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Abstract: Based on the anti-parallelogram mechanism, an approximate cylindrical rolling joint
is proposed to develop a novel cable-driven snake-arm robot with multiple degrees of freedom
(DOF). Furthermore, the kinematics of the cable-driven snake-arm robot are established, and the
mapping between actuator space and joint space is simplified by bending decoupling motion in the
multiple segments. The workspace and bending configurations of the robot are obtained. The static
model is established by the principle of minimum potential energy. Furthermore, the simplified
cable constraints in the static model are proposed through Taylor expansion, which facilitates the
equilibrium conformation analysis of the robot under different external forces. The cable-driven
snake-arm robot prototype is developed to verify the feasibility of the robot design and the availability
of the static model through the experiments of the free bending motion and the external load on the
robot.

Keywords: cable-driven snake-arm robot; kinematics; workspace; static model; anti-parallelogram mechanism

1. Introduction

The cable-driven snake-arm robot has been widely used in different fields, such as
minimally invasive surgery [1,2], industrial inspection [3,4], and field rescue [5] in confined
environments, since it has significant advantages because of its multi-DOF bending motion.
Each segment of the cable-driven snake-arm robot is mainly composed of several iden-
tical 1-DOF joints or 2-DOF joints connected in series by multi-side cables. The number
of joints usually is significantly greater than the number of motors. Therefore, passive
compliance may exist in the cable-driven snake-arm robot [6], which will result in the robot
configuration being not controllable when the end of the robot is subject to external forces.

To address this problem, Kim et al. presented an adjusting-stiffness cable-driven
hyper-redundant robot with several 1-DOF cylindrical rolling joints, and the method to
avoid the passive compliance is proposed through the positive sum of the cable length
changes [7]. Based on gears and constraint links, Hwang et al. proposed a novel cable-
driven snake-arm robot and validated that there is no slack in the cables when the joint
bends to an arbitrary configuration [8]. Kim et al. presented a novel 1-DOF rolling joint
with block mechanisms and discussed the effect between passive compliance and cable
tension [9]. Suh et al. designed a cable-driven snake-arm robot including rolling joints
with elastic fixtures, which improves the stability of the robot [10]. Compared with regular
serial mechanisms, the parallel link mechanism has better flexibility [11–13]. Based on
the link mechanism, Shin et al. designed an approximate rolling joint to ensure that the
cables on both sides are always tensioned [14]. Based on the parallel isosceles trapezoidal-
link mechanism, Zhang et al. proposed a reconfigurable joint to develop a cable-driven
snake-arm robot prototype without cable slack [15].
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However, the bending motion in all directions of most of the prior cable-driven snake-
arm robots is usually coupled. That means the rotation output of the robot is controlled by
multiple pairs of antagonistic cable inputs in each segment [15–17], which results in the
mapping between the actuator space and joint space becoming more complex. Wu et al.
realized the decoupling motion of the proximal end and distal wrist joint in a continuum
robot by a reverse bi-continuum mechanism [18]. Based on the cable sheath, Phee et al.
avoided the coupling motion in the cable-driven snake-arm robot. In addition, when
the cable-driven snake-arm robot works in complex environments, it will inevitably be
subjected to external forces that make the robot configuration change [19]. Therefore, in
order to evaluate the equilibrium conformation, it is essential to establish the static model
of the snake-arm robot under external loads.

Similar to octopus tentacles [20], elephant trunks [21], and tongues [22,23], continuum
robots can achieve continuous and smooth multi-DOF bending motion by their elastic de-
formation [24,25]. By contrast, the biggest difference of the cable-driven snake-arm robot is
that it contains several identical rigid discrete joints, while the continuum robot does not
have rigid discrete joints. Due to the discreteness, the prior static models are not suitable
for a cable-driven snake-arm robot with multiple discrete joints. In recent years, many
researchers have studied the static model suitable for cable-driven continuum robots without
discrete joints but not for cable-driven snake-arm robots. Based on the Cosserat rod method,
Alqumsan et al. derived the static model of a continuous robot under external force [26].
Xu et al. established the static model of the continuum robot based on the elliptic inte-
gral method, which derives the mapping between the driving force and end position [27].
Considering gravity, the external force, and cable deformation, Yang et al. established
the static model of the continuum robot according to the virtual work principle [28].
Venkiteswaran et al. presented the static model based on the pseudo-rigid body model,
which is suitable for the non-constant curvature curved motion of the continuum robot [29].
However, these methods are established based on the material constitutive model, which
cannot be directly applied to the snake-arm robot with discrete joints [30].

For the cable-driven snake-arm robot with discrete joints, Dong et al. calculated the
rotational angle of each segment based on the static equilibrium equation, which predicts
the robot configuration change under external forces [3]. Li et al. established the static
equilibrium equation based on the Newton–Euler method and obtained the mapping between
joint deformation and external forces [31]. Wang et al. also utilized the Newton–Euler
method to establish the mapping between cable tension and joint deformation [32]. Kato et al.
established the relationship between the cable tension and kinematics to predict the robot
configuration [33]. Chen et al. proposed a new prediction method of the soft arm shape by
combining the constant curvature model with the Euler–Bernoulli beam [34]. Although the
static model can be established utilizing many methods, it is difficult to derive the equilibrium
conformation of cable-driven snake-arm robots with complicated cable constraints.

This paper proposes a novel cable-driven snake-arm robot with approximate cylin-
drical rolling joints based on anti-parallelogram mechanisms, which can avoid passive
compliance. The decoupling bending motion can be realized between multiple segments in
the cable-driven snake-arm robot, which can simplify kinematics. Based on the principle
of minimum potential energy, the static model of the robot is established. Furthermore,
the simplified cable constraints in the static model are proposed through Taylor expansion,
which facilitates the equilibrium conformation analysis of the robot under different external
forces, different spring stiffness, and different initial heights. Finally, the robot feasibility
and the validity of the static model are verified by experiments.

