org/10.1534/genetics.104.039016
https://doi.org/10.1534/genetics.104.039016
http://www.ncbi.nlm.nih.gov/pubmed/15972465
https://doi.org/10.1534/genetics.110.124560
http://www.ncbi.nlm.nih.gov/pubmed/21098719
http://www.ncbi.nlm.nih.gov/pubmed/7297851
https://doi.org/10.1534/genetics.111.132944
http://www.ncbi.nlm.nih.gov/pubmed/21890744
https://doi.org/10.1016/j.tplants.2014.05.006
http://www.ncbi.nlm.nih.gov/pubmed/24970707
https://doi.org/10.1534/genetics.116.187161
https://doi.org/10.1007/BF00226750
http://www.ncbi.nlm.nih.gov/pubmed/24221007
https://doi.org/10.1038/hdy.2014.33
https://doi.org/10.1038/hdy.2014.33
https://doi.org/10.1371/journal.pgen.1007019


72. Shull GH. The composition of a field of maize. Journal of Heredity. 1908; 1(1):296–301. https://doi.org/

10.1093/jhered/os-4.1.296

73. Gama LT, Bressan MC, Rodrigues EC, Rossato LV, Moreira OC, Alves SP, et al. Heterosis for meat

quality and fatty acid profiles in crosses among Bos indicus and Bos taurus finished on pasture or grain.

Meat Science. 2013; 93(1):98–104. https://doi.org/10.1016/j.meatsci.2012.08.005 PMID: 22938774

74. Wang L, Greaves IK, Groszmann M, Wu LM, Dennis ES, Peacock WJ. Hybrid mimics and hybrid vigor

in Arabidopsis. Proceedings of the National Academy of Sciences. 2015; 112(35):E4959–E4967.

https://doi.org/10.1073/pnas.1514190112

75. Li Z, Li B, Tong Y. The contribution of distant hybridization with decaploid Agropyron elongatum to

wheat improvement in China. Journal of Genetics and Genomics. 2008; 35(8):451–456. https://doi.org/

10.1016/S1673-8527(08)60062-4 PMID: 18721781

76. Halligan DL, Keightley PD. Spontaneous mutation accumulation studies in evolutionary genetics.

Annual Review of Ecology, Evolution, and Systematics. 2009; 40:151–172. https://doi.org/10.1146/

annurev.ecolsys.39.110707.173437

77. Guo M, Rupe MA, Wei J, Winkler C, Goncalves-Butruille M, Weers BP, et al. Maize ARGOS1 (ZAR1)

transgenic alleles increase hybrid maize yield. Journal of experimental botany. 2014; 65(1):249–260.

https://doi.org/10.1093/jxb/ert370 PMID: 24218327

Deleterious alleles and heterosis in maize

PLOS Genetics | https://doi.org/10.1371/journal.pgen.1007019 September 27, 2017 21 / 21

https://doi.org/10.1093/jhered/os-4.1.296
https://doi.org/10.1093/jhered/os-4.1.296
https://doi.org/10.1016/j.meatsci.2012.08.005
http://www.ncbi.nlm.nih.gov/pubmed/22938774
https://doi.org/10.1073/pnas.1514190112
https://doi.org/10.1016/S1673-8527(08)60062-4
https://doi.org/10.1016/S1673-8527(08)60062-4
http://www.ncbi.nlm.nih.gov/pubmed/18721781
https://doi.org/10.1146/annurev.ecolsys.39.110707.173437
https://doi.org/10.1146/annurev.ecolsys.39.110707.173437
https://doi.org/10.1093/jxb/ert370
http://www.ncbi.nlm.nih.gov/pubmed/24218327
https://doi.org/10.1371/journal.pgen.1007019

