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Ovarian cancer (OC) is one of the most fatal diseases among women all around the
world. It is highly lethal because it is usually diagnosed at an advanced stage which may
reduce the survival rate greatly. Even though most of the patients are treated timely and
effectively, the survival rate is still low due to the high recurrence rate of OC. With a large
number of genome-wide association analysis (GWAS)-discovered risk regions of OC,
expression quantitative trait locus (eQTL) analyses can explore candidate susceptible
genes based on these risk loci. However, a large number of OC-related genes remain
unknown. In this study, we proposed a novel gene prediction method based on different
omics data and deep learning methods to identify OC causal genes. We first employed
graph attention network (GAT) to obtain a compact gene feature representation, then a
deep neural network (DNN) is utilized to predict OC-related genes. As a result, our model
achieved a high AUC of 0.761 and AUPR of 0.788, which proved the accuracy and
effectiveness of our proposed method. At last, we conducted a gene-set enrichment
analysis to further explore the mechanism of OC. Finally, we predicted 245 novel OC
causal genes and 10 top related KEGG pathways.

Keywords: ovarian cancer, gene prediction, omics data, deep learning method, pathway analysis

INTRODUCTION

Ovarian cancer (OC) is one of the major lethal diseases for women, despite ranking tenth in
morbidity rate, it is the fifth leading cause of death among cancers (Siegel et al., 2011). Usually,
OC is diagnosed at an advanced stage which induced a high death rate. However, even patients
got primary treatment such as surgical resection and adjuvant drug therapy, the high rate of
recurrence, and high incidence of advanced stage disease eventually caused a high mortality rate
(Armstrong, 2002). In terms of treating OC and reducing the high fatality rate to improve survival
in OC patients, studies have been exploring the development of new treatment, and effective
chemotherapies (Badgwell and Bast, 2007; Kobayashi et al., 2012). While efforts and contributions
have been made to improve the treatment, cure rates have not been raised significantly. Thus, it is
more important to explore the mechanism and underlying biological pathogenic factors of OC to
better understand the disease, and find a better treatment.

Genome-wide association analysis (GWAS) have identified hundreds of risk genetic variants
(SNPs) associated with OC (Song et al., 2009; Bolton et al., 2010; Goode et al., 2010; Permuth-Wey
et al., 2013; Pharoah et al., 2013; Shen et al., 2013). However, they can only explain a small fraction
of disease risk regions in a functional way (Pomerantz et al., 2010; Grisanzio et al., 2012; Bojesen
et al., 2013). It is widely known that most of the risk alleles are located in the nonprotein coding
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regions of the genome, indicating that most of them are
functional regulators of the expression of target genes (Hazelett
et al., 2014). Thus, it is not comprehensive to identify disease-
related genes by merely being dependent on GWAS datasets. To
provide additional evidence for exploring risk genes, expression
quantitative trait locus (eQTL) analysis is a direct method to
explore candidate genes at risk loci. Since most transcripts are
regulated by genes, eQTL can identify genetic variants related
to the expression level of genes. eQTL analyses have identified
multiple causal genes for different cancer types such as prostate,
breast, colorectal, and kidney cancers (Loo et al., 2017; Yang et al.,
2017; Beesley et al., 2020; Bicak et al., 2020). Therefore, it is more
creditable to identify OC-related genes based on the combination
of GWAS and eQTL data.

Besides, over the past decades, numerous noncoding RNAs
(ncRNAs), such as lncRNA, siRNA, piRNA, and miRNA have
been detected to execute the regulation function by interacting
with target genes (Esteller, 2011; Lee and Young, 2013). In
humans, it is estimated that the number of ncRNA genes are
more than twice as many as that of protein-coding genes (Bunch
et al., 2016). Thus, ncRNAs have been considered key regulators
of multiple biological processes and development. Along with
the rapid advancement of high-throughput sequence analyses
of ncRNAs, more and more transcriptional mechanisms have
been illustrated. ncRNAs should also be regarded as a major
factor to explore the pathologies of OC due to its regulation
function of gene expression. Hence, it is important to take into
consideration the role of regulatory ncRNAs to identify OC-
related causal genes.

However, along with the rapid development of understanding
the mechanisms of complex disease, there are a few
computational methods to predict disease genes based on
various gene features. In this study, we aimed to identify
susceptibility genes associated with OC based on integrated gene
features. We first employed graph attention network (GAT) to
learn the compact gene feature from a gene interaction network
with gene features, then employed a deep neural network (DNN)
to predict OC-related susceptibility genes. To further explore
the mechanism of OC, we also performed a gene-set enrichment
analysis to predict more related pathways in OC process.

