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Abstract

Alternative splicing (AS) of precursor mRNA (pre-mRNA) is a crucial step in the expression of most eukaryotic genes. Splicing
factors (SFs) play an important role in AS regulation by binding to the cis-regulatory elements on the pre-mRNA. Although
many splicing factors (SFs) and their binding sites have been identified, their combinatorial regulatory effects remain to be
elucidated. In this paper, we derive a biophysical model for AS regulation that integrates combinatorial signals of cis-acting
splicing regulatory elements (SREs) and their interactions. We also develop a systematic framework for model inference.
Applying the biophysical model to a human RNA-Seq data set, we demonstrate that our model can explain 49.1%–66.5%
variance of the data, which is comparable to the best result achieved by biophysical models for transcription. In total, we
identified 119 SRE pairs between different regions of cassette exons that may regulate exon or intron definition in splicing,
and 77 SRE pairs from the same region that may arise from a long motif or two different SREs bound by different SFs.
Particularly, putative binding sites of polypyrimidine tract-binding protein (PTB), heterogeneous nuclear ribonucleoprotein
(hnRNP) F/H and E/K are identified as interacting SRE pairs, and have been shown to be consistent with the interaction
models proposed in previous experimental results. These results show that our biophysical model and inference method
provide a means of quantitative modeling of splicing regulation and is a useful tool for identifying SREs and their
interactions. The software package for model inference is available under an open source license.
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Introduction

A key step in eukaryotic gene expression is to remove introns

from precursor messenger RNA (pre-mRNA) so that exons can be

joined together to form the mature mRNA. By including different

exons in the mRNA, alternative splicing (AS) can generate

different isoforms from a single gene to increase proteomic

diversity. Recent studies have found that ,95% of human genes

undergo AS [1,2]. The importance of AS is highlighted recently by

the findings that AS related mutations can cause many human

diseases including cancer [3,4].

AS can be regulated via several mechanisms, often in a tissue-

specific manner [5,6]. One mechanism is that recognition of splice

sites by the spliceosome is influenced by a class of RNA binding

proteins named splicing factors (SFs) that can bind to the cis-acting

splicing regulatory elements (SREs) on the pre-mRNA. These

SREs are categorized as exonic splicing enhancers (ESEs) and

silencers (ESSs), and intronic splicing enhancers (ISEs) and

silencers (ISSs) based on their locations and effects on splicing

[7]. Recently, several experimental [8–10].and computational

methods have been employed to identify SREs. The computa-

tional methods can be largely categorized into three approaches.

The first enrichment-based approach is to identify SREs as short

nucleotide sequences (typically hexamers or octamers) that are

statistically enriched in a carefully selected set of introns and exons

against a background or negative dataset [11–13]. The second

conservation-based approach utilizes comparative genomic meth-

ods to identify evolutionarily conserved motifs in introns and

exons, which can also be combined with the enrichment-based

approach to identify SREs [14–17]. The third regression-based

approach exploits both sequence information and expression levels

of different isoforms in a unified framework [18,19]. Comparing

with the other two approaches, the regression-based approach

offers flexibility of identifying combinatorial regulatory effects of

multiple SREs. However, the current regression methods for AS

were not developed systematically from a theoretical base, which

may limit their performance.

Multiple SREs could act cooperatively to promote or repress

splicing by regulating exon or intron definition [20,21]. However,

given the huge number of possible pairs of SREs in different

regions, experimental approaches for identifying SRE pairs is

expensive and time-consuming if feasible. For this reason,

computational methods become an important means of selecting

candidate SRE pairs in a systematic and high-throughput manner.

Several recent computational works have studied cooperative SRE

pairs in AS regulation. Ke and Chasin [22].searched for frequently

co-occurred SRE pairs from two ends of exons that mediate exon

definition. Friedman et al. [23] identified cooperative SRE pairs

from two ends of human and mouse introns possibly mediating

intron definition. Suyama et al. [24] analyzed conserved pentamers

that often co-occur in the same region of upstream or downstream
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introns, which may arise from cooperative binding of different SFs

or actually from a single long motif. These different types of SRE

pairs from different regions reveal that cooperative interaction

between SREs may be a common mechanism in AS regulation.

However, these SRE pair detection methods did not incorporate

expression data into the analysis, and like the enrichment-based

approach to the detection of single SRE, they could not exploit

sequence and expression data in a systematic way, which may limit

their detection power.

In this paper, we first derive a novel biophysical regression

model for the regulation of AS, which can capture both main

effects of individual SREs and combinatorial effects of multiple

SREs. We then develop a systematic framework to infer the

regression model, which in turn identifies both single SREs and

different types of cooperative SRE pairs. The key feature of our

model inference framework is that we employ the shrinkage

technique [25] to identify a small number of SREs and SRE pairs

from a huge number of all possible SREs and their pairs. Our

numerical results show that our regression model can explain a

significant portion of the variance in the data comparable to the

best result for transcription achieved by a nonlinear biophysical

model [26]. Using an RNA-Seq data set [1], we identify 619 SREs

and 196 SRE pairs, some of which are verified with previous

experimental results. For example, binding sites of PTB in

upstream and downstream of introns of alternatively spliced exons

(ASEs), binding sites of hnRNP F/H in two ends of downstream

intron, and binding sites of hnRNP E/K in the same region are

identified as interacting SRE pairs, which are consistent with

existing experimental evidences.

Results

Biophysical Model for AS Regulation
The basal machinery of splicing is known as the spliceosome, a

large multicomponent ribonucleoprotein complex having U1, U2,

U4, U5 and U6 snRNPs as its main building blocks [27]. Splicing

begins with a multi-step process of spliceosome assembly around

the splice sites and the branch point. SFs bound to nearby SREs

can influence spliceosome assembly by facilitating or inhibiting the

subunits of spliceosome to recognize the splice sites [7,28,29].

They can also regulate splicing through other mechanisms such as

regulation of the transition from exon definition to intron

definition [5,30]. Moreover, multiple SFs and the spliceosome

can interact cooperatively or antagonistically to affect the splicing

process.

We model the spliceosome assembling process with a chemical

reaction:

SzRNA'RNA:S, ð1Þ

where S denotes the spliceosome. This simplification is similar to

the one used in the derivation of a biophysical model [26,31,32]

for transcription where assembly of the RNA polymerase (RNAP)

complex is simplified to one reaction. If an SF binding to an SRE

interacts with the spliceosome, it increases or decreases the

equilibrium constant of the above reaction, which in turn

enhances or inhibits splicing. Let us consider a gene with one

ASE and let I1 (I2) be the isoform that includes (excludes) the ASE.

Let EI1
and EI2

be the expression levels of I1 and I2, respectively.

