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The extracellular matrix is composed of a variety of macromolecular substances secreted

by cells, which form a complex network that supports and connects tissue structures,

regulates the morphogenesis of tissues, and maintains the physiological activities of

cells. Tenascin-C, a secreted extracellular matrix glycoprotein, is abundantly expressed

after exposure to pathological stimuli. It plays an important regulatory role in brain

tumors, vascular diseases, and neurodegenerative diseases by mediating inflammatory

responses, inducing brain damage, and promoting cell proliferation, migration, and

angiogenesis through multiple signaling pathways. Therefore, tenascin-C may become

a potential therapeutic target for intracranial diseases. Here, we review and discuss

the latest literature regarding tenascin-C, and we comprehensively explain the role and

clinical significance of tenascin-C in intracranial diseases.

Keywords: tenascin-C, intracranial tumor, vascular diseases, neurodegenerative diseases, inflammatory, brain

injury, therapeutic target

INTRODUCTION

Tenascin-C (TN-C) was the first and most important member of the oligomeric glycoprotein
family to be discovered. It is sparse in mature tissue, but its expression increases substantially
under pathophysiological conditions, such as wound healing, angiogenesis, inflammation, and
tumor formation. TN-C is central in regulating cellular proliferation, differentiation, migration,
and apoptosis. Recently, substantial attention has been given to the role of TN-C in the occurrence
and development of the central nervous system (CNS) diseases. Many articles have found that
TN-C has a regulatory role in intracranial diseases, such as intracranial tumors, subarachnoid
hemorrhage (SAH), and Alzheimer’s disease (AD). Therefore, in light of its potential significance
in the extracellular matrix (ECM), we will review published articles and comprehensively describe
the crucial role and clinical significance of TN-C in intracranial diseases in this paper.

STRUCTURE OF TENASCIN-C

TN-C is a glycoprotein with pleiotropic functions in the ECM and has a molecular weight of 180–
300 kDa (1). Unlike the high expression found during embryogenesis, TN-C is sparsely expressed
in mature tissue. However, it reappears in active sites of tissue remodeling, such as wound healing
or cancer invasion (2).
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TN-C is a six-armed structure composed of six identical
subunits (3), known as hexabrachions. Each subunit includes a
heptad repeat, a different amount of epidermal growth factor-
like (EGFL) repeats, fibronectin type III (FNIII) domain repeats,
and a fibrinogen-like globular domain (which is also present in
fibrinogens) (Figure 1) (1, 3). Six cysteine residues, which are
contained in each EGFL repeat sequence, may form intrachain
disulfide bonds. Functionally, the EGFL regions in TN-C have
an anti-adhesive effect on fibroblasts, neurons, and glial cells,
whichmay promote neuronalmigration (1) and provide localized
signals for growth and differentiation (4).

All TN-C isoforms contain eight identical FNIII domain
repeats. Six consecutive FNIII boxes located between the fifth
and sixth FNIII domains can independently undergo alternative
splicing, which may produce 64 different combinations, and
may therefore encode TN-C proteins with different functions
(5). Multiple ligands can bind to specific peptide motifs in

FIGURE 1 | Molecular structure of tenascin-C; (A) Each subunit, including heptad repeat, epidermal growth factor-like (EGFL) repeats, fibronectin type III (FNIII)

domains, and a C-terminal globular fibrinogen-homology domain (B) hexabrachion of the tenascin molecule.

the FNIII domain, such as various cell membrane receptors,
mucopolysaccharides, and other ECM proteins (6). A fibrinogen-
like globular domain can also reportedly bind to other ECM and
cell surface proteins, such as collagenous fiber, heparin, integrin,
and some proteoglycans (7).