2. Robot Design
2.1. Joint Design

According to the references [35–39], the rotation of the anti-parallelogram mechanism
can be regarded as the pure rolling motion of two ellipses, as shown in Figure 1, and the
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hinge points between linkages and disks are regarded as the focus of the ellipse located at
the major axis in an ellipse.

Figure 1. Sketch of anti-parallelogram mechanism. (a) The anti-parallelogram joint sketch. (b) The
initial configuration of the anti-parallelogram joint.

The focus coordinates are respectively (−wc/2, 0) and (wc/2, 0), while the length of the
minor axis can be calculated by b = hc/2. Therefore, the ellipse equation can be expressed as

xc
2(

hc
2

)2
+
(wc

2
)2

+
yc

2(
hc
2

)2 = 1 (1)

where hc represents the distance between the two major axes of two adjacent ellipses and
wc represents the distance between the two focuses of the ellipse. Assuming that there is
a circle that approximates the ellipse, as shown in Figure 1b, h0 represents the distance
between the circle center p0 (0, h0) and the origin. yc denotes the y-direction distance
between the tangent point pc (xc, yc) of two ellipses and the center point p0, which can be
calculated as

yc =
1

tan ϕ
xc − h0 (2)

where xc = R0 sin ϕ. R0 represents the ellipse rolling radius, ϕ represents the rotation
angle, and h0 represents the distance from the circle center to the origin. According to
Equations (1) and (2), R0 can be obtained as

R0 =
h0 +

√
h02 +

(
hc2

4 + M
tan2 ϕ

)
·
(

hc2

4 − h02
)
· tan2 ϕ

M

sin ϕ ·
(

hc2

4 + M
tan2 ϕ

)
· tan ϕ

M

(3)

where sin ϕ is always positive due to the limitation of the maximum joint angle. When
wc and h0 are known, R0 is only relevant to the initial joint height hc and rotation angle.
The ellipse rolling motion can be approximated to cylindrical rolling motion by adjusting
the structural parameters when R0 is very close to the constant R. The constant R can be
regarded as a cylindrical rolling radius, and the difference between R0 and R can be defined
as an error. Given that h0 = 3 mm and wc = 10 mm, the ellipse rolling radius R0 increases
as hc increases, as shown in Figure 2a. The error decreases in the range of the bending
angle, as shown in Figure 2b. Given that hc = 15 mm and wc = 10 mm, the ellipse rolling
radius R0 increases as h0 increases, as shown in Figure 3a. The error decreases in the range
of the bending angle, as shown in Figure 3b. Therefore, the error is less than 0.05 when
hc = 15 mm and h0 = 3 mm.

Considering the working requirements of the cable-driven snake-arm robot, the fol-
lowing design principles should be simultaneously satisfied to propose the approximately
cylindrical rolling joint. Firstly, the virtual rolling radius of the ellipse should be approxi-
mately a constant. Secondly, passive compliance should be avoided for approximate rolling
joints to ensure that the snake-arm robot is controllable when its end is subject to external
forces. Thirdly, the maximum bending angle of the rolling joint should not be less than
20 degrees. According to the anti-parallelogram mechanism, an approximate cylindrical



Micromachines 2022, 13, 1149 4 of 24

rolling joint is designed, and each joint consists of two links and disks, as shown in Figure 4;
the pivot of the links coincides with the major axis of two adjacent ellipses.

Figure 2. The influence of hc on R0. (a) The relationship between the hc and ellipse rolling radius.
(b) The error analysis between R0 and R in different hc.

Figure 3. The influence of h0 on R0. (a) The relationship between the h0 and ellipse rolling radius.
(b) The error analysis between R0 and R in different h0.

Figure 4. The joint structure design. (a) The initial anti-parallelogram mechanism sketch. (b) The
initial joint sketch. (c) The joint design with anti-parallelogram mechanism.

In the rolling joint, the relationship between the cable length on both sides and the
bending angle is derived as

ll = 2R− 2
(

R− hc+2h1
2

)
cos ψ

2 − 2r sin ψ
2

lr = 2R− 2
(

R− hc+2h1
2

)
cos ψ

2 + 2r sin ψ
2

(4)

Compared with the straight configuration of the joint, the length changes of the cable
on both sides are obtained as

∆ll = ll(ϕ)− ll(0) = 2R1 − 2
√

R1
2 + r2 sin

(
ψ
2 + β

)
∆lr = lr(ϕ)− lr(0) = 2R1 + 2

√
R1

2 + r2 sin
(

ψ
2 − β

) (5)

where R1 = R− hc+2h1
2 , tan β = R1

r . r denotes the cable distribution circle radius. ψ denotes
the joint bending angle. h1 denotes the distance between the major axis of the ellipse and
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the end surface of the disk. h2 denotes the disk thickness. h3 denotes the initial joint height.
Therefore, given that h0 is 3 mm and wc is 10 mm, and hc = {13 mm, 14 mm, 15 mm}, the
relationship between cable length and joint angle can be obtained by the ellipse rolling
radius, as shown in Figure 5a. The difference between cable length on both sides, calculated
by the ellipse rolling radius R0 and approximate cylindrical rolling radius R, will increase
as hc increases in the range of the joint angles, as shown in Figure 5b.

Figure 5. The cable length change on both sides and difference analysis. (a) The relationship between
the hc and cable length on both sides. (b) The deviation value analysis between the hc and cable
length in different hc.

In addition, the sum of the cable length changes on both sides is always greater than
zero, as shown in Figure 6a. The difference between cable length on both sides, calculated
by the ellipse rolling radius R0 and approximate cylindrical rolling radius R, will decrease
as hc increases in the range of the joint angles, as shown in Figure 6b. Therefore, the
approximate cylindrical rolling radius R = 10.5 mm is preferred.