We assume that the pre-mRNA of the gene with assembled

spliceosome produces I1, whereas the pre-mRNA without

assembled spliceosome produces I2. Therefore, the probability of

producing I1 is equal to the probability that the pre-mRNA is

bound by the spliceosome. The first probability can also be

expressed as EI1
=(EI1

zEI2
), while the second probability can be

derived from the biophysical chemical reactions modeling

spliceosome assembly and binding of SREs to the pre-mRNA as

detailed in Materials and Methods. Based on this observation, we

derive the following regression model in Materials and Methods to

capture the regulatory effects of SREs on the splicing of an ASE:

y~b0z
X
i[M

xibiz
X

(i,j)[I
xixjbijzE, ð2Þ

where y~ log (f t1 ){
1

N{1

XN

t~1,t=t1

log (f t), with f t1~E
t1
I1
=E

t1
I2

for tissue t1 and t being the index of N tissues;M and I are the set

of potential SREs and the set of potential SRE pairs, respectively;

xi is a binary variable to indicate presence (xi~1) or absence

(xi~0) of the ith SRE; bi reflects the contribution of the ith SRE

to the splicing of the ASE, and bij indicates the cooperative

contribution of the ith SRE and the jth SRE; e is the measurement

error, which is modeled as a Gaussian random variable with zero

mean. Note that the ith and jth SREs in the third term at right

hand side of (2) can be from the same region or two different

regions as described in Figure 1A. The first term log (f t1 ) in y is

the logarithm of the ratio between the expression levels of two

isoforms including or excluding the ASEs; it is determined by the

basal splicing level and the regulatory effects of SFs binding to the

SREs. The second term in y is added to remove the basal splicing

level determined by the spliceosome alone as described in

Materials and Methods. Thus, given the splicing profile y of a

set of ASEs and a set of candidate SREs, we can identify SREs or

SRE pairs that have regulatory effect by finding bi or bij that are

not equal to zero with certain statistical significance. The method

for model inference to determine bi or bij is presented in next

section. The condition to determine if an SRE is a enhancer or

silencer based on the sign of bi and the expression level of the SF

binding to the SRE is given in Proposition 1 in Materials and

Methods. Whether an interacting pair of two SREs is an enhancer

or silencer, however, is difficult to be inferred from the sign of bij .

Note that model (2) is linear with respect to unknown

parameters bi and bij . The linearity facilitates model inference

even when the number of parameters is very large. As shown in

Materials and Methods, linear model (2) is directly derived from

biophysical principles. In contrast, the biophysical model for gene

transcription [26,31–33] is a nonlinear model with respect to

unknown parameters to be inferred. While it is possible to infer

parameters of the nonlinear model when the number of

parameters is small [26], model inference becomes difficult when

the number of parameters is relatively large. The linear regression

models for transcription [34–37] or for splicing [18,19] are an

approximation of the nonlinear biophysical models, as shown in

[36]. Although these linear models enable efficient model

inference, their performance is limited by the approximation

inherent to the models. A nonlinear model based on regression

spline [38] was also developed to approximate the nonlinear

biophysical model. Comparing with linear regression, regression

spline reduces approximation error, but increases the complexity

of model inference.

Framework for Model Inference
We applied the biophysical model to identify SREs and SRE

pairs involved in alternative splicing. As described in Materials and

Methods, We first determined a set of ASEs from the UCSC

KnownGene table [39], then extracted all the hexamers in five

Biophysical Model for Splicing Regulation
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regions around ASEs as candidate SREs (Figure 1A), and obtained

y for this set of ASEs from the RNA-Seq data. With this data set,

model inference was carried out using four components described

in Figure 1B.

Since we considered all 6-mers and their interactions, the

regression model (2) contained 5|46~20480 variables for main

effects of possible SREs and w108 (20480:20479=2) variables for

interactions of possible SRE pairs. The huge number of variables

not only requires huge computation for model inference, but also

may yield a large number of false SREs. To overcome these

problems, we developed the four-component framework in

Figure 1B to select reliable SREs without overfitting the model.

In the first variable screening component, we used the sure

independence screening method [40] described in Materials and

Methods to remove 6-mers that have very small correlation with

the response variable y.

In the second component, we adopted the Lasso [41] and the

adaptive Lasso [42] to perform penalized multiple regression to

select variables. Descriptions of the Lasso, the adaptive Lasso and

the cross-validation procedure for determining the parameter l of

the Lasso and the adaptive Lasso are given in Materials and

Methods. The Lasso is known to shrink many variables, with no or

small correlation with the response variable, to zero [41], and thus

yields a sparse model that only contains a small number of

variables. Using both the Lasso and the adaptive Lasso was to

ensure more reliable variable selection as suggested in [43]. This

component produced a sequence of models for different values of

l. The minimum variance of the residual error at l~lmin

determined by cross-validation was denoted as s2
min.

Although the Lasso and the adaptive Lasso only retained a small

number of variables in the model, we wanted to ensure that the

overfitting problem did not occur. To this end, we added the third

component named refitted cross-validation (RCV) [44] to the

inference procedure. RCV reliably estimates the variance s2
RCV of

the residual error in a linear model of ultrahigh dimension. We

then compared s2
min, with s2

RCV . If s2
minws2

RCV , we selected

variables that gave s2
min; otherwise, we identified the value of l that

yielded a residual variance equal to s2
RCV and selected variables

with this l.

The adaptive Lasso together with RCV selected a set of SREs

and SRE pairs, but it did not give p-value for each variable in the

model. In the last component, we used ordinary least squares

(OLS) method to refit the model with the variables selected by the

adaptive Lasso. We then used the p-values provided by OLS to

select variables at a false discovery rate (FDR) ƒ0:01 [45]. This

final set of variables were identified as SREs and SRE pairs. A

software package implementing the inference framework is freely

available under an open source license.

Performance of the Model and the Regression
Framework

As described in Materials and Methods, we selected a set of

ASEs for each tissue from the KnownGene table and calculated

the inclusion ratio EI1
=(EI1

zEI2
) from the RNA-Seq data [1] for

each ASE, which was then used to calculate the response y in

model (2). We applied our biophysical model and inference

framework to this data set to identify SREs and SRE pairs. The

number of ASEs used in model inference, the number of SREs

and SRE pairs in the final model and the percentage variance

explained by the final model are given in Table 1. In each tissue,

our biophysical model explained 49.1%–66.5% of the variance in

the data (see R2 in Table 1), which was comparable to that

achieved by the best model for transcription reported in [26].

More specifically, the linear model for gene transcription in [34]

explained 9.6% of the variance on average, while the regression

spline model for gene expression that incorporated interaction

terms explained 13.9% to 32.9% of the variance [38]. Most recent

work by Gertz et al. [26] fitted a nonlinear biophysical model to

the expression data of synthetic genes. Their models explained 44–

59% of the variance in gene expression. Thus, considering the

non-synthetic genes we used, our model has captured a large

fraction of the variance in the splicing response.

Overall, 619 different SREs and 196 SRE pairs were detected

from different tissues. Specifically, Table S1 contains all the SREs

and SRE pairs identified from different tissues, regression

coefficient and p-value for each SRE or SRE pair. It also includes

some SFs that have experimental evidence (SELEX [46–65],

RNAcompete [66] and other experiments [67–75]) to bind to the

identified SREs. These SREs and SRE pairs consist of 854

different hexamers. Many SREs are very similar to each other,

which may arise from an SRE longer than 6 nucleotides (nts) or

from a degenerate motif. Note that although they were detected in

different tissues, the SRE and SRE pairs per se do not give rise to

tissue-specific isoforms, because they are always there in pre-

mRNA sequences in different tissues. It is the tissue-specific

Figure 1. Five regions around ASEs used to extract SREs and the model inference framework. (A) All hexamers in the five regions around
ASEs are considered as candidate SREs. UU (upstream/upstream) stands for the 59 end of the upstream intron. UD (upstream/downstream) denotes
the 39 end of the upstream intron. DU and DD are defined in a similar way. EXON stands for the ASE region. (B) The inference framework for detecting
active SREs and SRE pairs. RCV: refitted cross-validation; OLS: ordinary least squares regression.
doi:10.1371/journal.pone.0054885.g001
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expression of SFs that regulates tissue-specific splicing through

SREs.

We compared our 854 SREs with the results of Castle et al.