FUNCTION AND MECHANISM OF
TENASCIN-C

TN-C can bind to cell membrane receptors, such as integrin,
Toll-like receptor 4, and epidermal growth factor receptor. It
may also bind to ECM molecules and cytokines, including
brevican, neurocan, platelet-derived growth factor (PDGF)
family members, transforming growth factor β superfamily
members, insulin-like growth factor binding proteins, and
heparin (8–11). By binding to molecules, TN-C can have a
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FIGURE 2 | Proposed mechanism of TN-C under physiological and

pathological conditions. EGFR, epidermal growth factor receptor; TLR4,

Toll-like receptor 4; PDGF, platelet-derived growth factor; PDGFR,

platelet-derived growth factor receptor; ECM, extracellular matrix; FAK, focal

adhesion kinase; PKB, protein kinase B; PKC, protein kinase C; MAPK,

mitogen-activated protein kinase.

profound influence, exerting multiple effects, such as increasing
cell migration and proliferation (12–14), downregulating focal
adhesion integrity (15), promoting angiogenesis (16), altering
ECM composition, and regulating gene expression (17). These
processes depend on the activities of several classical intracellular
signaling cascades (Figure 2), including the focal adhesion
kinase, mitogen-activated protein kinase (MAPK), protein kinase
B, and protein kinase C pathways (18, 19). For example, TN-C
interferes with fibronectin signaling and blocks cellular adhesion
by binding to syndecan-4 (20).

ROLE OF TENASCIN-C IN INTRACRANIAL
DISEASES

Intracranial Tumors
The research of TN-C in intracranial tumors primarily
focuses on glioma fields. There is a large amount of TN-
C deposition in human gliomas, and TN-C is involved in
angiogenesis, proliferation, migration, and invasion of glioma
cells (Figure 3) (21).

Promotion of Angiogenesis
Recently, it has been reported that the expression of TN-C in the
early stages of tumor progression is sharply upregulated, which is
related to the promotion of angiogenesis (22). It was observed
that TN-C was deposited in the blood vessels of high-grade
tumors (23), and the alternatively spliced domains of the FNIII
domains, TN-fnC and TN-fnA2, were also strongly expressed in
tumor blood vessels (24–26). Not only was the expression of TN-
C enhanced in high-grade tumor blood vessels, but also the TN-C

antigenicity increased (23). Obviously, TN-C is highly related to
tumor blood vessels (23, 26).

Vascular endothelial growth factor (VEGF) can promote
endothelial cell proliferation and induce angiogenesis in vivo.
Also, TN-C reportedly regulates VEGF expression and enhances
its effects (27). In glioblastoma multiforme (GBM), perivascular
TN-C strongly correlated with microvascular density and VEGF
expression (28). After TN-C stimulation, GBM cells secrete
pro-angiogenic factors, which are beneficial to endothelial cell
survival and tube formation (22). Therefore, TN-C-induced
tumor angiogenesis could be related to the binding and
stimulatory effect of TN-C on endothelial cells (8).

Stimulation of Cell Proliferation
TN-C can stimulate cell proliferation (28). One known way
to enhance tumor cell proliferation is to use TN-C to impair
the adhesive function of fibronectin. TN-C accomplishes this
by binding to the 13th FNIII domain of fibronectin, thus
blocking the fibronectin-induced integrin signaling, leading to
cell proliferation (20).

The special domain of TN-C is also related to cell
proliferation. There are several domains, such as C, AD1, and
AD2, which are located in the alternatively spliced region of
FNIII domains, are highly overexpressed in the glioma, and
also correlate with the proliferation rate of cancer cells (8). The
N-terminal EGF type domains may be interrelated with the
underlying mechanisms of tumor proliferation (10, 29, 30). The
binding of the EGF domain to EGF receptors could activate these
signaling pathways, such as phospholipase Cγ1, Ras/MAPK,
and phosphatidylinositol 3-kinase (PI3K)/Akt pathways, thus
increasing cellular proliferation (8). Interrupting the PI3K/Akt
pathway by suppressing EGF receptor phosphorylation leads
to decreased glioma cell proliferation (31, 32). Furthermore,
the long fragment TNfnAll decreases cell proliferation, whereas
the complete TN-C protein could increase the cell division
index (26).