Figure 6. The sum of cable length change on both sides and difference analysis. (a) The relationship
between the hc and the sum of cable length changes on both sides. (b) The deviation value analysis
between the hc and the sum of cable length changes in different hc.

2.2. Manipulator Design

The cable-driven snake-arm robot is mainly composed of the manipulator and the
driving mechanism, which can realize 4 DOF, as shown in Figure 7a. The range of rotating
the driving mechanism is [−π, π]. Moreover, the manipulator contains a proximal segment,
a rotating segment, and a distal segment. The rotating segment is located in the middle
between the proximal and distal segments. The joint structure of the proximal segment is
shown in Figure 7b. The specific structure of the rotating segment is shown in Figure 7c.
The rotating angle range of the rotating segment is [−π/2, π/2]. The rotating segment
comprises upper and lower modules (Figure 7c). The bulge surface of the upper module
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and the concave surface of the lower module cooperate to form one rotating pair; the
antagonism always exists between the upper and lower modules to ensure that the rotating
segment does not produce bending deformation. In addition, both ends of cables C and D
are fixed in the upper module, respectively. The driving inputs of the rotating structure
remain unchanged, that is, cables C and D do not change, which can ensure that the rotating
segment does not produce torsional deformation and that the angle of the rotating segment
will not affect the ability to hold the load in 3-dimensional space.

Figure 7. The CAD model of the cable-driven snake-arm robot. (a) The cable-driven snake-arm robot
model. (b) The joint in the proximal segment. (c) The structure of the rotating segment. (d) The joint
in the distal segment.

The joint structure of the distal segment is shown in Figure 7d. The proximal and distal
segments of the robot are composed of several of the same approximately cylindrical rolling
joints in series. Each joint contains two linkages and two disks, which can be regarded as
the anti-parallelogram mechanism. When the linkage and disk interfere with each other,
the maximum bending angle of the single joint can be reached. The maximum bending
angle of the approximately cylindrical rolling joint is limited to 20◦. According to the above
design principles, the specific structure parameters of the robot are determined in Table 1.

The motion between the proximal segment, the rotating segment, and the distal
segment is decoupling. Cables A and B are used to drive the proximal segment. Cables C
and D are used to drive the rotating segment. Cables E and F are used to drive the distal
segment. In the disk of the proximal segment, the cable hole for cable C, cable D, cable E,
and cable F is a tapered hole, which ensures the cable length of cable C, cable D, cable E, and
cable F is always equal to 2R when the proximal segment bends. The design difficulty of
the driving mechanism is effectively reduced. The cable sheaths are reserved in the rotating
segment to ensure the decoupling motion between the proximal and distal segments. In
addition, the driving mechanism design of the proximal segment, the rotating segment,
and the distal segment can be simplified according to the mapping between actuator space
and joint space.
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Table 1. The main specific parameters of the robot.

Symbols Descriptions Values

hc
The initial distance between the major axes of
adjacent ellipses 15 mm

r Cable distribution circle radius 9 mm
R Cylindrical rolling radius 10.5 mm
wc The distance between the two focuses of the ellipse 10 mm
ψ The angle of joint bending [−π/9, π/9]

h0
The distance between the circle center and the upper
surface of the lower disk 3 mm

h1
The distance between the major axis and the upper
surface of the lower disk 2.0 mm

h2 The thickness of a single disk 11.5 mm
h3 The initial height of the single joint 11.0 mm

h4
The distance between the circle center and the upper
surface of the lower disk 5 mm

3. Kinematics

It is inevitable for the cable-driven snake-arm robots to establish the mapping among
the actuator space, joint space, and task space to analyze the robot kinematics [40,41].
Through the bending decoupling motion, the mapping between the actuator space and
joint space of the three segments is simplified to design the driving mechanism of the robot.
The mapping between joint space and task space is established to analyze the workspace
and different bending configurations of the novel cable-driven snake-arm robot.

3.1. The Mapping between Actuator Space and Task Space

The mappings between actuator space and joint space in the proximal segment, ro-
tating segment, and distal segment are respectively established in this section. For the
mapping between actuator space and joint space of the proximal segment, assume that
the proximal segment contains n same cylindrical rolling joints. According to Equation (4),
the relationship between the length of cables A and B and the bending angle ψ1 can be
expressed as

LAp = 2nR− 2n
(

R− hc+2h1
2

)
cos ψ1

2 − 2nr sin ψ1
2

LBp = 2nR− 2n
(

R− hc+2h1
2

)
cos ψ1

2 + 2nr sin ψ1
2

(6)

where LAp and LBp represent, respectively, the relationship between the length of cables A
and B and the bending angle.

Compared with the straight configuration, the relationship between cable length
changes, and the angle ψ1 in the bending configuration can be derived as

∆LAp = n(ll(ψ1)− ll(0)) = 2nR1 − 2n
√

R1
2 + r2 sin

(
ψ1
2 + β

)
∆LBp = n(lr(ψ1)− lr(0)) = 2nR1 + 2n

√
R1

2 + r2 sin
(

ψ1
2 − β

) (7)

where ∆LAp and ∆LBp represent, respectively, the relationship between the length changes
of cables A and B and the bending angle. For the mapping between actuator space and
joint space of the rotating segment, if the tapered cable holes are not reserved on disks of
the proximal segment, the relationship between the length of cables C and D and the angle
ψ1 can be expressed as

∆LC = ∆LCp + ∆LCr = −2nR1 cos ψ1
2 + rsγ

∆LD = ∆LDp + ∆LDr = −2nR1 cos ψ1
2 − rsγ

(8)

where ∆LCp = ∆LDp = −2nR1 cos ψ1
2 represents, respectively, the length changes of cables