[12], who performed a systematic screening of all 4 to 7-mers for

cis-regulatory motifs enriched near ASEs using microarray. We

only kept 5 to 7-mers with a p-value smaller than 10{3

(Bonferroni-corrected p-values as described in [12]) for the

comparison. In total, 137 non-redundant 5 to 7-mers were left

(91 5-mers, 28 6-mers and 18 7-mers). We considered it as a match

if a 7-mer contains one of our SREs, a 5-mer is part of our SREs,

or a 6-mer exactly matches one of our SREs. This yielded 103 k-

mers, k~5,6,7, that could find at least one match in our SREs. In

order to evaluate the significance of the overlap, we generated a

list of 6-mers from the 137 k-mers of Castle et al. with the following

procedure. For each 5-mer, 8 different 6-mers containing the 5-

mer were obtained by padding a nucleotide to the beginning or the

end of the 5-mer. For each 7-mer, 2 different 6-mers were

obtained by extracting the first or the last 6 nts. In total, 639

different 6-mers were extracted from Castle’s k-mers, k~5,6,7. A

significant number of 6-mer (180) were found in both our

854 SREs and the 639 6-mers obtained from 137 k-mers of Castle

et al. (p-value = 9.37e27 from Fisher’s exact test).

We also compared our 854 SREs with the binding sites of

25 SFs experimentally identified with SELEX [46–65] or

RNAcompete [66]. Each of [46–65] attempted to determine the

binding sites of 1 to 3 SFs using SELEX, and [46–65] reported

SELEX results for a total of 25 SFs. For each of 25 SFs, we

obtained a set of RNA sequences selected with SELEX from one

of [46–65]. If there are more than one SELEX results for an SF,

we used the most recent SELEX result. We then extracted the

consensus sequences embedded in this set of RNA sequences as

the binding sites of the SF. If a consensus binding site is 4 or 5 nt

long, one more nucleotide was also extracted from each side of the

original selected sequence to obtain hexamers. If a consensus

binding site is longer than 6 nts, all the hexamers included in the

consensus were extracted. For RNAcompete, the 7-mers listed in

Figure 2 of [66] were used as consensus binding sites, and two

hexamers were taken from each 7-mer. In total, 709 different

hexamers were obtained from the consensus binding sites. A

significant number (175) of hexamers were found in both our

854 SREs and the 709 hexamers obtained from SELEX or

RNAcompete (p-value = 0.004 from Fisher’s exact test). In Table

S1, we gave the SF that was identified in [46–66] to bind to one of

the 175 hexamers. Although the overlap between our predicted

SREs and the binding sites of SFs determined with SELEX and

RNAcompete is statistically significant, a relative large number

(679) of our predicted SREs are not included in these experimental

results, which implies that our result contains some novel SREs.

Experimental Evidence of SREs
Several well-defined SREs involved in tissue-specific AS have

been detected in our work. We will take SREs bound by Fox-1

protein, polypyrimidine tract binding protein (PTB), quaking

protein (QKI), muscleblind-like protein (MBNL) as examples

(listed in Table 2) to illustrate how to understand the results and

compare them with the available experimental evidences.

Fox protein recognizes [U]GCAUG as its SRE and it has been

shown to be one of the most conserved regulators of tissue-specific

AS in metazoans. Fox-1 is exclusively expressed in brain, heart,

and skeletal muscle as reported in [67], which is consistent with the

RNA-Seq data we used as shown in Figure 2. Its paralog Fox-2 has

relatively low expression level in all tissues. In our results, we

detected two SREs containing UGCAUG as summarized in

Table 2. These 2 SREs were detected in heart or muscle, which is

consistent with the tissues where Fox-1 is expressed. Note that the

second SRE UGCAUG(UU)-GCAUGU(UU) detected in up-

stream region in heart is an interaction term in the regression

model. Since our model includes interaction between SREs in the

same region or from different regions, it is possible that an SRE

longer than 6 nts is detected as an interaction term. This

interaction term actually arises from a 7-mer SRE UGCAU-

GU(UU) [68] (Among the 28 UGCAUG(UU)-GCAUGU(UU)

pairs used for inference in heart, 27 are derived from

UGCAUGU(UU)). Using the inference method for regulatory

effects described in Materials and Methods, we found that the

SRE that we identified from muscle are enhancers in the

downstream region (DU) (Table 2), which is consistent with the

computational analysis [1] and the experimental evidence [67,76].

Another well-defined SF is PTB which binds to UC-rich SREs

and has high binding affinity to UCUU and/or UCUCU [69,77].

Two SREs we identified are possible binding sites of PTB

(Table 2). They are found in the upstream region in adipose and

lymph node. Both SREs are detected from the tissues where PTB

are over-expressed as shown in Figure 2. Using Proposition 1 in

Materials and Methods, These two SREs were determined to be a

silencer in the upstream of ASEs. This result coincides with

position-dependent alternative splicing activity of the PTB as

identified using microarrays [78].

One of QKI’s binding site ACUAAY [59,70] was detected in

the upstream intron of the ASE in muscle (Table 2). The SRE

ACUAAC was previously reported as an over-represented motif in

the downstream region of ASEs in muscle [18] and was also

predicted as an upstream intronic SRE specific to the central

nervous system [79]. Our result indicates that this upstream SRE

detected in muscle is a silencer, which is consistent with the

experimental result [80].

The MBNL family protein can bind to the motif YGCU(U/G)Y

[71]. Two sequences of this motif can be found in our SREs

(Table 2). However, the function of this motif is complicated. First,

both MBNL and CELF family proteins can bind to similar motifs

[81,82], although different protein isoforms may have different

binding specificities [83]. Second, MBNL can either promote or

repress splicing of specific ASEs on different pre-mRNAs by

antagonizing the activity of CELF proteins [71]. Thus, although

our result indicates that this SRE is related to AS regulation in

muscle and lymph node, it is difficult to interpret its regulatory

effect based on current result.

Table 1. Summary of the final selected models in each tissue.

Tissue No. of ASEs No. of SREs No. of SRE pairs R2 (%)

Adipose 1345 60 30 52.9

Brain 1411 65 19 49.1

Breast 1399 82 24 58.3

Colon 1236 64 13 49.4

Heart 1302 84 21 60.5

Liver 995 76 19 66.5

Lymph node 1405 77 24 55.7

Skeletal muscle 1174 85 18 63.2

Testes 1601 79 28 51.0

The second column is the number of ASEs used in model inference. The third
and fourth columns list the number of SREs and SRE pairs in the final model.
The last column gives the percentage of the variance explained (R2) by the final
model.
doi:10.1371/journal.pone.0054885.t001
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Experimental Evidence of SRE Pairs
We also identified 196 different cooperative SRE pairs (Table

S1). Thirty-nine percent (77 SRE pairs) of them are interactions of

SREs in the same region. As discussed in the previous section, a

part of this kind of interaction may come from a single SRE longer

than 6 nts. These SRE pairs are actually not related to

interactions, although they also have biological meanings, since

a longer conserved SRE may have stronger regulatory effect than

a shorter SRE. We have marked all 23 such SRE pairs in Table

S1. Among the remaining interactions between different regions

(119 SRE pairs), the most frequent interactions are SREs in region

pairs UD-DU, UU-UD and UD-DD. Region pair UD-DU may

reflect the effect in the exon definition stage of spliceosome

assembly, and region pair UU-UD may reflect the effect in the

intron definition stage. A summary of interaction between SRE

pairs in different regions is given in Figure 3. Several detected SRE

pairs are listed in Table 3.