Promotion of Tumor Cell Invasion and Migration
It is generally accepted that TN-C leads to a hyperkinetic and
invasive phenotype (33, 34). The alternatively spliced domains of
TN-C are closely related to glioma cell migration (8). TN-fnA2
reportedly induces β1 integrin activation through syndecan-4
(35), and the processes of cellular spreading and focal adhesion
formation are β1 integrin-dependent, which is fundamental
for cell migration (36). In addition, TN-C regulates matrix
contraction through modulation of focal adhesion kinase and
RhoA activation (37), which changes the morphology and
promotes migration.

The interaction between TN-C and growth factors could be
an important mechanism to promote tumor cell invasion and
migration. Human epidermal growth factor 2, a member of the
EGF receptor family, can reportedly be phosphorylated, leading
to receptor activation and glioma cell migration stimulation
(38). We boldly propose that TN-C may be involved in
this regulation process, acting by binding the EGF domain
to EGF receptors. In addition, the interaction of TN-C and
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FIGURE 3 | Regulatory function of TN-C on angiogenesis, proliferation, migration, and invasion of glioma cells. MKK, MAP kinase kinase; MAPK, mitogen-activated

protein kinase; PI3K, phosphatidylinositol 3-kinase; mTOR, mammalian target of rapamycin; FAK, focal adhesion kinase; PDGF, platelet-derived growth factor;

PDGFR, platelet-derived growth factor receptor; LPA, lysophosphatidic acid; LPAR, lysophosphatidic acid receptor; ADAM9, A disintegrin and A metalloproteinase-9;

ECM, extracellular matrix.

PDGF also plays a role in tumor cell migration. In a TN-
C microenvironment, lysophosphatidic acid/PDGF signaling
triggers glioma cell migration, depending on PI3K, Rho kinase,
and MAPK/ERK 1/2, and revealed that a TN-C/lysophosphatidic
acid/PDGF axis exists in malignant tumors (39).

TN-C mediates invasiveness in a metalloproteinase-
dependent manner (40). Moreover, TN-C reportedly stimulates
the invasiveness of brain tumor-initiating cells through
interaction with a disintegrin and a metalloproteinase-9, and the
mechanism involves the JNK signaling pathway (41). What is
more, TN-C could modify glioma aggression through a positive
feedback loop by directly binding to hypoxia-inducible factor
1-alpha (42). The metabolic enzyme, isocitrate dehydrogenase,
is mutated in most low-grade gliomas and a small number of
GBMs (43–46). Mutant isocitrate dehydrogenase 1 reduces ECM
stiffness and mechanical signal transduction by downregulating
HIF1α-dependent TN-C expression, thereby limiting gliomal
invasion (42).

ROLE OF TENASCIN-C IN VASCULAR
DISEASES

TN-C exists in the human circulatory system and reportedly
participates in a range of cardiovascular diseases. In CNS
vascular diseases, only one study found that the expression of
TN-C in plasma was involved in large artery atherosclerotic
stroke. Furthermore, TN-C could inhibit the release of pro-
inflammatory factors from atherosclerotic arteries and could
exert anti-inflammatory effects (47). In other studies, the role
of TN-C in brain injury after SAH has become a hot topic
in research. Blood–brain barrier (BBB) destruction, neuronal

apoptosis, cerebral vasospasm, and delayed cerebral ischemia are
the major contributing factors leading to brain injury (Figure 4).

Blood–Brain Barrier Destruction and Brain Edema
The ECM components of cerebral microvessels in the
basal lamina, such as collagen IV, fibronectin, and zonula
occludens (ZO) proteins (e.g., ZO-1), were degraded by matrix
metalloprotein (MMP)-9, causing BBB disruption after SAH
(48, 49). TN-C induces brain edema and BBB destruction
after SAH, which may be related to MMP-9 secretion and
ZO-1 breakdown through the MAPK signaling pathway (50).
In MMP-9 knockout mice, the degree of brain edema after
SAH is significantly reduced, indicating that MMP-9 promoted
the occurrence of brain edema, thereby participating in the
progression of early brain injury (EBI) after SAH (51). In
addition, the neuroprotective effects of TN-C knockout mice
with SAH could be eliminated by injecting exogenous TN-C,
thereby causing neurological dysfunction, BBB destruction, and
brain edema.