C and D and angle ψ1. ∆LCr = rsγ and ∆LDr = −rsγ represent, respectively, the cable
length changes of cables C and D and rotating angle γ. rs represents the radius of a rotating
pulley in a rotating segment. However, if the tapered cable holes are reserved on disks of
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the proximal segment, cable length changes of cables C and D in the proximal segment are
always equal to zero. Therefore, Equation (8) can be rewritten as

∆LCp = ∆LCp + ∆LCr = rsγ

∆LDp = ∆LDp + ∆LDr = −rsγ
(9)

For the mapping between actuator space and joint space of the distal segment, the
motion of the proximal and rotating segments will cause length changes of cables E and
F. In the rotating segment, the cable sheaths of cables E and F are reserved to guarantee
that the lengths of cables E and F are respectively equal to the cable sheath’s length. If the
tapered cable holes are not reserved on disks of the proximal segment, the relationship
between the cable length of the distal segment and angles can be expressed as

LE = LEd + LEp + Lr = n
(

2R− 2
(

R− hc+2h1
2

)
cos ψ2

2 − 2r sin ψ2
2

)
+ n

(
2R− 2

(
R− hc

2

)
cos ψ1

2

)
+ Lr

LF = LFd + LFp + Lr = n
(

2R− 2
(

R− hc+2h1
2

)
cos ψ2

2 + 2r sin ψ2
2

)
+ n

(
2R− 2

(
R− hc

2

)
cos ψ1

2

)
+ Lr

(10)

where LE and LF represent, respectively, the relationship between the length of cables E and
F and the bending angle ψ2. LEd and LFd represent, respectively, the relationship between
the length of cables E and F and the bending angle ψ2 in the distal segment. LEp and
LFp represent, respectively, the relationship between the length of cables E and F and the
bending angle ψ1 in the proximal segment. Lr represents cable sheath length. If the tapered
cable holes are reserved on disks of the proximal segment, length changes of cables C and
D in the proximal segment are also always equal to zero. Therefore, Equation (10) can be
rewritten as

∆LE = −2nR1 + 2n
√

R1
2 + r2 sin

(
ψ2
2 − β

)
∆LF = −2nR1 + 2n

√
R1

2 + r2 sin
(

ψ2
2 + β

) (11)

According to Equation (11), the decoupling bending performance can simplify the
mapping between the actuator space and joint space of the distal segment. Since the
expression form of the cable length function of cables E and F are the same as that of
cables A and B, the driving mechanism of proximal and distal segments can be consistent.
The mapping between the actuator space and joint space of the robot can be obtained by
establishing the relationship between the length of cables and joint variables. Therefore,
the driving mechanism design of the cable-driven snake-arm robot is shown in Figure 8.

Figure 8. The driving mechanism of the robot. (a) The structure of the driving mechanism.
(b) The driving mechanism of the rotating segment. (c) The driving mechanism of the distal segment.
(d) The driving mechanism of the distal segment.
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3.2. The Mapping between Actuator Space and Task Space

In this section, the ith joint is considered as an example to establish the joint coordinate
system, as shown in Figure 9. The coordinates {Oi}, {Oi−1}, {Oi+1}, and {Oi+2} are established
at the center position of the circle. The zi axis is perpendicular to the surface of the ith disk,
and the yi axis is parallel to the surface of the ith disk. The zi+1 axis is perpendicular to the
surface of the (i + 1)th disk, and the yi+1 axis is parallel to the surface of the (i + 1)th disk.
The coordinate system follows the right-hand rule.

Figure 9. The joint coordinate system of a single joint. (a) The ith joint in the initial configuration.
(b) The coordinate system in the initial configuration. (c) The coordinate system in the bending
configuration.

The transformation process from the coordinate {Oi} to coordinate {Oi+2} are as follows.
The coordinate {Oi+1} is obtained by the coordinate system {Oi} rotating ψ/2 about the xi axis,
transferring 2R along the z axis, and rotating ψ/2 about the new xi axis. The coordinate {Oi+2}
is obtained by the coordinate system {Oi+1} transferring t along the zi+1 axis.

iT = rot
(

x,
ψ

2

)
trans(z, 2R)rot

(
x,

ψ

2

)
trans(z, t) (12)

where iT is the homogeneous transformation matrix from ith joint to (i + 1)th joint, and t is
the distance between adjacent circle centers. Based on the joint kinematics, the mapping
between the joint space and task space of the cable-driven snake-arm robot is established
to analyze the workspace and different bending configurations, as shown in Figure 10.

Figure 10. The robot coordinate system.
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According to Equation (12), the homogeneous transformation matrix from coordinate
{O1} to {O13} can be obtained as

13
1 T = rot(z, α) · i+1

i T6(ψ1) · trans(z, h0 − h1) (13)

where α∈[−π, π] represents the rotating angle of the driving mechanism. According to the
geometric structure, the end position of the proximal segment can be expressed as

13
1 p =

px
py
pz

 =


(2R + t) cos α

6
∑

i=1
sin 2i−1

2 ψ1

(2R + t) sin α
6
∑

i=1
sin 2i−1

2 ψ1

(2R + t)
6
∑

i=1
cos 2i−1

2 ψ1

 (14)

According to Equation (13), the homogeneous transformation matrix from coordinate
{O1} to {O26} can be obtained as

26
1 T = 13

1 T(ϕ1) · trans(z, h3) · 26
14T (15)

where trans(z, h3) is obtained by the coordinate {O13} transferring the height of the rotating
segment, and 26

14T represents the homogeneous transformation matrix from coordinate {O14}
to coordinate {O26}, which can be expressed as

26
14T = rot(z, γ) · i+1

i T6(ψ2) (16)

where γ∈[−π/2, π/2] is the rotating angle of the rotating segment. Therefore, the mapping
between joint space and task space of the cable-driven snake-arm robot can be estab-
lished by Equations (12)–(16). The direction angle α∈{0, ±π/2, π} and bending angles
ψ∈{0, π/36, π/18, π/12} are selected to obtain the workspace and bending configuration
of every segment of the robot. The workspace and bending configuration of the proximal
segment are shown in Figure 11a,b, and the workspace and bending configuration of the
robot are shown in Figure 11c–f.