Several previously identified SREs were detected in our

interaction results. They either cooperate with their own or other

different SREs in a different region or in the same region. Two

SRE pairs bound by PTB [69,77] were identified in our result. All

the four SREs located at the upstream region of the 39 splice site

which can also be a part of an extended polypyrimidine tract,

although the 39 splice site consensus of 15 nts containing the

classical polypyrimidine tract [7,11] has been removed in our

analysis. One SRE pair UUCUCU-UCCUCU was identified in

the upstream intron in brain. The other interaction detected

involves PTB’s binding site UCUUCC in the UD region and

CCUUCU in the DD region (Table 3). The downstream

CCUUCU resembles the PTB binding sites and might also be

bound by PTB. In a cooperative model for the regulatory

mechanism of PTB, it was proposed that a single PTB or a PTB

dimer could loop out the branch point upstream of 39 splice site or

the ASE by binding to several pyrimidine tracts upstream and

downstream to repress splicing [84]. A single PTB-binding

element had weak silencing activity, while multiple PTB-binding

sites at both upstream and downstream of the ASE or of a branch

point could have strong inhibitory effect [85]. This model and the

experimental results in [84,85] are consistent with the interaction

pairs we identified.

hnRNP F/H can bind to GGGA and G-rich SREs [72,73]. The

proposed mechanism underlying the splicing regulation of hnRNP

Figure 2. Expression level of several splicing factors in 9 tissues. The expression levels are calculated from the RNA-Seq data [1] as reads per
kilobases per million mapped reads (RPKM).
doi:10.1371/journal.pone.0054885.g002

Table 2. Selected examples of the detected SREs.

Putative
SF SRE(region) P-value # Occ. Tissue Effect

Fox-1 UGCAUG(DU) 7.02E213 98 muscle enhancer

Fox-1 UGCAUG(UU)/
GCAUGU(UU)

1.34E23 28 heart unknown

PTB CUCUCU(UD) 9.76E26 140 lymph
node

silencer

PTB UUCUCU(UD) 9.33E24 201 adipose silencer

QKI ACUAAC(UD) 3.36E28 39 muscle silencer

MBNL UGCUGC(UU) 1.22E26 110 lymph
node

unknown

MBNL UGCUGC(EXON) 2.61E23 65 muscle unknown

# Occ. is abbreviation for number of occurrences.
doi:10.1371/journal.pone.0054885.t002
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F/H involves an interaction between proteins bound at both ends

of an intron that loops out the intron and brings distantly

separated exons into closer proximity [86]. Consistent with this

model, one pair of SREs GGGGCA(DU)/UGGGGA(DD)

(Table 3) putatively bound by the hnRNP F/H was detected in

two ends of the downstream intron.

Both hnRNP E and hnRNP K proteins contain three copies of

the KH domain arranged in a very similar manner, and they are

the major poly-C binding proteins in mammalian cells [55,74]. We

extracted all the SRE pairs in our result that contain at least 4 Cs.

Two such SRE pairs (Table 3) were found to resemble the binding

motif of the hnRNP E/K [55]. One SRE pair is due to a longer

motif ACCCCUC at downstream intron. The other SRE pair was

detected as interaction in the same region. This result may reflect

the fact that the three KH domains bind RNA synergistically while

a single KH domain appears to have very low level of RNA

binding activity [87].

An interesting outcome of this work was the identification of

many AU-rich elements in SREs and SRE pairs. The AU-rich

elements have been identified previously by comparative analysis

as a large class of conserved mammalian ISEs [17]. In plant

splicing system, the AU-rich sequences in upstream and down-

stream introns appear to be involved in early intron recognition

and stabilization of spliceosomal complex [88]; and multiple short

AU-rich SREs could cooperatively modulate splice site usage [89].

However, the interaction between AU-rich SREs has not been

reported in mammals. In our result, The SRE pairs involved in

two AU-rich SREs from different regions are listed in Table 3.

Among these SRE pairs, 7 pairs were detected in upstream and

downstream introns, and 4 were detected at two ends of the same

intron. These AU-rich SREs resemble the binding sites of TIA-1/

TIAR, Hu protein and Sam68 [49,90]. Hu proteins can bind to

both upstream and downstream SREs. It has been speculated that

binding of Hu protein to multiple sites both upstream and

downstream of an ASE could loop out the ASE and as a result

block exon definition to repress splicing [90]. Moreover, Hu

proteins can promote exon inclusion by binding to AU-rich

sequences that are conserved at both upstream and downstream of

ASE [91]. The intricate experimental results stress the importance

of further mutation analysis to study the cooperative interactions

of AU-rich binding proteins.

We also identified many interactions between AU-rich elements

and binding sites of other known SFs. For example, We found one

interactions between upstream AU-rich SRE and a downstream

SRE resembling QKI’s binding site. Another example is the

interactions between upstream AU-rich SRE and a CU-rich SRE

resembling polypyrimidine tract (Table 3). These results indicate

that AU-rich SREs and cooperative pairs may play an important

regulatory role in mammalian AS and worth further experimental

investigations. In summary, various cooperative mechanisms could

Figure 3. Percentage of different types of SRE pairs. Two hundred and forty-one SRE pairs are detected in different or same regions. This figure
shows breakdown of the SRE pairs in different regions.
doi:10.1371/journal.pone.0054885.g003
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be detected in our result as an interaction, which implies the

important role of interaction in splicing regulation.

Discussion

Our regression model for splicing regulation is derived from the

same biophysical principle regarding protein and nucleic acids

interaction as the one used to derive the model for transcription

[26,31–33]. However, our model uses the ratio of the expression

levels of two isoforms or equivalently the ratio of binding and

unbinding probabilities of the spliceosome to the mRNA as the

response variable, whereas the model for transcription uses the

gene expression level or equivalently the binding probability of the

RNAP to the promoter as the response variable. For this reason,

our model for splicing is linear with respect to unknown

parameters to be inferred, whereas the model for transcription is

nonlinear. While the nonlinear model for transcription with

relatively small number of unknown parameters can be directly

inferred [26], a linear approximation [34–37] and an nonlinear

approximation using splines [18,38] have been proposed to

facilitate model inference. It was shown that the spline approx-

imation [37,38] can offer significantly better performance than the

linear approximation in terms of the variance explained by the

model. The linear regression model [19] and the spline regression

model [18] for splicing regulation use the expression level of an

isoform as the response variable. Therefore these two models are

also approximate models. In contrast, our regression model is

directly derived from the biophysical principle and the linearity of

our model with respect to unknown parameters enables efficient

model inference even when the number of unknown parameters is

very large. This explains why the variance explained by our model

is comparable to the best result achieved by the nonlinear

biophysical model for transcription [26]. Our model may be

improved to explain more variance, for example, by including

interactions involved more than two SREs, by accounting for the

number of occurrences of each SRE, and by including SREs of

length not necessarily equal to six nucleotides, although this can

increase the complexity of model inference. On the other hand, if

we are interested in the identification of SREs interacting with the

binding sites of a specific SF, we can design well-controlled

experiments which measure the splicing profile of all the genes

before and after knockdown of a specific SF, and then apply our

model to identify SRE pairs related to the SF.

To the best of our knowledge, this is the first time that the

regression-based approach is employed to systematically identify

cooperative SRE pairs. Moreover, our regression framework can

identify SRE pairs without being affected by GC content. Current

methods for identifying cooperative SRE pairs in splicing

regulation use hypergeometric test to find the co-occurrence of

SRE pairs over-presented in different regions [22–24]. Since they

only use sequence information, some sequence features that are

not related to splicing regulation may increase the FDR. For

example, without correction of GC content, the majority of the

motif pairs detected in [22,23] with high p-values share similar GC

contents, being either GC-rich or AU-rich. For this reason, they

corrected the GC content by grouping the ASEs with similar GC

content [22,23]. However, If AU-rich or GC-rich SRE pairs

indeed have regulatory effects, correction for GC content might

introduce bias and under- or over-estimate the statistical

significance of the SRE pairs. In fact, it has been shown that the

AU-rich motif is conserved in mammalian introns [17] and could

be bound by TIA-1/TIAR, Hu protein or Sam68 [49,90]. In our

work, since our model uses the isoform expression information in

addition to the sequence information, it can automatically handle

the GC content problem. If there is no correlation between the

splicing response and the GC- or AU-rich SRE pairs, these pairs

will not be identified since they are just sequence features

irrelevant to splicing regulation. On the other hand, if they do

have regulatory effect, our method will identify them as SRE pairs

based on their correlation with the response.