MATERIALS AND METHODS

Work Frame
In this study, our method contains four main parts, feature
extraction, compact gene feature learning based on GAT, and
OC-related susceptibility gene prediction based on DNN and
OC-related pathway analysis. In the first section, we extracted
gene features based on integrated GWAS data, eQTL data, and
published data of gene-related lncRNAs and miRNAs. In total,
we extracted a 2,664-dimensional feature representation from
four gene features. We then utilized a graph neural network with
attention mechanism (GAT) to learn the compact gene feature for
a low-dimension feature representation in order to obtain a better
classification performance in the prediction process. The low-
dimension feature matrix is considered the input of DNN to train

the model and conduct the prediction process. After obtaining
the predicted causal genes related to OC, we further performed a
pathway analysis based on enrichR (Chen et al., 2013; Kuleshov
et al., 2016), and a gene-set enrichment tool to find more related
kyoto encyclopedia of genes and genomes (KEGG) pathways for
a better understanding of the mechanism of OC. The workflow is
presented in Figure 1.

Data Collection
We first downloaded and verified 3,181 OC-related genes
from DisGeNET database (Piñero et al., 2017, 2020) as a
positive dataset. To build a gene-gene interaction network,
we downloaded gene interaction information from HumanNet
database (Hwang et al., 2019). For constructing a balanced
training set, we randomly selected 3,171 genes which have
interactions with positive genes from HumanNet as a negative set.
To extract ncRNA-gene interaction feature, we downloaded gene-
lncRNA association and gene-miRNA association information
from LncRNA2Target, and miRTarBase, respectively (Hsu et al.,
2011; Jiang et al., 2015; Cheng et al., 2019; Huang et al.,
2020). MiRTarBase is a database providing comprehensive
information based on experimentally verified miRNA-target
interactions curated from published articles; it accumulated
over 13,404 validated associations. LncRNA2Target is a database
storing comprehensive lncRNA-target interactions inferred from
published articles and experiments.

The GWAS data providing OC susceptibility loci was
downloaded from GWAS catalog database, accession ID
GCST90011821 (MacArthur et al., 2017). They sampled from
1,259 European ancestry cases and 410,350 controls providing
genetic variant loci related to OC. eQTL data in ovary tissue was
downloaded from GTEx database (Lonsdale et al., 2013). Finally,
our training set is constructed based on 3,181 positive genes and
3,171 negative genes for further feature extraction.

Feature Extraction
We extracted gene features from four aspects, susceptibility
loci derived from GWAS, eQTL data from ovary tissue,
interactions between genes, and miRNAs/lncRNAs. We first
obtained the detail location information of training genes
containing chromosome name, start position, and end position.
Then, we mapped the genes to the susceptibility loci and sorted
by p-value provided by GWAS data. We extracted the top five
significant p-values as GWAS feature of the gene. Thus, the
GWAS feature of a gene can be represented as a 5-D vector:

FGWAS = [D1,D2, D3,D4, D5] (1)

For those genes that cannot be mapped to five SNPs, the
feature value is set to one. To extract eQTL-based gene feature,
we mapped the genes to eQTL data based on gene location
information, and extracted the top five significant p-values as
eQTL feature, set feature value to one if a gene cannot map to
five SNPs. Thus, the eQTL feature can also be represented as a
5-D vector:

FeQTL = [D1,D2, D3,D4, D5] (2)
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FIGURE 1 | The pipeline of ovarian cancer (OC) causal gene prediction method.

From the gene-lncRNA interaction obtained from
lncRNA2Target, we filtered the interactions to make sure
each of the training genes is related to at least one lncRNA. As a
result, 59 lncRNAs are preserved. Thus, the lncRNA feature of a
gene can be denoted as a 59-D vector, where the value is 1 if the
gene is related to lncRNA[i], the value is set to 0 vice versa.

FlncRNA = [D1,D2, D3, ,D59] (3)

Di =

{
0, if gene is not related to lnRNAi
1. if gene is related to lnRNAi

(4)

We then filtered the gene-miRNA interactions to make sure each
of the training genes is related to at least one miRNA. As a result,
2,595 miRNAs are preserved. Thus, the miRNA feature of a gene
can be denoted as a 2,595-D vector:

FmiRNA = [D1,D2, D3, ,D2595] (5)

Di =

{
0, if gene is not related to miRNAi
1. if gene is related to miRNAi

(6)

Therefore, the feature representation of each gene in training
set can be denoted as a 2,664 dimensional vector. Since the
feature vector could be very sparse, we need to learn the
compact feature representation to obtain a better classification
performance.