Figure 11. The workspace and bending configurations of the robot. (a) The workspace of the proximal
segment. (b) The configurations of the proximal segment. (c) The workspace of the robot. (d) The
bending configuration in different direction. (e) The bending configuration in same direction. (f) The
bending configuration in different bending angles.



Micromachines 2022, 13, 1149 11 of 24

4. Equilibrium Conformations Analysis under External Loads
4.1. Static Model

According to Figure 8, when the end of the distal segment is subject to external forces,
and the inputs of the driving pulley remain constant, the configuration of the distal segment
changes from the straight configuration to a bending configuration due to the deformation
of the spring, as shown in Figure 12. To facilitate the establishment of the static model,
assume that there are n joints in the distal segment, and there is no deformation in the
proximal segment. In addition, the robot’s gravity, vibration [42], clearance, friction between
cable and cable hole, and cable elastic deformation are ignored, and only external force
and spring elasticity are considered to establish the static model based on the principle of
minimum potential energy. Moreover, the length changes of cables E and F in the proximal
segment can be not considered in the process of the static model, due to the decoupling
motion between the proximal segment and distal segment.

Figure 12. The static model of the distal segment in the cable-driven snake-arm robot.

Considering that the process of applying external forces is gradual and the total
potential energy in the robot system consists of external work and elastic potential energy,
the total potential energy function of the robot system can be expressed as Equation (17).

W = Wext + VS + λ(∆Sr − ∆Sl) =
1
2
(

Fy∆y + Fx∆x
)
+

1
2

K

(
n

∑
i=1

∆lr(ψi)

)2

+ λ

(
n

∑
i=1

∆lr(ψi)−
n

∑
i=1

∆ll(ψi)

)
(17)

where Wext represents the external work, Vs represents the elastic potential energy,
λ represents the Lagrange multiplier, and ∆Sr, ∆Sl represent length changes of cables
E and F. K is the spring stiffness.

Therefore, the deformation angle ∆ψi = [∆ψ1, ∆ψ2, ∆ψ3, · · ·, ∆ψn] of the distal segment
suffering external forces can be calculated when the potential energy is the minimum [43],
which can be expressed as

∂W
∂ψ1

dψ1 +
∂W
∂ψ2

dψ1 + · · ·+
∂W

∂ψn−1
dψn−1 +

∂W
∂ψn

dψn = 0 (18)

assuming that the distal segment deforms in the z-y bending plane when the end of the
distal segment is subject to external forces. The deformation of the distal end is defined as
∆ξ. Hence, the external work Wext can be calculated as

Wext =
1
2

F · ∆ξ (19)

where F = [Fz, Fy] and ∆ξ = [∆z, ∆y ]T. Fz is the axial force along the robot, and Fy is the
force perpendicular to the axis. When the distal segment is not subjected to external forces,
the end positions z0 and y0 of the distal segment can be derived as

z0 = (2R + t)
(

cos ψ0
2 + cos 3ψ0

2 + . . . + cos (2n−1)ψ0
2

)
y0 = (2R + t)

(
sin ψ0

2 + sin 3ψ0
2 + . . . + sin (2n−1)ψ0

2

) (20)

where ψ0 represents the initial bending angle. When the end of the distal segment is subject
to external forces, the deformations in two directions can be derived as



Micromachines 2022, 13, 1149 12 of 24

∆z = (2R + t)
((

cos
(

∆ψ1 +
ψ0
2

)
+ . . . + cos

(
∆ψ1 + ∆ψ2 + . . . + ∆ψn + (2n−1)ψ0

2

))
−
(

cos ψ0
2 + . . . + cos (2n−1)ψ0

2

))
∆y = (2R + t)

((
sin
(

∆ψ1 +
ψ0
2

)
+ . . . + sin

(
∆ψ1 + ∆ψ2 + . . . + ∆ψn + (2n−1)ψ0

2

))
−
(

sin ψ0
2 + . . . + sin (2n−1)ψ0

2

)) (21)

where ∆ψ1, ∆ψ2, ∆ψ3, · · ·, ∆ψn represent the deformation angle of distal segments, respec-
tively. Hence, the work of external forces can be obtained by Equations (19)–(21). Assume
that the spring deformation can be denoted as ∆X. When the end of the distal segment is
subject to the external forces, the elastic potential energy of the spring can be expressed as

Vs =
1
2

K · (∆X)2 (22)

Since cables driving the distal segment are fixed with the same driving pulley, the
spring deformation is equal to the length changes of cables on both sides, which can be
expressed as

∆X =
n

∑
i=1

∆lE(∆ϕi) =
n

∑
i=1

∆lF(∆ϕi) (23)

According to the mapping between the actuator space and joint space of the distal
segment, the length changes of cables E and F can be respectively rewritten as

n
∑

i=1
∆lE(∆ϕi) = 2

√
R1

2 + r2
n
∑

i=1

(
sin
(

ψ
2 + β

)
− sin

(
ψ+∆ψi

2 + β
))

n
∑

i=1
∆lF(∆ϕi) = 2

√
R1

2 + r2
n
∑

i=1

(
− sin

(
ψ
2 − β

)
+ sin

(
ψ+∆ψi

2 − β
)) (24)

Hence, the elastic potential energy of the spring can be obtained by Equations (22)–(24).
If there are no cable constraints, the continuum robot and snake-arm robot can be equivalent
to the cantilever model. When the end of the cantilever is subject to external forces, the
entire structure of the cantilever bends to one side, as shown in Figure 13a. For the cable-
driven continuum robot and snake-arm robot, when the end of the robot is subject to
the external force, the robot configuration will change from the straight configuration to
the S configuration due to cable constraints, as shown in Figure 13b,c. It is necessary
for establishing the static model of the cable-driven snake-arm robot to consider cable
constraints [44].