Since we want to detect all possible SREs and SRE pairs, our

linear regression model contains a very large number of candidate

SREs and their pairs as variables. The challenging problem in

model inference is to select correct variables without overfitting the

data. We employed four techniques to tackle this problem. First,

variable screening is used to exclude SREs and SRE pairs that are

present in less than 1% of the samples or have no or very small

correlation with the response variable. Second, regularized

inference methods, the Lasso and the adaptive Lasso, were

employed in conjunction with cross-validation to select a small

number of SREs and SRE pairs. Third, RCV is used to estimate

the residual variance which was further used to prevent the

possible overfitting problem. Finally, the FDR was calculated to

retain only the most statistically significant SREs and SRE pairs in

the final model. Overall, these steps combine the state-of-the-art

techniques and form an effective framework to reduce the FDR

and prevent model overfitting, without compromising the power of

detection.

The SREs and SRE pairs we identified have a significant

overlap with a set of SREs identified with experiments. The

regulatory effects of several well-defined SREs were correctly

inferred from our model. For several different interaction patterns

proposed based on the experimental results, our model successfully

identified them as SRE pairs in the same regions as the proposed

ones and provided more insight into their interactions. Note that

we can identify SRE pairs at two ends of intron [23], at two ends

of exon [22], and in the same region [24] in one framework, and

Table 3. Selected examples of the detected cooperative SRE
pairs.

Putative
SF1

SRE1

(region)
Putative
SF2

SRE2

(region) P-value Tissue

PTB UUCUCU(UD) PTB UCCUCU(UD) 2.02E24 brain

PTB UCUUCC(UD) PTB CCUUCU(DD) 1.02E26 brain

hnRNP F/H GGGGCA(DU) hnRNP F/H UGGGGA(DD) 1.31E23 liver

hnRNP E/K CCCCAG(UU) hnRNP E/K CCGCCC(UU) 8.02E28 lymph node

hnRNP E/K ACCCCU(DU) hnRNP E/K CCCCUC(DU) 8.70E24 adipose

T/H/S AUUUAU(UU) T/H/S UAAAUG(UD) 2.33E210 brain

T/H/S AUUUAC(DU) T/H/S AAUAAA(DD) 3.04E29 lymph node

T/H/S AAAUUU(UD) T/H/S UUUUUU(DU) 3.71E27 lymph node

T/H/S AAUAUG(UU) T/H/S AAAAAU(UD) 3.75E25 heart

T/H/S AUUUAG(UD) T/H/S UUAUAU(DU) 1.02E24 testes

T/H/S UUUAAU(UD) T/H/S UUUUAU(DD) 1.45E24 adipose

T/H/S AAAUUC(UU) T/H/S AAAUUU(DU) 6.08E24 lymph node

T/H/S UUUUAA(UD) T/H/S CAUUAU(DU) 8.93E24 adipose

T/H/S UUUAAU(UU) T/H/S AAAAUA(UD) 1.09E23 heart

T/H/S GUUUUA(UD) T/H/S UUUUAU(DD) 1.90E23 adipose

T/H/S AAUAUU(UD) T/H/S AUUUUG(DD) 3.06E23 breast

T/H/S UAUUUA(UD) QKI AACUAA(DU) 2.47E26 liver

T/H/S AUUUAA(UU) PTB CUUUUC(UD) 6.12E24 heart

T/H/S represent TIA-1/TIAR, Hu family or Sam68 proteins.
doi:10.1371/journal.pone.0054885.t003
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capture the combinatorial regulatory effects of multiple SREs

more faithfully. We also report AU-rich SRE pairs as a putative

interaction pattern that is important and prevalent in human

splicing regulation. In summary, our biophysical regression model

provides a useful platform for discovering splicing regulators and

unraveling splicing regulatory mechanisms.

Materials and Methods

The Biophysical Model
Suppose a gene contains an ASE, and it can generate an isoform

I1 with the ASE or another isoform I2 without the ASE. Since

splicing is coupled with transcription and the product emerging

from this coupled process is either I1 or I2, we can consider the

splicing of each pre-mRNA independently. We model the multi-

step assembly of spliceosome S to the splice sites of the ASE on

each individual pre-mRNA as a single chemical reaction:

Sz RNA
;
I2

'RNA
;
I1

:S, ð3Þ

where RNA denotes the state in which S is not fully assembled,

and RNA represents the state in which S is fully assembled around

the ASE. Then I1 is produced from the RNA state and I2 is

produced from the RNA state. The probability of having a

spliceosome assembled around the ASE is equal to the probability

of the RNA state in reaction (3), which can be expressed as

Ps~
½RNA:S�

½RNA�z½RNA:S�, where [RNA:S], [RNA.and [S.stand for

the concentrations of RNA:S, RNA and S, respectively. Since the

equilibrium constant of reaction (3) is given by ks~
½RNA:S�
½RNA�½S�, we

can write Ps as follows:

Ps~
ks½S�

1zks½S�
~

qs

1zqs

, ð4Þ

where qs~ks½S�. Similar to the gene expression model [36,38], the

dynamic changes of the concentration of I1 denoted as EI1
can be

written as:

dEI1

dt
~kgPs{kdEI1

, ð5Þ

where kg and kd are synthesis and degradation rates, respectively.

In the steady state where dEI1
=dt~0, we have EI1

~
kg

kd

Ps~aPs,

where a~kg=kd . Likewise, concentration of the second isoform

EI2
~c(1{Ps), where c is another constant. Thus, the ratio of EI1

and EI2
can be written as:

EI1

EI2

~
a

c

Ps

1{Ps

~c:qs, ð6Þ

where constant c~a=c. Now we consider an SF that can bind to

an SRE around the ASE and influence the assembly of the

spliceosome. The pre-mRNA can have four possible states: 1)

bound by both S and SF (RNA), 2) bound by S only (RNA), 3)

bound by SF only (RNA), and 4) bound by neither of them (RNA).

Then the probability Ps of having a spliceosome assembled around

the ASE is equal to the probability of states 1) and 2). Following

[26,31,32], we can write Ps as Ps~(z1zz2)=(z1zz2zz3zz4),

where zi is the Boltzmann weight for state i. Let w be the

cooperative factor reflecting the interaction between SF and S,

qsf ~ksf ½SF � where ksf ~
½RNA:SF �
½RNA�½SF �, then it is not difficult to

find that z1~wqsqsf , z2~qs, z3~qsf and z4~1, which yields:

Ps~
qszwqsqsf

1zqsf zqszwqsqsf

: ð7Þ

If w~1, SF and S bind to the transcript independently and Ps

in (7) is simplified to that in (4). If ww1, the binding of SF to SRE

increases the probability of spliceosome assembly, which implies

that the SF is an enhancer. If wv1, binding of the SF has a

negative effect on spliceosome assembly and the SF is a repressor.

