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Abstract: Aflatoxin B1 (AFB1) is amongst the mycotoxins commonly affecting human and animal
health, raising global food safety and control concerns. The mechanisms underlying AFB1 toxicity
are poorly understood. Moreover, antidotes against AFB1 are lacking. Genome-wide CRISPR/Cas9
knockout screening in porcine kidney cells identified the transcription factor BTB and CNC homolog
1 (BACH1) as a gene required for AFB1 toxicity. The inhibition of BACH1 expression in porcine
kidney cells and human hepatoma cells resulted in increased resistance to AFB1. BACH1 depletion
attenuates AFB1-induced oxidative damage via the upregulation of antioxidant genes. Subsequently,
virtual structural screening identified the small molecule 1-Piperazineethanol, α-[(1,3-benzodioxol-5-
yloxy)methyl] -4-(2-methoxyphenyl) (M2) as an inhibitor of BACH1. M2 and its analogues inhibited
AFB1-induced porcine and human cell death in vitro, while M2 administration significantly improved
AFB1-induced symptoms of weight loss and liver injury in vivo. These findings demonstrate that
BACH1 plays a central role in AFB1-induced oxidative damage by regulating antioxidant gene ex-
pression. We also present a potent candidate small-molecule inhibitor in developing novel treatments
for AFB1 toxicity.

Keywords: AFB1; BACH1; CRISPR screening; inhibitor

1. Introduction

Aflatoxins are secondary metabolites produced mainly by the fungi Aspergillus flavus
and Aspergillus parasiticus, four of which are known to occur naturally, including aflatoxin
B1 (AFB1), B2 (AFB2), G1 (AFG1), and G2 (AFG2) [1,2]. AFB1 exhibits the highest toxicity
and is an unavoidable contaminant in foods and livestock feeds, endangering human
and animal health [3]. For instance, AFB1 is highly carcinogenic and can contribute to
the development of hepatocellular carcinoma (HCC) [4]. The toxic effects of AFB1 are
both dose- and time-dependent, and aflatoxicosis can be either acute or chronic. Exposure
to AFB1 affects multiple organs like kidneys, liver, heart, testes, and ovaries, causing
mutagenesis, growth retardation, and reproductive damage [5,6]. Moreover, AFB1 toxicity
significantly suppresses the immune system, increasing the risk of acquiring concurrent
infectious diseases [7].
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In addition to the AFB1-associated effects in humans, severe health issues such as
hepatotoxicity, teratogenicity, and immunotoxicity occur in animals [6,8,9]. Pigs exposed
to aflatoxin-contaminated feed are highly susceptible to secondary infections [10]. AFB1
can also negatively impact meat quality due to associated oxidative stress, inflammation,
and the dysregulation of gut microbiota and dysbiosis in animals [11,12]. Various phys-
ical, chemical, and biological approaches to preventing AFB1 contamination have been
developed [13–15]. For instance, transgenic pigs expressing aflatoxin-detoxifizyme (ADTZ)
exhibit resistance to AFB1 toxicity [16]. Nevertheless, economic losses and threats to public
health caused by AFB1 contamination persist [13,17]. Thus, further efforts to identify the
molecular mechanisms underlying AFB1 toxicity are necessary for reducing aflatoxicosis
and decreasing the risk to animal and human health.

AFB1 requires metabolic activation (biotransformation) by cytochrome P450 enzymes
to generate AFB1-exo-8,9-epoxide (AFBO), which forms adducts through binding with
DNA, RNA, and proteins [18]. The detoxification of AFBO mainly occurs through con-
jugation with glutathione (GSH) mediated by glutathione S-transferase (GST), a phase
II conjugative (detoxification) enzyme [19]. In addition, except for AFBO, animals can
metabolize aflatoxin into relatively less toxic intermediates or metabolites, such as aflatoxin
M1 (AFM1) [20]. Previous studies have revealed that AFB1 can induce the overexpression
of CYP1A1 and CYP1A2 genes, accompanied by the increased transcription of Aryl hydro-
carbon receptor (AhR), which was linked to AFB1-related toxicity in a recent genome-wide
loss-of-function screening [21,22]. Another study identified cyclooxygenase-2 (COX-2) as a
factor in AFB1-induced mitophagy and lipid accumulation [21,22]. It has also been shown
that caveolin-1 plays an essential role in the AFB1-induced apoptosis of hepatic cells via
the regulation of oxidation and autophagy [23]. Nonetheless, the mechanisms involved in
AFB1 toxicity remain poorly understood.