Figure 13. The cable constraint condition. (a) The bending configuration of the cantilever. (b) The
bending configuration of the cable-driven continuum robot. (c) The bending configuration of the
cable-driven snake-arm robot.

For the proposed cable-driven snake-arm robot, the cable constraints can be obtained as
n

∑
i=1

∆ll(∆ψi)−
n

∑
i=1

∆lr(∆ψi) = 4 cos β
√

R1
2 + r2

n

∑
i=1

(
sin

ψ0

2
− sin

ψ0 + ∆ψi
2

)
= 0 (25)

Based on Equation (25), the cable constraints become more complex as the number of
joints increases, which will increase the difficulty of the iterative solution. Assume that the
deformation range of each joint of the robot under slight external forces is very small, and
the sine Taylor expansion is used to simplify the cable constraints, which can be rewritten as

n

∑
i=1

∆ll(∆ϕi)−
n

∑
i=1

∆lr(∆ϕi) = −2 cos β
√

R1
2 + r2

n

∑
i=1

(∆ψi + o(∆ψi)) = 0 (26)
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where −4 cos β
√

R1
2 + r2 6= 0, o(∆ψi) represents the dimensionless. Therefore, Equation (17)

can be rewritten as

W =
1
2
(

Fy∆y + Fx∆x
)
+

1
2

K

(
n

∑
i=1

∆lr(∆ψi)

)2

+ λ(∆ψ1 + ∆ψ2 + · · ·+ ∆ψn) (27)

4.2. Solutions

In this section, the deformation angles of each joint in the distal segment under differ-
ent external forces, different hc, and different springs are solved iteratively by MATLAB
when the potential energy of the robot system is minimum. Given that K = 600 N/m and
h3 = 11 mm, the equilibrium conformation of the distal segment in the straight configura-
tion and bending configuration is shown in Figure 14a,b when Fy = ±2 N, ±1 N, ±0.75 N,
±0.5 N, and ±0.25 N, respectively. The end displacements of the distal segment and the
deformation angles of each joint increase as the magnitude of Fy increases.

Figure 14. The equilibrium conformations of the distal segment under different external forces.
(a) The equilibrium conformations of the initial distal segment under different y-direction forces.
(b) The equilibrium conformations of the bending distal segment under different y-direction forces.
(c) The equilibrium conformations of the initial distal segment under different two-directions forces.
(d) The equilibrium conformations of the bending distal segment under different two-direction forces.

In addition, when the end is subjected to forces Fy and Fz at the same time, and
F = [Fz, Fy] = {[−2 N, −2 N], [−2 N, 0 N], [−1 N, −1 N], [−1 N, 0 N], , [2 N, 0 N], [1 N, 1 N],
[1 N, 0 N]}, the equilibrium conformation of the distal segment in straight configuration and
bending configuration is shown in Figure 14c,d, respectively. The configuration of the distal
segment in the straight configuration does not change when only Fz loads on the end, while
the configuration of the distal segment in the bending configuration will change obviously
when Fy and Fz load on the distal end. When the distal segment of the robot is in a straight
configuration and its distal end is subjected to forces from two directions, the longitudinal
and transverse displacements of the end are shown in Figure 15a,b, respectively. When
the distal segment of the robot is in an even bending configuration and its distal end is
subjected to forces from two directions, the longitudinal and transverse displacements of
the end are shown in Figure 15c,d, respectively. When the spring stiffness and the initial
joint height are given, the longitudinal and transverse end displacements of the distal
segment of the robot will increase with the increase of the external forces.
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Figure 15. The longitudinal and transverse displacements of the end under external forces.
(a) The relationship among the longitude displacements and two-directions in the initial config-
uration. (b) The relationship among the transverse displacements and two-directions in the initial
configuration. (c) The relationship among the longitude displacements and two-directions.in the bend-
ing configuration. (d) The relationship among the transverse displacements and two-directions.in the
bending configuration.

According to Equation (27), the deformation angles of each joint are different if the
spring stiffness K is different in the driving mechanism. This section only considers the
force of ±1 N in the y-direction. When the spring stiffness K is equal to 150 N/m, 300 N/m,
450 N/m, 600 N/m, and 750 N/m, the equilibrium conformation of the distal segment in a
straight configuration and bending configuration are shown in Figure 16a,b, respectively.
According to the solution results, the larger the spring stiffness K is, the smaller the bending
deformation angle of each joint in the distal segment is, and vice versa. In addition, when
K is equal to 600 N/m and h3 is equal to 19 mm, 15 mm, 11 mm, 7 mm, and 3 mm, the
equilibrium conformation of the distal segment in the straight configuration and bending
configuration is shown in Figure 17a,b, respectively. The end displacement of the distal
segment and the deformation angles of each joint decrease with the decrease of the h3.

Figure 16. The equilibrium conformations of the distal segment under different spring stiffness.
(a) The equilibrium conformations of the distal segment in initial configuration. (b) The equilibrium
conformations of the distal segment in bending configuration.
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Figure 17. The equilibrium conformations of the distal segment under different h3. (a) The equilibrium
conformations of the distal segment in initial configuration. (b) The equilibrium conformations of the
distal segment in bending configuration.

When the distal segment of the robot is in a straight configuration and its distal end is
subjected to forces from the y direction, the longitudinal and transverse end displacements
under different spring stiffness and initial joint heights are shown in Figure 18a,b, respectively.
When the distal segment of the robot is in an even bending configuration and its distal end is
subjected to forces from the y direction, the longitudinal and transverse end displacements
under different springs and initial joint heights are shown in Figure 18c,d, respectively.