Compact Feature Learning Based on
GAT
Sparse matrix is a matrix composed of mostly zero values,
which often induces a poor classification performance in machine

learning methods. Thus, we need to reconstruct the gene
feature to get a low-dimensional feature representation. Since
we can build a gene-gene interaction network based on gene
association information obtained from HumanNet. A 6358∗6358
dimensional adjacent matrix can be constructed based on the
network. Besides, each gene of the Internet also has a feature
representation of itself. Thus, the gene network with gene features
can be regarded as a graph-structured data; to make the gene
prediction method more general, and we utilized a GAT as
a feature learning model. GAT addressed the shortcomings
of requiring costly matrix operation and dependency on
preknowledge of graph structure by stacking layers in which
nodes are participant in features of neighborhoods, and arranging
attention weights to each nodes. Consider the node features

being denoted as: h =
{

⇀

h1,
⇀

h2, ,
⇀

hN
}

,
⇀

hi ∈ RF , where N is the

size of training set and F is the dimension of gene features. The
output of graph attentional layer is a new set of node features

(of a low-dimension F’), denoted as: h
′

=

{
⇀

h1
′

,

⇀

h2
′

, ,

⇀

hN
′

}
,

⇀

hi
′

∈

RF
′

.
We then performed a self-attention on each node with a

shared attentional mechanism a:RF
′

× RF
′

to compute attention
coefficients:

eij = a(W
⇀

hi ,W
⇀

hj ) (7)

where, W ∈ RF
′
F is a weight matrix applied to each node.

eij denotes the importance of node j to node i. Based on this
formulation, the model allows each node to participate with every
other node and dropping structural information. For each node j
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FIGURE 2 | The performance of graph attention network-deep neural network (GAT-DNN) across a 10-fold cross-validations.

in the neighborhood of node i (denoted as Ni), we performed a
softmax function to normalize the coefficients eij:

αij = softmax
(
eij
)
=

exp
(
eij
)∑

k∈Ni
exp (eik)

(8)

After being activated by LeakyReLU function, eij can be denoted
as:

eij = LeakyReLU(
⇀
a
T
[
W

⇀

hi , ||W
⇀

hj
]

) (9)

where,
⇀
a ∈ R2F

′

is a weight vector; | | denotes the concatenation
operation. Once obtained, the output feature of each node can
be computed as a linear combination of the neighborhood node
features with eij:

⇀

hi
′

= δ(
∑

j ∈ NiαijW
⇀

hj) (10)

where, δ denotes a nonlinear transition. Thus, we obtained a low-
dimension feature representation of the genes based on GAT.

DNN Model Construction
Deep neural network has been regarded as a powerful tool in
many domains of machine-learning applications. In this part, a
binary-classification DNN model is used to predict OC-related
genes based on the gene features derived from the output of GAT
layer. The gene features were input to the DNN. The DNN model
contains one hidden layer with a ReLU activation function and
an output layer with a sigmoid activation function and a dropout
technique. The sigmoid activation formulation is:

σ (x) = 1/(1+e−x) (11)

We used the Adam optimizer and binary cross-entropy function
as the loss function. The loss function is:

loss = −
n∑

i = 1

y
′

ilog
(
yi
)
+ (1−y

′

i)log(1−y
′

i) (12)

Training and Testing
To verify the performance of our GAT-DNN gene prediction
model, we conducted a 10-fold cross-validation method on the
training dataset containing 3,181 positive samples and 3,171
negative samples. The training set was randomly divided into
10 groups, nine of the 10 are regarded as training samples,
and one left group is regarded as the test samples. The
training samples were used to train the model and the last one
was used to test the classification performance. This process
was repeated 10 times to make sure the credibility of the
verification.

RESULTS

Measurement of Model Performance
The performance of 10-fold cross-validation was assessed by
area under curve (AUC) and the area under precision-recall
curve (AUPR), as shown in Figure 2. As demonstrated in
Figure 2, the AUC and AUPR are both over 0.7 across a 10-
fold cross-validation, and which is a good performance for a
classification model. The best performance is shown in the third
validation with the AUC of 0.761 and the AUPR of 0.788, and
which is chosen as the final prediction model to identify OC-
related genes.
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FIGURE 3 | Results of method comparison.

TABLE 1 | Top 20 predicted genes associated with ovarian cancer (OC).