In this study, we adopted a high-throughput forward screening strategy to identify
the host factors required for AFB1-induced cell death using our previously designed
porcine genome-scale CRISPR/Cas9 knockout (PigGeCKO) library [24]. We found that the
transcription factor BACH1 was paramount in AFB1 cytotoxicity. Knockout (KO) of BACH1
could inhibit AFB1-induced oxidative damage through the transcriptional upregulation of
antioxidant genes. Moreover, structure-based virtual screening led to the identification of
several potential small-molecule inhibitors of BACH1 and confirmed the effectiveness of 1-
Piperazineethanol, α-[(1,3-benzodioxol-5-yloxy)methyl] -4-(2-methoxyphenyl) (hereinafter
called M2) as an inhibitor both in vitro and in vivo. Accordingly, BACH1 is a potential
drug target for AFB1-induced oxidative damage. Moreover, M2 can serve as an efficient
inhibitor of AFB1.

2. Materials and Methods
2.1. Plasmid Construction

Lentivirus small-guide RNA (sgRNA) expression vectors were generated by digesting
the lenti-sgRNA-EGFP and LentiCRISPRv2 plasmids (Addgene #52961) using the BbsI and
BsmBI restriction enzymes, respectively. The paired sgRNA oligonucleotides were annealed
and cloned into the linearized vector. These sgRNAs were designed by sgRNAcas9-AI
(http://123.57.239.141:8080/home, accessed on 6 December 2019). The sgRNA sequences
are listed in Table S1.

2.2. Cell Culture and Transfection

The porcine Kidney-15 (PK-15), human embryonic kidney 293T (HEK293T), and
Huh7 cell lines were purchased from the Cell Bank of the Chinese Academy of Sciences
(Shanghai, China). These cell lines were tested for mycoplasma and maintained at 37 ◦C
with 5% CO2 in Dulbecco’s Modified Eagle Medium (DMEM) (Cat No: C11995500BT,
Gibco, Beijing, China) supplemented with 10% fetal bovine serum (FBS) (Cat No: 10270-
106, Gibco), 100 U/mL penicillin and 100 µg/mL streptomycin (Cat No: 15140122). The
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JetPrime reagent (Cat No: B180306, PolyPlus) was used for transfection according to the
manufacturers protocol.

2.3. Genome-Wide CRISPR/Cas9 Screening

Genome-wide CRISPR/Cas9-based screening in PK-15 cells was conducted using the
PigGeCKO lentiviral sgRNA library as previously described [24]. The PigGeCKO library
contains 85,674 single-guide RNAs targeting 17,743 protein-coding genes, 11,053 long
ncRNAs, and 551 miRNAs. A total of ~2 × 108 PK-15 cells stably expressing Cas9 (hereafter
referred to as PK-15-Cas9) were seeded into T225 flasks and infected with the sgRNA
lentiviral library at a multiplicity of infection (MOI) of 0.3. Three days post-infection, GFP-
positive cells were collected by fluorescence-activated cell sorting (FACS), reseeded into
100 mm dishes, and preserved and the coverage was examined of the mutant cell libraries.
For the CRISPR screening, a total of ~1 × 108 mutant cells were exposed to AFB1 (Cat No:
1162-65-8) at 0.2 µg/mL, and the toxin was refreshed daily until all the PK-15-Cas9 (Control)
died. The surviving mutant cells were then exposed to two additional rounds of AFB1 at
different concentrations (Round 2 at 1 µg/mL and round 3 at 6 µg/mL). Genomic DNA
was isolated from ~1 × 106 surviving cells from each round of exposure, integrated sgRNA
sequences obtained by polymerase chain reaction (PCR) and decoded by Illumina-based
sequencing. The remaining surviving mutant cells were cultured in medium containing
15 µg/mL H2O2 until all the control cells died. The surviving cells were collected for
genomic DNA isolation and the identification of sgRNAs by Illumina-based sequencing.

2.4. Generation of PK-15 and Huh7 KO Cell Lines by CRISPR/Cas9 Technology

The sgRNA sequence targeting the porcine BACH1 was cloned into the linearized
lenti-sgRNA-EGFP vector, and lentivirus was assembled to infect PK-15-Cas9 cells. GFP-
expressing cells were enriched by FACS on the 3rd day post-infection and seeded in 96-well
plates to generate clonal KO cells. Approximately 7 days after infection, the genotypes of
the cell colonies were analyzed by extracting genomic DNA using the TIANamp Genomic
DNA Kit (Cat No: DP304, TIANGEN, Beijing, China), and the nucleotide sequences were
revealed by Sanger sequencing (Tsingke, Wuhan, China). Mutant colonies identified from
the sequences were characterized by homozygous TA clone sequencing. The sgRNA
sequence targeting porcine BACH1 was also cloned into the linearized lentiCRISPRv2 and
generated the PK-15 mutant colonies without a green fluorescent protein (GFP) label. The
sgRNA targeting the human BACH1 gene was cloned into the linearized lentiCRISPRv2,
and lentivirus was assembled to infect the Huh7 cells. On the 3rd day post-infection,
infected cells were selected using 2.5 µg/mL puromycin to generate the human BACH1 KO
pooled cells. The Sanger sequencing primers used are shown in Table S1.