Figure 18. The longitudinal and transverse displacements of the end under different spring stiffness
and initial joint heights. (a) The relationship among the longitude displacements and spring stiffness
and initial height single joint in the initial configuration of the distal segment. (b) The relationship
among the transverse displacement and spring stiffness and initial height single joint in the initial
configuration of the distal segment. (c) The relationship among the longitude displacements and
spring stiffness and initial height single joint in the bending configuration of the distal segment.
(d) The relationship among the transverse displacement and spring stiffness and initial height single
joint in the bending configuration of the distal segment.

When the magnitude and direction of the external forces and the spring stiffness are
given, the longitudinal and transverse end displacements of the distal segment of the robot
will also increase with the increase of the initial joint height. The initial joint height can
be adjusted by changing the distance between the major axis and the upper surface of the
lower disk. If the distance between the major axis and the upper surface of the lower disk
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increases, the initial joint height will decrease, and vice versa. When the magnitude and
direction of the external forces and the initial joint height are given, the longitudinal and
transverse end displacements of the distal segment of the robot will also decrease with the
increase of the spring stiffness.

5. Experiments and Discussion

In this section, the prototype of the cable-driven snake-arm robot is developed. In
addition, the multi-DOF bending motion of the robot is tested, and the non-existence of
passive compliance and the validity of the static model are verified by load experiments.
Finally, the errors analysis between experiment and simulation is discussed in detail.

5.1. Robot Prototype

To verify the design feasibility of the cable-driven snake-arm robot based on the anti-
parallelogram mechanism, a robot prototype was built in this paper, as shown in Figure 19,
which mainly includes the proximal segment, the rotating segment, the distal segment, and
the driving mechanism.

Figure 19. The prototype of the cable-driven snake-arm robot.

The driving mechanism mainly consists of a guiding device, driving device, and tension-
adjusting device. The cable-driven snake-arm robot is made by 3D printing. According to
Figure 8, the cable tension can be adjusted by changing the position of the adjusting bolts in
the tension-adjusting device; the tension value can be measured by the force sensors. The
specific parameters of the equipment used in the experiment are as follows. The rated speed
and torque of the motor are 10 r/min and 70 Kg·cm, respectively. The range and accuracy of
the force sensor are 0–100 N and 0.03%, respectively. The total length of the snake-arm robot
is 293 mm. The robot’s diameter is 20 mm. The cable diameter is 0.6 mm.

5.2. Free Bending Motion Experiments

This section aims to verify the performance of a cable-driven snake-arm robot with
4-DOF bending motion. For the cable-driven snake-arm robot, the cables driving the
distal segment and rotating segment will not change when the proximal segment bends.
Therefore, when the configurations of the rotating and distal segment remain unchanged,
the bending configurations of the proximal segment of the cable-driven snake-arm robot at
±30◦, ±60◦, and ±90◦ are shown in Figure 20a–h. Therefore, the performance of bending
decoupling motion is validated by the set of experiments.
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Figure 20. Bending configurations of the proximal segment of the robot. (a) The initial configuration.
(b) The configuration with the bending angle of +30◦. (c) The configuration with the bending angle
of +60◦. (d) The configuration with the bending angle of +90◦. (e) The initial configuration. (f) The
configuration with the bending angle of −30◦. (g) The configuration with the bending angle of −60◦.
(h) The configuration with the bending angle of −90◦. (i) The bending configuration. (j) The rotating
30◦ clockwise of driving mechanism. (k) The rotating 60◦ clockwise of driving mechanism. (l) The
rotating 90◦ clockwise of driving mechanism.

When the driving mechanism rotates clockwise, taking the rotating range of [0, 90◦] as
an example, the configuration of the robot is shown in Figure 20i–l.

For the cable-driven snake-arm robot, the cables driving the proximal segment and
rotating segment will not change when the distal segment bend. Thus, when the configura-
tions of the rotating and proximal segment remain unchanged, the bending configurations
of the distal segment of the cable-driven snake-arm robot at ±30◦, ±60◦, and ±90◦ are
shown in Figure 21a–h.

Figure 21. Bending configurations of the distal segment. (a) The initial configuration. (b) The
configuration with the bending angle of +30◦. (c) The configuration with the bending angle of
+60◦. (d) The configuration with the bending angle of +90◦. (e)The initial configuration. (f) The
configuration with the bending angle of −30◦. (g) The configuration with the bending angle of −60◦.
(h) The configuration with the bending angle of −90◦.

To observe the rotating motion of the rotating segment, the distal segment remains
the bending configuration, while the proximal segment remains the straight configuration.
Taking the rotating range of [−30◦, 30◦] as an example, configurations of the rotating
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segment clockwise and counterclockwise are measured to validate the rotating motion, as
shown in Figure 22a–e.

Figure 22. Bending configurations of the robot after rotating segment motion. (a) The initial configu-
ration. (b) The configuration with the rotating angle of −15◦. (c) The configuration with the rotating
angle of −30◦. (d) The initial configuration. (e) The configuration with the rotating angle of +15◦.
(f) The configuration with the rotating angle of +30◦.

To verify the multi-DOF bending performance of the robot, the bending configurations of
the distal and proximal segment of the cable-driven snake-arm robot are shown in Figure 23a–l.

5.3. The Load Experiments of the Proximal Segment

To better measure the end displacements, a set of load experiments were performed in
the bending plane of the distal and proximal segments. The 1 N load was applied on the
straight and bending configurations of the proximal segment to verify that the cable-driven
snake-arm robot does not have passive compliance, as shown in Figure 24. It means that
there is no obvious S configuration or any other non-uniform configuration when the robot
is subject to the external force and its inputs remain the same [6]. Therefore, the proximal
segment of the cable-driven snake-arm robot is free of passive compliance.