The ratio of the expression levels of I1 and I2 can be written as:

EI1

EI2

~
a

c

Ps

1{Ps

~c:qs

1zwqsf

1zqsf

: ð8Þ

If two SFs can cooperatively bind to their SREs around the ASE

and interact with the spliceosome, it is not difficult to derive the

following ratio:

EI1

EI2

~c:qs

1zw1qsf1
zw2qsf2

zw12w1w2qsf1
qsf2

1zqsf1
zqsf2

zw12qsf1
qsf2

, ð9Þ

where qsf1
~ksf1

½SF1� with ksf1
~
½RNA:SF1�
½RNA�½SF1�

, qsf2
and ksf2

are

defined similarly for SF2, wi,i~1,2, is the cooperativity factor

between SFi and S, and w12 is the cooperativity factor between

two SFs. If w12~1, there is no cooperative interaction between

two SFs, and they enhance or repress spliceosome assembly

independently. In this case, (9) can be simplified as

EI1

EI2

~c:qs

1zw1qsf1

1zqsf1

1zw2qsf2

1zqsf2

: ð10Þ

If w12=1, we can express (9) as:

EI1

EI2

~c:qs

1zw1qsf1

1zqsf1

1zw2qsf2

1zqsf2

w, ð11Þ

where w~(
1zw1qsf1

zw2qsf2
zw12w1w2qsf1

qsf2

1zqsf1
zqsf2

zw12qsf1
qsf2

)=

(
1zw1qsf1

1zqsf1

1zw2qsf2

1zqsf2

). If we define b1~ log (
1zw1qsf1

1zqsf1

),

b2~ log (
1zw2qsf2

1zqsf2

) and b12~ log (w), we can write (11) as:

log (
EI1

EI2

)~ log (c:qs)zb1zb2zb12: ð12Þ

The first term reflects the basal level of splicing determined by the

spliceosome alone, the second and third terms are the effects of

interactions between the spliceosome and each individual SF,

while the last term is the effect of the interaction between two SFs.
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This can be seen from the fact that bi~0 if wi~1 and b12~0 if

w12~1. In other words, if the ith SRE affects splicing, then bi=0;

otherwise bi~0; Similarly, if two SREs interact with each other

and affect splicing jointly, then b12=0; otherwise b12~0. Four

different conditions are depicted in Figure 4.

Note that bi,i~1,2, is determined by ksfi
, ½SFi� and wi. Since an

SF can bind to the same set of SREs around different ASEs, we

assume that ksfi
and wi are the same for different ASEs. Therefore,

if we consider a set of ASEs in the same tissue or under the same

condition, where ½SFi� is fixed, bi is identical for these ASEs.

Similarly, we assume that b12 is a constant for different ASEs in the

same tissue. On the other hand, since different exons may have

strong or weak splice sites and different genes may have different

degradation rates, the first term log (c:qs) in (12) may be different

for different exons even in the same tissue or under the same

condition. Since our goal is to infer b1, b2 and b12 from data of

multiple ASEs in the same tissue, we need to remove the exon-

specific effects from the model.

If expression levels of isoforms in two tissues t1 and t2 are

available, the first term in (12) is identical in these two tissues, and

can be removed by forming the following model:

log (
E

t1
I1

E
t1
I2

){ log (
E

t2
I1

E
t2
I2

)~(b
t1
1 {b

t2
1 )z(b

t1
2 {b

t2
2 )z(b

t1
12{b

t2
12), ð13Þ

The data of tissue t2 can be regarded as a reference. Subtraction

of the reference data from the data of tissue t1 removes the exon-

specific effects. When data of multiple tissues are available, we can

arbitrarily choose a tissue as the reference. However, since the

expression level of each isoform is estimated from the noisy

measurements, a better reference can be obtained by averaging

the data of multiple tissues, which is similar to the strategy used in

[18]. Specifically, suppose we have a set of data Et
I1

,Et
I2

for tissue

t~1,:::,T , we can remove the first term in (12) by forming the

following model:

log (
E

t1
I1

E
t1
I2

){
1

T{1

XT

t~1

t=t1

log (
Et

I1

Et
I2

)

~(b
t1
1 {

1

T{1

XT

t~1

t=t1

bt
1)z(b

t1
2 {

1

T{1

XT

t~1

t=t1

bt
2)

z(b
t1
12{

1

T{1

XT

t~1

t=t1

bt
12):

ð14Þ

If we define y~ log (
E

t1
I1

E
t1
I2

){ 1
T{1

PT
t~1

t=t1

log (
Et

I1

Et
I2

),

b1~bt1

1 { 1
T{1

PT
t~1

t=t1

bt
1, b2~bt1

2 { 1
T{1

PT
t~1

t=t1

bt
2, and

b12~bt1

12{
1

T{1

PT
t~1

t=t1

bt
12, then (14) can be simplified as:

y~b1zb2zb12: ð15Þ

So far, we have assumed that y can be measured without any

error. If the measurement error is taken into account, equation

(15) becomes:

y~b1zb2zb12zE, ð16Þ

where e is the measurement error modeled as a Gaussian random

variable with zero mean. Model (16) is derived under the

assumption that two SREs are present to regulate splicing. Since

we do not know which SRE or SRE pair contributes to splicing,

we can include all potential SREs and their pairwise interaction in

the model by adding a parameter to the model for each potential

SRE and SRE pairs. Moreover, when we use this model to identify

SREs and their interactions, we need to apply it to a set of ASEs.

However, different ASEs may have different SREs. To overcome

this problem, we include all possible SREs (typically hexamers)

and their pairwise interactions in the model, but multiply bi by a

binary variable xi[f0,1g that indicates if the corresponding SRE is

present in the ith ASE, and similarly multiply bij by xixj . This

gives rise to the model in (2). We can also include interactions

involving more than two SREs, but this will dramatically increase

the number of unknowns that is already very large, which will

make model inference extremely difficult if not impossible. For this

reason, we only include pairwise interactions in our model.

Inference of Regulatory Effects
Our model inference framework will infer bi and bij in

regression model (2). If bi or bij is not equal to zero with certain

statistical significance, then we determine that the ith element or

the pair involving the ith and jth elements has regulatory effect.

However, it is unclear whether it is an enhancer or silencer, since it

Figure 4. Illustration of equation (12). Two possible SREs are
considered in this example, one for SF1, and the other one for SF2. Four
different conditions are shown. Binding of either SF can affect the
probability of spliceosome assembly. The arrow connecting two SFs
indicates the interaction between two SFs. The contribution to
spliceosome assembly from SFs is represented by b1 , b2 and b12.
doi:10.1371/journal.pone.0054885.g004

Biophysical Model for Splicing Regulation

PLOS ONE | www.plosone.org 9 January 2013 | Volume 8 | Issue 1 | e54885



is the sign of wi{1 or wij{1, not the sign of bi or bij that

determines an enhancing or inhibitory effect. We will next show

that we can infer the regulatory effect of the ith SRE from bi and

½SFi� that is the concentration of the SF that can bind to the SRE.

The enhancing or inhibitory effect of an SRE pair however is

difficult to infer.

Let us first consider the situation where only one reference

sample is used as in (13). In this case,

bi~bt1

i {bt2

i ~f (½SF t1

i �; wi){f (½SFt2

i �; wi), where

f (½SF t
i �; wi)~ log (

1zwiksfi
½SF t

i �
1zksfi

½SF t
i �

). Then it can be easily shown

that the sign of bi is the same as the sign of

(wi{1)(½SFt1

i �{½SFt2

i �). Therefore, if (½SF t1

i �{½SF t2

i �)biw0, then

wiw1 and SRE i is an enhancer; otherwise, wiv1 and SRE i is a

silencer.

For model (2) or (15) where multiple tissues are used as the

reference, the following proposition can be used to infer the

regulatory effect of an SRE:

Proposition 1 Given the condition

½SF
t1
i �w

1

T{1

X
t=t1

½SFt
i �, ð17Þ

we have wiw1 if biw0, or wiv1 if biv0. Given the condition

½SF
t1
i �v

1

T{1

X
t=t1

1

½SFt
i �

2
4

3
5

{1

, ð18Þ

we have wiw1 if biv0, or wiv1 if biw0.

Before we proceed to prove Proposition 1, we make the

following comments. The sign of bi alone can not determine if the

SRE is an enhancer (wiw1) or silencer (wiv1). It should be used

together with condition (17) and (18) to infer the regulatory effect

of the SRE. It is difficult to determine the regulatory effect of an

SRE interacting pair bound by two SFs.