2.5. Cell Counting Kit-8 (CCK-8) Viability Assay

Approximately 1 × 104 cells/well were seeded in 96-well flat-bottomed plates (Cat
No: 701001, NEST, Wuxi, China) and incubated at 37 ◦C + 5% CO2 for 24 hours (h) to
obtain 50–60% confluence. The AFB1 and other inhibitors were added to all the test sample
cells except the control group and incubated for 36 h. The CCK-8 stock solution (Cat No:
KGA317, KeyGEN, Jiangsu, China) was diluted 1:10 in unsupplemented DMEM to make
the CCK-8 working solution. 100 µL of the CCK-8 working solution was added to each
well, and the plate was incubated for 1 h at 37 ◦C. Absorbance at 450 nm was measured
using a microplate reader (EnVision, PerkinElmer, Waltham, MA, USA). Absolute (100%)
viability was defined as the absorbance of the control groups.

2.6. Flow Cytometry Analysis for Reactive Oxygen Species

Approximately 1 × 105 cells/well were seeded in 12-well plates for 24 h to obtain
50–60% confluence. The wells were treated with 0.1 µg/mL AFB1, and the plates were incu-
bated at 37 ◦C for 36 h. The cell monolayer was detached using 0.25% trypsin without EDTA
(Cat No: 15050-065, Gibco) and resuspended in supplemented DMEM. Reactive oxygen
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species (ROS) were detected by adding the ROS detection green fluorescent probe reagent
(Cat No: KGAF018, KeyGEN) and incubating in a water bath at 37 ◦C for 30 minutes (min),
with gentle agitation at 3 min intervals, away from light. The excess probe was discarded
by washing the cells 5-times at 650× g for 10 min in pre-chilled phosphate-buffered saline
(PBS). The cell pellet was resuspended in FACS buffer to make a homogenous suspension
analyzed in a BD Accuri C6 Plus flow cytometer (Becton, Dickinson and Company, Franklin
Lakes, NJ, USA) using the Fluorescein (FITC) green fluorescence channel. FCS files were
analyzed in FlowJoV10 analysis software.

2.7. Structure-Based Virtual Screening

To identify inhibitors that confer high resistance to AFB1 exposure, structure-based
virtual screening was conducted targeting BACH1 using the known structure of human
BACH1 protein obtained from the RCSB protein database (PDB) (https://www.rcsb.org/,
accessed on 30 May 2020). The Specs small-molecule compound database of 55,024 com-
pounds was used as the ligand library for virtual docking with human BACH1(https:
//specs.net/, accessed on 30 May 2020). The virtual screening was performed using the
Surflex-Dock of SYBYL-X 2.0 (Tripos, St. Louis, MO, USA) based on the crystal structure
of human BACH1 (PDB ID: 2IHC). The SYBYL software was used to assign the standard
AMBER atomic partial charges on the human BACH1 protein and the Gasteiger–Hückel
atomic partial charges on the ligand candidates to be docked. After the preparation, the
docking was performed using the default settings, and the figures were generated using
PyMol software (https://pymol.org/2/, accessed on 30 May 2020). The abbreviations and
synonyms of corresponding inhibitors (M1, M2, M3, M4, M5, M6, M7, M8, and M9) are
shown in Table S2.

2.8. RNA Sequencing and Transcriptome Analysis

PK-15 and BACH1-KO cells were seeded into 6-well plates (Cat No: 703001, NEST,
Wuxi, China) in triplicate to 60% confluence and treated with 2 µg/mL AFB1. The cells
were harvested 36 h post-treatment, and total RNA was isolated using TRIzol RNA Iso-
lation Reagent (Cat No: 15596-026, Invitrogen). Library construction and sequencing
were conducted at the National Key Laboratory of Crop Genetic Improvement using
the MGISEQ-2000RS platform. Sequence quality was assessed using FastQC (v0.11.7,
https://sourceforge.net/projects/fastqc.mirror/, accessed on 1 September 2020), and
quality trimming was performed using the FASTX-Toolkit (v0.0.14, http://hannonlab.
cshl.edu/fastx_toolkit/, accessed on 1 September 2020) to remove bases with a Phred33
score of less than 30 while retaining the resulting reads of at least 50 bases in length. The
quality-trimmed reads were mapped against the reference genome of Sus scrofa (v11.1)
using HISAT2 (v2.1.0, http://daehwankimlab.github.io/hisat2/, accessed on 15 September
2020). Gene expression profiling was based on the number of reads. Fragments per kb
of exon model per million mapped reads (FPKM) was used to estimate the expressed
values and transcript levels using SAMtools (v1.7, https://www.htslib.org/, accessed on
15 September 2020) and HTSeq-count (v0.9.1, https://github.com/htseq/htseq, accessed
on 15 September 2020). Differently expressed genes (DEGs) were obtained using DESeq2
(v1.30.1, https://bioconductor.org/packages/release/bioc/html/DESeq2.html, accessed
on 20 September 2020) with a p value cutoff ≤0.05 and an absolute fold change of ≥1.
The STRING database (https://string-db.org, accessed on 25 September 2020) was used
to construct the DEGs’ protein–protein interaction (PPI) networks, and the core genes
from gene set enrichment analysis (GSEA) (https://www.gsea-msigdb.org/gsea, accessed
on 25 September 2020); then, the degree values were determined using Cytoscape v3.7.2
(https://cytoscape.org/what_is_cytoscape.html, accessed on 25 September 2020).