Neuronal Apoptosis
Neuronal apoptosis is associated with the pathogenesis of EBI
after experimentally induced SAH (52). In the rat endovascular
perforation SAH model, caspase-dependent neuronal apoptosis
was found in the cerebral cortex 24 and 72 h after SAH and
was associated with platelet-derived growth factor receptor
(PDGFR) activation, MAPK activation, and TN-C induction
(53). Neuronal apoptosis occurred at 24 h after injection of
recombinant TN-C through the activation of ERK1/2 and p38
(53). In addition, the Toll-like receptor 4/NF-κB/IL-1β and IL-6
axis are also important pathways for TN-C to mediate caspase-
dependent neuronal apoptosis (54). Therefore, the upregulation
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FIGURE 4 | Proposed mechanism of TN-C in post-SAH brain injury. (A): TN-C induced cerebral vasospasm after SAH via the upregulation of PDGFR-β. (B):

TN-C-induced neuronal apoptosis, partly mediated by TLR4/NF-κB/IL-1β pathways. (C): TN-C induces brain edema and BBB disruption following SAH. PDGF,

platelet-derived growth factor; PDGFR, platelet-derived growth factor receptor; BBB, blood–brain barrier; MMP, matrix metalloprotein; ZO, zonula occludens; JNK,

c-Jun N-terminal kinase; ERK, extracellular regulated protein kinases; PI3k, phosphatidylinositol 3-kinase; MAPK, mitogen-activated protein kinase; TLR4, Toll-like

receptor 4.

of TN-C expression after SAH is an important mechanism for
neuronal apoptosis.

Cerebral Vasospasm
Post-SAH cerebral vasospasms are reportedly caused by
neuroinflammation and are characterized by the proliferation
of smooth muscle cells (SMCs) and myofibroblasts, an altered
phenotype of SMCs, intimal hyperplasia, cellular necrosis and
remodeling, collagen deposition, and fibrosis (55–57). TN-C
promotes SMC and myofibroblast migration and proliferation
by reducing their interaction with the ECM, changing their cell
phenotype, and contributing to protein synthesis (3, 58, 59).
These reported functions of TN-C are consistent with the
pathological changes of vasospastic arteries (60). After SAH,
there is TN-C positive feedback in the cerebral vasospasm.
SAH could upregulate TN-C expression in the cerebral cortex;
meanwhile, the upregulated expression of TN-C caused post-
SAH cerebral vasospasm by activating p38 and upregulating
PDGFR-β (61). Therefore, we presume that the increased
TN-C content in blood vessels after SAH may be related to the
mechanism of vasospasm (60).

Role of Tenascin-C in Alzheimer’s Disease
There are few studies regarding the effects of TN-C in AD.
Recently, Xie et al. reported that TN-C is a molecule involved
in enhancing chronic neuroinflammation in AD (62). Deficiency
of TN-C could ameliorate the detrimental effects of mutated
amyloid precursor protein overexpression, increase the number
of microglia in the hippocampus and the adjacent cerebrum,
shift neuroinflammation from a pro- to an anti-inflammatory
pattern, reduce the cerebral amyloid β-protein (Aβ) plaque load,
and protect neurons in AD mice, thus exerting beneficial effects
on AD pathogenesis (Figure 5).

CLINICAL SIGNIFICANCE OF TENASCIN-C
IN INTRACRANIAL DISEASES

TN-C is an important regulatory molecule involved in the
occurrence and progression of intracranial diseases through
multiple signaling pathways, indicating that it may become a
therapeutic molecular target of new drugs, and an important
biomarker and prognostic indicator.
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FIGURE 5 | Proposed mechanism of TN-C in the pathogenesis of Alzheimer’s

disease. APP, amyloid precursor protein.