Proof: For simplicity, we will omit subscript i throughout the

proof. Define b~f (qt)~ log (
1zwqt

1zqt
), where qt~ksf ½SFt� as

defined earlier. Then
df (qt)

dqt
~

(w{1)

(1zwqt)(1zqt)
. If ww1, f (qt) is a

monotonically increasing function; otherwise, f (qt) is a monoton-

ically decreasing function (Figure 5).

Define qw such that f (qw)~
1

T{1

X
t=t1

f (qt), which gives:

qw~

1{ P
t=t1

(
1zwqt

1zqt
)

1
T{1

P
t=t1

(
1zwqt

1zqt
)

1
T{1{w

, ð19Þ

where 0vwv1 or ww1. From (19), we obtain the following

result:

q0~ lim
w?0z

qw~ P
t=t1

(1zqt)
1

T{1{1v

1

T{1

X
t=t1

qt,

q?~ lim
w??

qw~
1

P
t=t1

(
1zqt

qt
)

1
T{1{1

w

1

1
T{1

P
t=t1

(
1zqt

qt
){1

~

T{1P
t=t1

1

qt

,

Figure 5. Illustration of Proposition 1. The dashed curve is b~f (q)~ log (
1zwq

1zq
) for ww1 and the dashed lines with arrows define the region

where bv0 or bw0. The dash-dot curve is b~f (q)~ log (
1zwq

1zq
) for wv1 and the dash-dot lines with arrows define the region where bw0 or bv0.

The solid lines define the decision region of w described in Proposition 1.
doi:10.1371/journal.pone.0054885.g005
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Define qa~qw for ww1 and qb~qw for 0vwv1. In Lemma 1

given later at the end of this section, we prove that qw is a

monotonically decreasing function of w. Therefore, we have the

following inequalities:

T{1P
t=t1

1
qt

vqavqbv
1

T{1

X
t=t1

qt: ð20Þ

From (14) and (15), we have

b~f (qt1 ){ 1
T{1

P
t=t1

f (qt)~f (qt1 ){f (qw). When ww1, due to

the fact that f (qt) is an increasing function, we have bw0 if

qt1wqa or bv0 if qt1 vqa. Similarly, when wv1, we have bv0 if

qt1wqb or bw0 if qt1 vqb. This is illustrated in Figure 5. Now

suppose that ½SF t1 �w 1
T{1

P
t=t1

½SF t�, since qt~ksf ½SF t�, we have

qt1w
1

T{1

P
t=t1

qt. Using (20), we have qt1 wqbwqa. Therefore, we

can infer that ww1 if bw0, or wv1 if bv0 as illustrated in

Figure 5. Similarly, if ½SFt1 �v½ 1
T{1

P
t=t1

1
½SFt��

{1
, we have

qt1v

T{1P
t=t1

1
qt

, and thus, qt1vqavqb. We can infer that ww1 if

bv0, or wv1 if bw0, again as illustrated in Figure 5. Note that

qa and qb are determined by unknown parameter w and they can

be anywhere in between q? and q0. Therefore, if

½ 1
T{1

P
t=t1

1
½SFt��

{1
v½SFt1 �v 1

T{1

P
t=t1

½SFt�, we can not determine

whether ww1 or wv1.

Lemma 1

h(x)~

1{ P
N

i~1
(
1zxqi

1zqi

)
1
N

P
N

t~1
(
1zxqi

1zqi

)
1
N{x

: ð21Þ

is a monotonically decreasing function for x[(0,1)
S

(1,?), when qi,

i~1,:::,N are positive.

Proof: Define g(x)~P (
1zxqi

1zqi

)
1
N . Then

dh(x)

dx
~

g’(x)(x{1){g(x)z1

½g(x){x�2
, where g’(x)~

dg(x)

dx
: Let us

define the numerator of
dh(x)

dx
as J(x), since the denominator is

positive, we next prove that J(x)ƒ0, which implies that
dh(x)

dx
ƒ0

and therefore h(x) is a decreasing function.

J(x)~g’(x)(x{1){g(x)z1

~
1

N

XN

i~1

qi

1zxqi

g(x)(x{1){g(x)z1

~
1

N

XN

i~1

qi

1zxqi

(x{1){1z
1

g(x)

" #
g(x)

~
1

N

XN

i~1

qi

1zxqi

(x{1){1z P
N

i~1
(

1zqi

1zxqi

)
1
N

" #
g(x)

ƒ

1

N

XN

i~1

1zxqi

1zxqi

{1

" #
g(x)

~0,

where the inequality is due to the facts that g(x)w0 and that

P
N

i~1
(

1zqi
1zxqi

)
1
Nƒ

1
N

PN
i~1

(
1zqi

1zxqi
), since xw0 and qiw0,i~1,:::,N.

Thus, h(x) is monotonically decreasing in (0,1) and (1,?).
Moreover, since we have:

lim
x?1{

h(x)~ lim
x?1z

h(x)~

PN
i~1

qi

1zqi

N{
PN
i~1

qi

1zqi

,

h(x) is a monotonically decreasing function for x[(0,1)
S

(1,?),

and
dh(x)

dx
~0 if and only if q1~q2~:::~qN .

ASE Selection
The KnownGene table of human February 2009 assembly

(hg19) was downloaded from the University of California Santa

Cruz (UCSC) genome database [39]. We chose UCSC Known

Genes as the reference gene annotation, since they contain a

comprehensive gene set that is constructed mostly from experi-

mental data in Genbank and Uniprot [92]. For each gene, the

KnownGene table gives all known isoforms of its mRNA

transcripts. An exon was selected as an ASE in our dataset if the

following five criteria were satisfied: 1) at least one isoform includes

the exon, 2) at least one isoform does not include the exon, 3) the

upstream 59 splice site is the same in all isoforms, and similarly the

downstream 39 splice site is the same in all isoforms, as illustrated

in Figure 6A, 4) the upstream 39 splice site is the same in all

isoforms with the ASE, and similarly the downstream 59 splice site

is the same in all isoforms with the ASE, as illustrated in Figure 6A,

and 5) both the upstream and downstream introns are of §400
nts. With these strict criteria, the five regions of the ASE shown in

Figure 1A are defined without ambiguity. Note that isoforms in

Figure 6B do not satisfy criterion 3), and thus ASEs with isoforms

in Figure 6A and 6B are not included in our data set. Similarly,

isoforms in Figure 6C do not satisfy criterion 4), and ASEs with

isoform in Figure 6A and 6C are not included in our data set. To

ensure a reliable estimate of the expression ratio, we only kept

ASEs with gene expression level greater than 3 RPKM (reads per

kilobases per million mapped reads). This gave a set of ASEs for

each tissue. The number of ASEs for each tissue is given in Table 1

and more detailed description of the ASEs including their genomic

coordinates are given in Table S2. Most ASEs were used for model

inference in almost all tissues. Some ASEs were not used in a

specific tissue because they did not pass the minimum expression

requirement in that tissue. Note that although almost the same set

of ASEs were used, the splicing response variable y of the same
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ASE was different in different tissues, and thus the data used for

model inference were in fact different for different tissues.

RNA-Seq Data
The data set in [1] includes RNA-Seq reads from 9 tissues:

adipose, whole brain, breast, colon, heart, liver, lymph node,

skeletal muscle and testes, as well as several cerebellar cortex

samples and cell lines. We only used RNA-Seq data of 9 tissues,

which contains over 200 million reads of 32 nts, to detect SREs

and cooperative SRE pairs.

Estimation of Expression Level and Inclusion Ratio
We started by mapping the RNA-Seq reads against an

expanded human genome (hg19) downloaded from the UCSC

genome database, allowing up to two mismatches, using Bowtie

(version 0.12.7) [93]. The expanded human genome consists of the

UCSC hg19 whole genome reference sequence and the 56 nt long

splice-crossing sequences for each exon junction documented in

the UCSC KnownGene table. Reads that could be mapped to

multiple loci of the genome were excluded, and 140 million

uniquely mapped reads were kept for the following analysis.