2.9. Quantitative Real-Time PCR Assay

Total cell RNA was extracted using TRIzol Reagent (Cat No: 15596-026, Invitrogen,
Waltham, MA, USA). The cDNAs were synthesized using the PrimeScript™ RT reagent Kit
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with gDNA Eraser (Cat No: RR047A, TaKaRa, Kusatsu, Japan) in a total reaction volume
of 20 µL. Each RT-qPCR reaction was carried out with 50 ng of cDNA and 5 nM primer
pairs using SYBR Green Mix (Cat No: Q711-02-AA, Vazyme, Nanjing, China). The results
were monitored using a CFX384 Real-Time PCR Detection System (Bio-Rad, Hercules, CA,
USA) programmed for 1 cycle of 10 min at 95 ◦C, followed by 39 cycles of 10 s at 95 ◦C
and 10 s at 60 ◦C. The relative expression levels were calculated using the 2−∆∆Ct method.
The Glyceraldehyde-3-phosphate dehydrogenase (GAPDH) gene was used as a normalization
control. All primers used in quantitative PCR are listed in Table S1.

2.10. Western Blot Analysis

After treatment, cells were collected, and the total proteins were extracted using
RIPA solution (Servicebio, Wuhan, China) containing a mixture of protease phosphatase
inhibitors (Beyotime, Nanjing, China). A BCA protein assay kit was used to measure
the total concentrations of proteins according to the manufacturer’s instructions. Twenty
micrograms of cellular protein from each group was electro-blotted onto a PVDF mem-
brane (Millipore, Burlington, MA, USA) following separation on 10% SDS-PAGE (Sangon
Biotech, Shanghai, China). The membranes were blocked with 5% BSA in 0.1% Tween
20/Tris-buffered saline (TBST) for 2 h at room temperature and then incubated with either
anti-BACH1 ((F-9): sc-271211) or anti-HOMX1 (10701-1-AP) antibodies overnight at 4 ◦C.
Afterwards, samples were washed thrice with 0.1% TBST and incubated with secondary
antibodies (1:2000) (Beyotime, Nanjing, China) at room temperature for 2 h. The enhanced
chemiluminescence kit (Cat No: WBKLS0500) was used to visualize the protein bands.

2.11. Edu Cell Proliferation Assay

To assess cell proliferation, BACH1-KO and PK-15 cells were seeded into 12-well plates.
The cells were maintained in DMEM with 10% FBS, 100 U/mL penicillin and 100 µg/mL
streptomycin, incubated at 37 ◦C with 5% CO2. After 24 h, EdU cell proliferation assays
were performed using the BeyoClick™ EdU Cell Proliferation Kit with Alexa Fluor 555
(Cat No: C0075S, Beyotime) according to the manufacturer’s protocol. The cell nuclei
were stained with 4’,6-diamidino-2-phenylindole (DAPI) (Cat No: C1005, Beyotime) for
10 min at room temperature in the dark. Stained cells were visualized under a fluorescence
microscope (DP80, Olympus, Tokyo, Japan). The proportion of EdU-positive cells were
calculated in ImageJ software (three independent wells were imaged, and one random field
per well was captured for each experimental phase).

2.12. Immunofluorescence Assay

Differences in AFB1-DNA adducts in BACH1-KO and WT cells were assessed with
immunofluorescence. Cells were seeded in a 24-well cell culture plate with pre-attached cell
slides. The plated cells were treated with 1 µg/mL AFB1 diluted with 2% FBS in DMEM and
incubated for 36 h at 37 ◦C + 5% CO2. The cells were then fixed in 4% paraformaldehyde
at 4 ◦C for 10 min and permeabilized at 4 ◦C for 10 min in cold 0.3% Triton X-100. This
was followed by incubating with anti-AFB1 antibody (Cat No: NB600-443, NOVUS, Saint
Louis, MO, USA, 1:200) at 4 ◦C overnight. The primary antibodies were detected using Cy3
conjugated Goat anti-Mouse IgG (Cat No: HA1102, HUABIO, Hangzhou, China, 1:1000).
Cell nuclei were counter-stained with DAPI (Cat No: G1012, Servicebio) for 10 min at room
temperature in the dark. The slides were mounted with an anti-fluorescence quenching
mountant and observed under a fluorescence microscope (Olympus, Tokyo, Japan) using
the 40× objective lens. The proportion of fluorescing cells was calculated using ImageJ
software on three independent slides, each with two or three random fields of view for
each experimental group.