5.4. The Load Experiments of the Distal Segment

This section verifies the correctness of the static model of the distal segment by the
longitudinal end displacements in different spring stiffness. The rotating segment is always
at the initial position to better measure the end displacement of the distal segment under
the external forces. When the proximal segment does not bend, 1 N load is applied to the
straight configuration and bending configuration of the distal segment. To conveniently
validate the static model, the end longitudinal displacements of the distal segment in the
straight configuration and bending configuration in different spring stiffness are measured
in Figures 25 and 26. The error analysis between the simulation and experiments are shown
in the Figure 27.
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Figure 23. Multi-DOF bending motion test of a cable-driven snake-arm robot. (a) The configuration
with the bending angle −30◦ of the proximal segment and the bending angle +30◦ of the distal
segment. (b) The configuration with the bending angle −60◦ of the proximal segment and the
bending angle +30◦ of the distal segment. (c) The configuration with the bending angle −90◦ of the
proximal segment and the bending angle +30◦ of the distal segment. (d) The configuration with
the bending angle +30◦ of the proximal segment and the bending angle −30◦ of the distal segment.
(e) The configuration with the bending angle +60◦ of the proximal segment and the bending angle
−30◦ of the distal segment. (f) The configuration with the bending angle +90◦ of the proximal
segment and the bending angle −30◦ of the distal segment. (g) The configuration with the bending
angle −30◦ of the proximal segment and the bending angle −30◦ of the distal segment. (h) The
configuration with the bending angle −60◦ of the proximal segment and the bending angle −30◦ of
the distal segment. (i) The configuration with the bending angle −90◦ of the proximal segment and
the bending angle −30◦ of the distal segment. (j) The configuration with the bending angle +30◦ of
the proximal segment and the bending angle +30◦ of the distal segment. (k) The configuration with
the bending angle +60◦ of the proximal segment and the bending angle +30◦ of the distal segment.
(l) The configuration with the bending angle +90◦ of the proximal segment and the bending angle
+30◦ of the distal segment.
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Figure 24. The 1 N load experiment on the end of the proximal segment. (a) The initial configuration
of the proximal segment and the bending configuration of the distal segment. (b) 1N load experiment
on the end in the straight configuration. (c) The bending configuration of the proximal segment and
the bending configuration of the distal segment. (d) 1N load experiment on the end in the bending
configuration.

Figure 25. The 1 N load experiments on the distal segment with the straight configuration.
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Figure 26. The 1 N load experiments on the distal segment with the bending configuration.

Figure 27. The displacement errors analysis of load experiences and simulation results. (a) The
relationship between the longitude displacement and the stiffness of different springs in the straight
configuration. (b) The relationship between the longitude displacement and the stiffness of different
springs in the bending configuration. (c) The relationship between the longitude displacement and
the stiffness of different springs in the bending configuration.

5.5. Discussion

From Figure 24, the proximal segment will still have a small end longitudinal displace-
ment when subjected to the end force due to the gap between the cables, cable holes, and
gravity. The longitudinal end displacement is less than 3 mm when the proximal segment is
the straight configuration under the 1 N load, while the end displacement is less than 1 mm
when the proximal segment is the bending configuration under the 1 N load. Therefore, an
obvious S configuration does not appear at the proximal segment, which means that the
proximal segment of the robot is still controllable when subjected to tiny external forces.

For the distal segment, the main factors for the error are as follows. Firstly, it is
difficult to guarantee the absolute straight configuration of the initial angle of the distal
and proximal segment in the experiment. When the initial angles are not non-zero in the
straight configuration, the errors between experiments and simulations will become larger
under the external forces acting on the end of the distal segment.
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Secondly, there are measurement errors caused by photographic measurement. One of
the future works is to improve the precision of the cable-driven snake-arm robot prototype
by adopting high-precision calibration techniques to reduce the error values.

Thirdly, the gap between the cables and the cable holes will also make the error larger.
In the assembly process of the robot, the gap between the cables and the cable holes will
inevitably exist. If the gap between the cables and the cable holes is too large, the error
will increase when the end of the distal segment is subject to external forces. If the gap is
too small, the friction will increase to make the motion performance of the robot decrease.
Therefore, the tradeoff between the error variation caused by clearance and the motion
performance will be the research point in the next stage.

Finally, when the load is applied to the end of the distal segment, the proximal
segment will produce a deformation similar to that of the cantilever beam, which makes
the displacement error increase. Therefore, the precision of the cable-driven snake-arm
robot prototype can be improved by adopting high-precision manufacture, assembly, and
straight configuration calibration techniques, which shows the validity of the static model
to a certain extent [45].

6. Conclusions

Based on the anti-parallelogram mechanism, an approximate cylindrical rolling joint
is proposed to develop the cable-driven snake-arm robot without passive compliance.
The kinematics of the robot were simplified through the bending decoupling motion
of multiple segments. Based on the principle of minimum potential energy, the static
model of the robot was established. Furthermore, the simplified cable constraints in the
static model were proposed through Taylor expansion, which facilitates the equilibrium
conformation analysis of the robot under different external forces, different springs, and
different initial heights. The prototype of the cable-driven snake-arm robot was built, and
the multi-DOF bending performance and terminal load capacity of the robot were tested.
The longitudinal end displacement was less than 3 mm when the proximal segment was the
straight configuration under the 1 N load, while the displacement was less than 1 mm when
the proximal segment was the bending configuration under the 1 N load. For the distal
segment, the error between the theoretical displacement and experimental displacement
was less than 5.5 mm. The results verified that the proposed cable-driven snake-arm robot
can avoid passive compliance as well as the validity of the robot static model.

In future work, the specific application scenes will be established to further validate
the cable-driven snake-arm robot with multiple segments. The robot’s gravity, clearance,
vibration, friction between the cable and cable holes, cable elastic deformation, and dynam-
ics analysis will be considered to evaluate the equilibrium conformation of the cable-driven
snake-arm robot. In addition, the further miniaturization design of cable-driven snake-arm
robots will be realized for minimally invasive surgery.
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