We next calculated the expression level of each isoform

including or excluding a selected ASE in 9 tissues using the

algorithm of Jiang et al. [94]. Since we only kept uniquely mapped

reads, for an exon of length l, we used an effective exon length

l{r{m, where r is the read length and m is the number of multi-

mappable positions of the exon. To find out m, we re-mapped all

possible 32-nt subsequences of candidate ASEs and splice

junctions against the same expanded genome described above

using Bowtie [93]. Moreover, to minimize the effect of non-

uniformity of read distribution [95], we only used three exons,

including the ASE itself, the adjacent upstream and downstream

exons to estimate the expression level of each isoform.

After the expression level of each isoform of the selected gene

was calculated, the inclusion ratio (IR) of an ASE in a specific

tissue was calculated as the ratio of the expression level of the

isoforms with the ASE to the total expression level of all isoforms

of the gene, i.e., IR~
EI1

EI1
zEI2

, where EI1
is the total expression

level of isoforms including the ASE and EI2
is the total expression

level of isoforms excluding the ASE.

RNA Sequence Elements
For each tissue and each ASE, we extracted all hexamers in five

regions around the ASE, including the 200 nts intronic region

adjacent to the upstream 59 splice site (UU in Figure 1A), the

200 nts intronic region adjacent to the upstream 39 splice site (UD

in Figure 1A), the ASE region (EXON in Figure 1A), the 200 nts

intronic region adjacent to the downstream 59 splice site (DU in

Figure 1A) and the 200 nts intronic region adjacent to the

downstream 39 splice site (DD in Figure 1A). The EXON region is

the ASE itself if the ASE is less than 200 nts; otherwise, it is the

combination of the first and last 100 nts of the ASE. Since the 59

and 39 splice sites have the consensus sequences MAG/GURAGU

and Y10NCAG/G [11,96], respectively, we excluded the sequenc-

es in the window from 23 to 6 around the 59 splice site and in the

window from 214 to 1 around the 39 splice site in our analysis.

Variable Screening
Before applying the Lasso, we used a strategy similar to the sure

independence screening [40] to reduce the dimensionality of the

feature space, thereby improving variable selection in terms of

both speed and accuracy. Specifically, for the ith hexamer,

i[(1,:::,46), we used the following simple linear regression to test

the correlation between its presence in one of the five regions of

ASEs with the response variable:

ye~b0zxeibizEe, ð22Þ

where xei,e~1,:::,n is a binary variable to indicate if the ith

hexamer is present (xei~1) or absent (xei~0) in one of the five

regions of the eth ASE, and ye is the splicing response of the eth

ASE as defined earlier, and Ee,e~1,:::,n are independent and

Figure 6. Illustration of ASE selection criteria 3 and 4. (A) ASEs that satisfy both criteria 3 and 4. (B) ASEs that do not satisfy criterion 3. ASEs in
isoforms in both (A) and (B) are not included in our ASE data set. (C) ASEs that do not satisfy criterion 4. ASEs in isoforms in both (A) and (C) are not
included in our ASE data set.
doi:10.1371/journal.pone.0054885.g006
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identically distributed normal random variables. In some samples,

we have inclusion ratio IRe~1 or IRe~0, usually due to the low

read abundance of the minor isoform. For these samples, we set

log (
Ee,I1
Ee,I2

)~10 for IRe~1 or set log (
Ee,I1
Ee,I2

)~{10 for IRe~0,

which is equivalent to IRe&0:9999 or IRe&1e{5. Hexamers

having a significant correlation with a p-value v 0.05 were kept in

set M for further analysis with the Lasso and the adaptive Lasso.

In the next step, for each pair of the retained hexamers, their

interaction was tested using the model:

ye~b0zxeibizxejbjzxeixejbijzEe: ð23Þ

Interaction terms with a p-value v 0.05 were also kept in set I
for further analysis. To reduce the possible false positive effects, we

also required that the co-occurrence frequency of the two

hexamers in an interaction pair was significant (p-valuev0.05

from a hypergeometric test based on the null hypothesis that the

presence of the first hexamer is independent of the presence of the

second hexamer) in the five regions of the selected ASEs defined

earlier, and that any hexamer or hexamer-pair must be present in

at least 1% of the ASEs.

The Lasso and the Adaptive Lasso
We define y~(y1,y2,:::,ye,:::,yn)T and

xi~(x1i,x2i,:::,xei,:::,xni)
T , where ye and xei are defined earlier.

We also define xi: � xj as element-wise multiplication of two

vectors. The Lasso procedure was performed by solving the

following problem [41]:

fb̂b0,b̂bi,b̂bijg~ argmax
b0,bi ,bij

fEy{b0{
X
i[M

xibi{
X

(i,j)[I
xi: � xjbijE

2

zl(
X
i[M

Dbi Dz
X

(i,j)[I
Dbij D)g:

ð24Þ

The optimal value of parameter l was obtained using 100-fold

cross-validation based on the mean squared prediction error. Then

we chose ŵwi~1=Db̂bi D and ŵwij~1=Db̂bij D and solved the following

adaptive Lasso problem [42]:

fb̂b00,b̂b
0
i ,b̂b
0
ijg~ argmax

b
0
0

,b
0
i
,b
0
ij

fEy{b
0
0{

X
i[M

xib
0
i{

X
(i,j)[I

xi: � xjb
0
ijE

2

zl(
X
i[M

ŵwj Db
0
i Dz

X
(i,j)[I

ŵwij Db
0
ij D)g:

ð25Þ

The optimal value of l was also obtained using 100-fold cross-

validation. We solved these problems using the coordinate descent

algorithm of Friedman et al. [97] implemented in the ‘glmnet’

package.

Refitted Cross-validation
RCV is a technique to estimate residual variance in linear

regression models of ultrahigh dimension [44]. In our case, the n
samples were randomly split into two even datasets. We applied

the Lasso to the first dataset to select a set V of variables from the

variables in M and I resulted from the variable screening

procedure. We then again used the Lasso to refit the model with

the variable set V to the second dataset. The refitting process

selected a set V’ of variables from V. Finally, the variance of the

residual error ŝs2
1 is estimated from the second dataset with

variables in V’ using the OLS method. We reversed the role of the

two datasets, and obtained another estimate of the variance of the

residual error, ŝs2
2. The final estimate is then defined as

ŝs2~(ŝs2
1zŝs2

2)=2. We repeat this process 100 times by randomly

splitting the dataset, and the average variance s2
RCV of the 100

estimates was the final estimate of the residual variance.

Final Model Selection and Correction for Multiple Testing
The adaptive Lasso procedure produced a sequence of models

for different values of l. For each l, we extracted the variables of

the model and estimated the residual variance s2 with these

selected variables using the OLS method. For the sequence of

models, we selected the one having the smallest variance that was

larger than s2
RCV as the optimal model.

Although the adaptive Lasso selected a set of variable in the

final model, it did not give p-value for each variable. We then used

the OLS method to refit the model and calculated the p-value for

each variable. Based on these p-values, we chose the variables at

an FDR ƒ0:01 [45]. The final model contained these variables,

and the percentage of the variance explained (R2) by this model

was calculated as:

R2~1{
Xn

e~1

(ye{ŷye)2=
Xn

e~1

(ye{�yy)2, ð26Þ

where ŷye is the predicted value of ye from the final model, and �yy is

the sample mean of ye. Note that R2 was also used in [26,34,38] as

the figure of merit for performance evaluation. The software

package for model inference framework is available under an open

source license.
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(XLS)
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