2.13. M2 Anti-AFB1 In Vivo Experiment

Sprague-Dawley (SD) rats were used for in vivo experiments. The rats were stratified
into five groups, namely, control, dimethyl sulfoxide (DMSO), M2, AFB1, and AFB1 + M2.
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There were five rats in each group. The rats were acclimatized to the laboratory environment
for 3 days with routine clinical scoring. Each group was inoculated with the appropriate
material, i.e., saline, DMSO, M2 (20 mg/kg.bw intraperitoneal injection), AFB1 (5 mg/kg.bw
by gavage), or the combination of AFB1 and M2, respectively. Gross sections of rat liver were
collected, stained with hematoxylin and eosin (H&E), and assessed for pathological changes.
Additionally, immunohistochemistry to detect AFB1-DNA adduct and the extraction of
liver tissue proteins for malondialdehyde (MDA) detection were conducted.

2.14. Hematoxylin and Eosin (H&E) Staining and Immunohistochemistry

The SD rats were euthanized and their liver tissue collected, fixed in 4% paraformalde-
hyde, and embedded in paraffin wax. Subsequently, the liver tissue was stained with H&E
to make pathological sections. Sections were observed and captured using the Olympus
BX53 microscope. Immunohistochemistry was performed on paraffin-embedded sections
using an indirect immunoperoxidase method. The same embedded liver tissues were
stained with anti-AFB1 antibody (Cat No: NB600-443, NOVUS, Saint Louis, MO, USA,
1:200) to detect changes of AFB1-DNA adducts.

2.15. Statistical Analysis

Statistical analysis was performed using R programming language. The means ± S.D.
were determined for each treatment group. Two-tailed Student’s t-test was used to deter-
mine significant differences between treatment and control groups (* p < 0.05; ** p < 0.01;
*** p < 0.001; **** p < 0.0001; ns, no significant).

3. Results
3.1. Genome-Scale CRISPR Screening Identifies Targets Required for AFB1-Induced Cell Death

To systematically identify the host genes required for AFB1-induced cell death, we
performed genome-wide CRISPR KO screening in the porcine kidney (PK)-15 cells stably
expressing Cas9 (hereafter referred to as PK-15-Cas9), as described in previous work [24]
(Figure 1A). The overall CRISPR screening strategy is illustrated in Figure 1A. We first
performed three rounds of challenge with AFB1, using untreated PK-15-Cas9 cells as a
negative control to confirm that cell death was attributable to AFB1 exposure in each round
of treatment. A total of 3 rounds of the AFB1 challenge were carried out with increasing
doses of 0.2 µg/mL, 1 µg/mL, and 6 µg/mL, respectively (Figure 1A). Since oxidative
damage caused by AFB1 is a central mechanism of AFB1-induced cell death [25], we sought
to identify the genes involved in AFB1-induced oxidative damage. Thus, the surviving
cells in the second round were simultaneously exposed to hydrogen peroxide (H2O2), a
classical model inducer of oxidative stress, and integrated sgRNA constructs were obtained
from the cells that survived AFB1 and H2O2 by PCR and Illumina-based sequencing.

Our CRISPR screening identified 94 unique sgRNA sequences, targeting 91 unique
protein-coding genes that were present in at least ~0.1% of the total cells analyzed in
3 rounds of AFB1 exposure (Tables S3–S5). Among the top 0.1% of the most frequently
detected sgRNAs, those targeting BACH1, SMARCC1 and RAB15 were highly enriched
in the second round of AFB1 challenge (Table S4). To reduce the false positive or poorly
resistant cells in the early rounds of AFB1 challenge, we conducted consecutive rounds of
selection with increasing concentrations of AFB1. A comparison of enriched genes from
the top 0.1% of hits revealed that 15 targets were common to all 3 rounds of the AFB1
challenge (Figure 1B). Interestingly, 16 genes were enriched after both AFB1 exposure and
H2O2 stimulation, implying that KO of these genes conferred high resistance to both AFB1-
and H2O2-induced oxidative stress in these cells (Figure S1A and Table S6). Among the top
hits of H2O2 selection, BACH1 emerged as the most significantly enriched (Figure S1B).
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Round 3: 6.0 µg/mL). AFB1 was refreshed daily until all control cells were killed. Surviving cells
were harvested, and sgRNA sequences were identified by high-throughput sequencing. (B) Venn
diagram of the top ~0.1% of shared and unique sgRNA target sequences obtained from each round
of AFB1 screening. (C) Scatter plots of the frequencies of sgRNA target sequence and the extent of
enrichment in transformed PK-15-Cas9 cells in Round 3 of AFB1 screening. (D) Cell viability assays
for WT and KO cell pool of candidate genes after AFB1 exposure at 2 µg/mL for 36 h. *** p< 0.001,
**** p < 0.0001. p values were determined with two-tailed Student’s t-tests. AFB1, aflatoxin B1; FACS,
fluorescence-activated cell sorting; NGS, next-generation sequencing; Round 1 (2 or 3), the first
(second or third) round of AFB1 challenge; WT, wild-type; KO, knockout.