Tenascin-C as a Therapeutic Target for
Drug Treatment
To date, some studies have confirmed the possibility of TN-
C as a therapeutic target for drug treatment. For example,
the A1 domain of TN-C is the specific binding site of the
F16 human recombinant antibody, which was developed to
target tumors (63). In addition, a new peptide, known as the
Ft peptide, could synergistically target glioma-associated TN-
C and neuropilin-1 in the neovasculature, circumventing the
tumor’s pathologic ECM barrier, and achieving deep penetration
into the glioma parenchyma for anti-GBM treatment (64).
Moreover, TN-C-induced glioma invasion could be attenuated
by protein kinase C inhibitors, such as bisindolylmaleimide I,
calphostin C, and rottlerin, through the downstream production
of MMP-12 (65). Combining drugs that inhibit TN-C expression
and chemotherapeutics may be a new treatment method
for brain tumors because GBM neurosphere cells with TN-
C knockdown are more sensitive to temozolomide (66). In
addition, a randomized, double-blinded, placebo-controlled trial
indicated that marimastat, a competitive and broad-spectrum
MMP inhibitor, when used in combination with cytotoxic
chemotherapy, has favorable effects in GBM patients (67). TN-C
may be the underlyingmediator in the trial due to the stimulatory
effect on tumor invasiveness in an MMP-dependent manner.
Furthermore, there is evidence that using radiolabelled anti-
TN-C monoclonal antibodies during radioimmunotherapy may
become a new therapy in treating brain tumors (68).

At present, an important treatment for SAH is to control
vasospasm by maintaining blood volume and pressure, as well
as using calcium antagonists, such as nimodipine. Efforts to
develop more treatments that will improve the prognosis of
SAH are necessary and important. With the in-depth study
regarding the mechanisms of TN-C regulation, the upstream
and downstream molecules of TN-C may be new therapeutic
targets. Imatinib, a PDGFR inhibitor, was confirmed to alleviate

neurological damage and vasospasm at 24–72 h after SAH in
the rat model by attenuating the upregulation of PDGFR-
β and TN-C (69). However, intraventricular administration
of exogenous TN-C reactivated MAPKs and reversed the
result of the anti-vasospastic, anti-apoptotic, and protein
expression changes induced by imatinib (53, 69). Further
TN-C molecular mechanism research and clinical trials can
help us develop new therapeutic drugs for the management
and targeted therapy of SAH. Cilostazol, an inhibitor of
type 3 phosphodiesterase, inhibits intracellular cyclic adenosine
monophosphate breakdown and has significant pharmacological
effects, including vasodilation and antiplatelet function (70–
72). A multicenter prospective endpoint trial reported that the
application of cilostazol in the acute stage of SAH might be
safe and effective. Cilostazol can prevent vasospasm and improve
clinical outcomes for aneurysmal SAH patients receiving surgical
treatment (73). Furthermore, cilostazol reportedly attenuates
post-SAH cerebral vasospasm in rats (74), and its molecular
mechanism may be related to the inhibition of TN-C expression
through the protein kinase A system and MAPK pathway (75).

Although these drugs have significantly changed the
development of intracranial tumors and vascular diseases in
vitro and in vivo, they still require more rigorous clinical trials to
support a formal clinical application.