Gene Score Gene Score

HS6ST1 0.98354 TEAD2 0.88879

C2orf83 0.97384 PCSK1 0.88736

TM4SF4 0.95513 MTRR 0.88176

ARTN 0.95246 H6PD 0.87361

WDPCP 0.92387 EIF2B2 0.87341

KCNJ11 0.92073 SOX5 0.85771

TBL2 0.91197 NNMT 0.85176

AGTR2 0.90641 MIR324 0.84883

ATF1 0.90194 MIR33B 0.83557

PKD1 0.89846 TBPL2 0.83491

Performance Comparison
To better illustrate the effectiveness and credibility of our method,
we compared our model with other four combinations of
machine learning methods with the same training set we used in
model training part. We compared our model with GAT-SVM,
only SVM (which means the gene features are not operated with

GAT), GAT-Random Forest, and GAT-Naïve Bayes. The results
are shown in Figure 3. As shown in the results, the performance
is significantly poorer than our model. The best model is GAT-RF,
with an AUC of 0.651 and AUPR of 0.624, which is approximately
0.1 lower than our GAT-DNN model. However, indicated from
the performance of only SVM and GAT-SVM, it is obvious that
the classification performance has been improved significantly
after compact feature learning by GAT layer. Therefore, our
model is the best to predict OC-related genes.

OC Gene Prediction Process
Since we have demonstrated the effectiveness of our classification
model based on a 10-fold cross-validation and comparison with
other classification models, and we then performed the gene
prediction process based on our built model on 721 ovary disease-
related genes. These 721 candidate genes were downloaded from
DisGeNET which is associated with ovary diseases but not OC.
We extracted the gene features as mentioned in the section
“Feature Extraction”. After compact feature learning by GAT
layer, we reduced the dimension of gene features from 2,664
to 100. We then input the compact gene features to the DNN
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FIGURE 4 | Pathway analysis based on OC-related genes.

model; we finally predicted 245 of 721 candidate genes to be
positively related to OC.

Case Study
According to the results we obtained from gene prediction
process, 245 of 721 candidate genes were predicted to be
associated with OC. We listed the top 20 genes in Table 1.
Backen et al. (2007) indicated that HS6ST1 are aberrant
overexpression in carcinoma of ovary compared with normal
ovaries. Natanzon et al. (2018) observed a significant association
between methylation WDPCP expression in OC. KCNJ11 could
be considered a favorable prognostic factor since they are
observed to be expressed in OC according to the investigation
of Fukushiro-Lopes et al. (2020). TBL2 was identified by Kim
et al. (2012) as a DNA methylation regulated cancer antigen in
OC. Park et al. (2014) investigated the expression of AGTR1 and
AGTR2 in OC and revealed that the dual regulation of AGTR1/2
may be a therapeutic strategy since AGTR2 could antagonize the
cancer cell proliferation induced by AGTR1.

Pathway Analysis
After predicting the causal genes by our proposed model, we
combined the published OC-related genes and our predicted
genes with a total number of 3,426. We performed a pathway
analysis on KEGG pathways using enrichr in order to further
understand the mechanism of OC. Enrichr is a gene-set
enrichment method to identify pathway enrichment among genes
related to OC. The top 10 enriched pathways resulting from
enrichr are shown in Figure 4. Enriched pathways are ordered
by –log(p-value), obtained from a Fisher’s exact test.

Consistent with KEGG DISEASE database, top 2 OC-related
pathways named Pathways in cancer (hsa05200) and MicroRNAs
in cancer (hsa05206) are enriched among the predicted OC-
related genes. Pathway proteoglycans (PGs) in cancer are known
as a key pathway in understanding cancers since PGs in the
tumor microenvironment are indicated to play important roles in

contributing to biology of multiple types of cancer. The MAPK
and PI3K-AKT pathway have been frequently observed to be
important in OC, and both of the pathways are involved in OC
cell migration (Jeong et al., 2013; Li et al., 2014). Understanding
the pathways related to OC are important in revealing the
underlying mechanism of OC.

DISCUSSION

In this article, we proposed an OC causal gene prediction method
based on deep learning methods. We first extracted gene features
considering ncRNA regulation function of gene expression and
integrated GWAS and eQTL data. To learn a compact feature
representation, we utilized a GAT, which can learn node features
from a graph-structured data format without a preknowledge
of the graph structure. After GAT layer, the feature dimension
is reduced from 2,664 to 100. The new feature representations
were then input to a DNN model which can learn gene features
and perform a binary classification task. To demonstrate the
performance of our proposed method, we conducted a 10-fold
cross-validation on training set and made a comparison with
other four integrated machine learning models. As a result, our
model is significantly better than other models and achieved a
high AUC of 0.761 and the AUPR of 0.788. We then employed
the constructed model to predict causal genes and obtained
245 related genes. From the result of KEGG pathway analysis,
we identified more OC-related pathways which are potential
favorable evidence in understanding the mechanism of OC and
provide new ideas for diagnosis and treatment.
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