Subsequently, we selected 10 genes that appeared as top hits in Round 3 to test their
effects on tolerance to AFB1 (Figure 1C). Then, utilizing the CRISPR/Cas9 genome-editing
system, we created KO mutants for the selected genes in PK-15 cells. Successful disruption
of each gene was confirmed by Sanger sequencing (Figure S2). Quantification of AFB1-
induced cell death in heterogeneous pools of three PK-15 KO cells indicated that KO
of the gene (i.e., HOXA6, SMARCA4, BACH1) conferred significant resistance to AFB1-
induced cell death, with BACH1-deficient cells exhibiting the highest resistance (Figure 1D).
Collectively, these results showed that several host factors were involved in AFB1-induced
cell death and that BACH1 as the greatest outlier played a key role, leading us to select this
target for further study.
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3.2. BACH1 Is Required for AFB1-Induced Cell Death

To explore the role of the transcriptional repressor of BACH1 in AFB1-induced cell
death, we isolated a monoclonal BACH1-KO PK-15 cell line (BACH1-KO cells) and con-
firmed that a +1-bp frameshift mutation in exon 6 resulted in its disruption (Figure S3A).
We also confirmed that BACH1 protein was almost completely abolished in the BACH1-KO
cells, and that lack of BACH1 had no apparent effect on either cell growth or proliferation
(Figures 2A and S3B). Subsequent observation by light microscopy showed that BACH1-
KO cells had a near complete resistance to AFB1, in contrast with WT cells (Figure 2B).
Using CCK-8 assays, we calculated the half maximal inhibitory concentration (IC50) of
AFB1 and found that BACH1-KO cells can tolerate remarkably high AFB1 concentrations,
with an IC50 ~8-fold higher than WT cells (Figure 2C). Additionally, since the amino acid
sequence of BACH1 is highly conserved amongst pigs and humans (Figure S4), we hy-
pothesized that its function may be conserved across swine and homo sapiens. To test this
hypothesis, we generated human BACH1-deficient Huh7 cells (hBACH1-KO cells) and
confirmed that hBACH1-KO led to significantly higher resistance to AFB1-induced cell
death (Figure S5A,B).

Furthermore, immunofluorescent staining indicated that BACH1-KO cells showed
significantly less formation of AFB1-DNA adducts after AFB1 exposure compared with
WT cells, with approximately 20-fold lower relative fluorescence intensity than WT cells
(Figure 2D,E). Through cell-passaging assays, we found that BACH1-KO cells exposed
to AFB1 could be swiftly restored to normal proliferation cycles and cell viability after
passaging. In contrast, WT cells exposed to AFB1 were almost non-viable during passaging,
which implied that KO of BACH1 may also confer resistance to AFB1-induced genotoxicity
(Figure S6A,B). Notably, we observed that cells with KO of BACH1 could tolerate multiple
mycotoxins, such as AFM1, AFG1, and Zearalenone (F-2) (Figure 2F). Taken together, these
results indicated that BACH1 functions as an essential mediator of cytotoxicity induced by
AFB1 or other mycotoxins.