Tenascin-C as a New Biomarker and
Prognostic Indicator
Recently, an increasing number of scholars believe that cancer
stem cells (CSCs) are the root cause of malignant tumor
recurrence and metastasis. Targeted therapy of CSCs brings
new hope for the treatment of malignant tumors. Finding
and identifying specific molecular surface markers of these
CSCs are the keys to targeted therapy of CSCs. TN-C may
be a novel marker for CSCs because TN-C+ cell populations
have a strong ability to form spheres (76). Patients with
malignant tumors usually have a poor prognosis, so early
detection and early treatment are key to improving prognosis.
Prognostic indicators can provide important clues for early
tumor diagnosis, risk stratification, and patient management.
Interestingly, the expression of TN-C is positively correlated with
tumor progression, and the proliferation of tumor-supplying
blood vessels is increased in the perivascular region (76, 77).
Thus, TN-C may be used as a predictor of disease progression.
In ependymomas, TN-C expression has been associated with
anaplastic tumors (78). Using a candidate gene strategy, Puget
et al. confirmed the feasibility of TN-C as a candidate gene for
ependymoma progression in posterior fossa tumors (79). TN-
C represents a marker that can help in the risk stratification of
ependymomas (80). Tumors with a combined gain of 1q and
TN-C expression reportedly have a poor prognosis. In contrast,
tumors without a gain of 1q and TN-C expression have a
favorable prognosis (79). In addition, tumors at different sites
have a different expression of TN-C. The expression of TN-C is
significantly higher in supratentorial and posterior fossa tumors
than tumors found in other locations. The expression of TN-C
is correlated with tumor grade, tumor location, and prognosis.
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Therefore, TN-C may help predict tumor progression and assist
in the decision of treatment.

Although there are many methods for cerebrovascular
examination to predict the occurrence of cerebral vasospasm,
such as transcranial Doppler and angiography, they all have
certain limitations, such as low accuracy or high cost. Therefore,
it is necessary to develop more methods that accurately reflect
the degree of vasospasm after SAH. It has been reported that
TN-C levels in the cerebrospinal fluid (CSF) peaked immediately
after SAH.Meanwhile, patients with symptomatic vasospasm had
significantly higher TN-C levels than asymptomatic patients (81).
Therefore, it is possible to detect the content of TN-C in CSF to
predict whether vasospasm occurs after SAH. In addition, the
serum TN-C concentration was positively correlated with the
severity of trauma and poor clinical prognosis in traumatic brain
injury patients but negatively correlated with the Glasgow Coma
Scale (GCS) scores (82). Thus, TN-C is likely to become a new
indicator to reflect the degree of brain damage after SAH.

Currently, AD is mainly diagnosed through clinical
manifestations and pathological examinations but lacks
specific indicators. Mi et al. found that TN-C deposits specifically
surrounded the cored neuritic Aβ plaques, suggesting that
TN-C may become a biomarker for AD and could be used as
a diagnostic basis for AD neuropathological assessment (83).
Furthermore, the TN-C levels of the CSF or blood may be used
as diagnostic screening for AD to enable early intervention and
better access to treatment (84).

PERSPECTIVE AND CONCLUSION

TN-C expression is nearly absent in normal adult tissues, but
when pathological changes occur, it increases dramatically.
TN-C plays an important role in CNS diseases, working through
multiple signaling pathways. In the tumor microenvironment,
highly expressed TN-C can promote tumor cell proliferation,
migration, invasion, and angiogenesis. In SAH, TN-C
participates in the disruption of the BBB, induces neuronal
apoptosis, promotes the occurrence of vasospasm, and increases

cerebral edema. In AD, TN-C induces chronic inflammation
and increases the load of Aβ plaques in the brain. Therefore,
it may become an important therapeutic molecular target for
the development of new drugs and may be used as a marker for
disease classification, degree of injury, clinical prognosis, and to
provide guidance for diagnosis and treatment strategies.

Technological advances in strategies targeting TN-Cwill allow
us to conduct more translational studies on the prevention
and treatment of TN-C-associated intracranial diseases. The
drugs targeting TN-C proved to be efficacious in preclinical
models, and clinical studies should be translationally applied
to clinical practice. Because TN-C can bind to a variety of
molecules, participate in multiple signaling pathways, and play
a regulatory role in a variety of diseases, it is unknown whether
targeted therapy of TN-C will cause additional pathological
changes or unpredictable damage. Therefore, it is necessary to
conduct thorough research on TN-C, especially to determine
key points of the signaling pathway, which will provide a more
theoretical basis for the development of novel methods in treating
intracranial diseases.
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