3.3. BACH1 Knockout Significantly Alleviates AFB1-Induced Oxidative Damage by Upregulating
Antioxidant Genes

Our findings support that knocking out BACH1, a transcriptional repressor, can lead
to the potent inhibition of AFB1-induced cell death. We sought to identify the BACH1
downstream target genes to determine whether they also participated in AFB1-induced
cell death. RNA sequencing (RNA-Seq) on BACH1-KO and WT cells with and without
AFB1 exposure revealed a total of 2406 DEGs between the AFB1-treated and untreated cells,
889 DEGs (WT vs. KO), and 1915 DEGs (WT-AFB1 vs KO-AFB1) (|log2(FoldChange)| ≤ 2
and p value ≤ 0.001) (Figure S7A–C, Tables S7–S9). GSEA indicated that BACH1-depleted
cells exhibited enhanced expressions of genes involved in oxidation–reduction processes
compared with the WT cells (Figure 3A). Heatmap visualization of the core set of enriched
DEGs from GSEA revealed a trend of significant upregulation among antioxidant genes
in both WT and BACH1-KO cells after 36 h exposure to AFB1 (Figure 3B). The STRING
database was next used to construct a DEG PPI network, and the core genes from GSEA
with the highest values were determined using Cytoscape v. 3.7.2, which showed that
knocking out BACH1 could affect the expression of multiple downstream genes involved
in oxidation reduction (Figure S8).
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Figure 2. BACH1 knockout cells exhibit higher resistance to aflatoxin B1. (A) Western blot analysis of
BACH1 expression in WT and KO cells. (B) Representative images of WT and BACH1-KO PK-15 cells
challenged with 2 µg/mL AFB1 for 48 h. Scale bar, 100 µM. (C) The IC50 values for AFB1 in WT and
BACH1-KO cells determined by CCK-8 assays. (D,E) Immunofluorescence staining of AFB1-induced
DNA adduct formation in WT and BACH1-KO cells; relative fluorescence intensity calculated using
ImageJ software. Scale bar, 20 µM. (F) Enhanced resistance to AFM1, AFG1, and F-2 in BACH1-KO
cells. WT and BACH1-KO cells were treated with AFM1 (at 0.5 µg/mL and 1 µg/mL), AFG1 (at 8
µg/mL and 10 µg/mL), and F-2 (at 20 µg/mL and 30 µg/mL) for 36 h. Cell viability was measured
with CCK-8 assays. * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001. p values were determined with
two-tailed Student’s t-tests. AFB1, aflatoxin B1; AFG1, aflatoxin G1; F2, zearalenone; WT, wild-type;
KO, knockout.
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Figure 3. BACH1 deficiency attenuates oxidative damage from AFB1 via upregulation of antioxidant
factors. (A) Gene set enrichment analysis (GSEA) identified the oxidation –reduction process as signifi-
cantly enriched with differentially upregulated genes in RNA-Seq data of BACH1-KO cells treated with
AFB1. (B) Heatmap of the relative expression levels of genes in the core enrichment subset of GSEA.
(C) qPCR validation of RNA-Seq data showing differential mRNA expression of antioxidant genes in
oxidation reduction. (D) Western blot analysis of HMOX1 in WT and BACH1-KO cells with and without
AFB1 exposure. (E) BACH1-KO cells exhibit lower levels of AFB1-induced ROS. (F) Comparison of
MDA levels induced by AFB1 in WT and BACH1-KO cells. (G) H2O2-induced cell death in WT and
BACH1-KO cells. *** p < 0.001, **** p < 0.0001. p values were determined with two-tailed Student’s t-tests.
AFB1, aflatoxin B1; WT, wild-type; KO, knockout; RT-qPCR, Real-time quantitative PCR.



Antioxidants 2022, 11, 1787 11 of 17

Among these AFB1-inducible antioxidant genes, the mRNA expression of HMOX1,
MGST1, HSD17B2, and DIO1, were upregulated in BACH1-KO cells with and without
AFB1 exposure (Figures 3C and S9). In addition, Western blot analysis confirmed that
HMOX1 protein levels were also obviously upregulated in BACH1-KO, but not with
WT cells, regardless of their exposure to AFB1 (Figure 3D). The results indicated that
KO of BACH1 mitigated the inhibition of these antioxidant genes. To test the effects of
this inhibition, we quantified ROS and MDA content, the markers of oxidative stress
and lipid peroxidation, using DCFH-DA assay and TBARS assay, respectively. The results
showed that ROS production was induced by AFB1 in WT cells and that this production was
significantly reduced (i.e., from 22.5% to 2.3%) in BACH1-KO cells (Figure 3E). Furthermore,
BACH1 KO also resulted in decreased levels of MDA in response to AFB1 (Figure 3F) and
significantly inhibited cell death induced by H2O2, indicating that these BACH1-KO cells
displayed a high antioxidant capacity. Taken together, these results demonstrated that
BACH1 deficiency can reduce AFB1-induced oxidative damage by activating the expression
of antioxidant factors, thus alleviating cytotoxicity.

3.4. Identifying Inhibitors of AFB1-Induced Cell Death That Target BACH1

To identify novel potential inhibitors that confer high resistance to AFB1 exposure, we
conducted structure-based virtual screening targeting BACH1 using the known structure
of human BACH1 protein obtained from the PDB database. We used the Specs small-
molecule compound database of 55,024 compounds as the ligand library for virtual docking
with human BACH1 (Figure 4A). Ranking the predicted activity scores revealed that
compounds M1, M2, and M3 exhibited strong binding energy interacting with hBACH1
(Figures 4A and S10A; abbreviations of and synonyms for M1, M2, and M3 are listed in
Table S2). The treatment of Huh7 cells with 10 µg/mL of each compound showed that
only exposure to M2 resulted in any significant inhibition of AFB1-induced cell death
(Figure 4B). Furthermore, M2 did not affect the cell proliferation in cytotoxicity assays,
suggesting that it has no obvious toxic effects on cells (Figure S10B). Subsequently, we
found that M2 treatment could also protect cells under increasingly high concentrations
of AFB1 in Huh7 cells (Figure 4C). To further study the effects of this inhibitor on cellular
resistance to AFB1, we quantified the levels of AFB1-DNA adducts in Huh7 cells exposed
to AFB1. The results indicated that M2-treated cells had reduced formations of AFB1-DNA
adducts, with approximately fifteen-fold lower relative fluorescence intensity than control
cells (Figure 4D).

Molecular docking and dynamic simulation of M2 on the surface of human BACH1
revealed the three amino acid residues (Ser-13, Ser-14, and Ser-17) with the lowest bind-
ing energy (2.0, 1.9, and 2.4 kcal/mol, respectively), suggesting that these residues were
candidate binding sites for M2 (Figure S11A). Given the high level of conservation be-
tween human and pig BACH1 (Figure S4), we then explored these potential M2 docking
loci (Ser-13, Ser-14, and Ser-17) in porcine BACH1. Sequence alignments confirmed that
these residues were highly conserved (Figure S11B), which led us to test the effects of
M2 in PK-15 cells. We found that M2 treatment could also confer resistance to AFB1-
induced cell death in porcine cells (Figure 4E). Further IC50 assays indicated that AFB1
resistance was enhanced by over threefold in the presence of M2 (Figure 4F), while the
formation of AFB1-DNA adducts was significantly reduced by M2 treatment in PK-15
cells (Figure 4G).

We next sought to determine whether other small-molecule inhibitors with a similar
structure to M2 could similarly affect the cellular response to AFB1. We speculated that the
1,3-benzodioxin functional moieties at M2 may play a central role in mediating resistance
to AFB1 (Figure S10A). We then selected 182 compounds with >70% similarity to M2 from
the Specs small-molecule compound database. Using a virtual screening strategy, six
M2 analogues, designated as M4, M5, M6, M7, M8, and M9, were chosen as candidates
(Figure S12A, Table S2). Further cell viability assays showed that treatment with five of the
six analogues resulted in lower AFB1-induced cell death in Huh7 cells, while only three
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analogues led to lower cell death from AFB1 in PK-15 cells (Figure S12B,C). These results
suggested that the same inhibitors have different effects on AFB1 toxicity through BACH1
in different species. However, our overall results showed that M2 targeting of BACH1
resulted in significant resistance to AFB1 exposure in both human and porcine cells.Antioxidants 2022, 11, x FOR PEER REVIEW 13 of 18 
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Figure 4. Treatment with inhibitor M2 leads to the highest resistance to aflatoxin B1 in vitro. (A) Work-
flow of the structure-based virtual screening to identify inhibitors targeting BACH1. (B) Validation of
the top three inhibitors (M1, M2, and M3) in Huh7 cells by CCK-8 assays. (C) Comparation of Huh7
tolerance to different AFB1 concentrations with and without M2 treatment. (D) The relative fluorescence
intensity of AFB1-DNA adducts in Huh7 cells with and without M2 treatment. (E) Representative light
microscopy images of AFB1-treated PK-15 cells with or without M2 treatment. Scale bar, 100 µm. (F) The
IC50 assays for AFB1 in PK-15 cells with and without M2 treatment determined with CCK-8 assays.
(G) The relative fluorescence intensity of AFB1-DNA adducts in PK-15 cells with and without M2
treatment. * p < 0.05, ** p < 0.01, *** p < 0.001, **** p < 0.0001, ns, not significant. p values were determined
with two-tailed Student’s t-tests. AFB1, aflatoxin B1; M1, 1-Piperazineethanol, 4-phenyl-α-[[(3,4,5-
trimethoxyphenyl)methoxy]methyl]; M2, 1-Piperazineethanol,α-[(1,3-benzodioxol-5-yloxy)methyl]-4-
(2-methoxyphenyl); M3, 1,2-Ethanediamine, N1, N1, N2, N2-tetrakis (1H-benzimidazol-2-ylmethyl).

3.5. BACH1 Inhibitor Reduces the AFB1-Induced Liver Damage In Vivo

Given the above findings that the predicted docking locus was conserved between
pigs and humans, and that M2 could mitigate the effects of AFB1 in both porcine and
human cells, we investigated the effects of the BACH1 inhibitor M2 during exposure to
AFB1 in vivo. To this end, we challenged healthy SD rats with AFB1 with and without
M2 treatment (Figure S13). The overall workflow for M2 treatment assays is illustrated in
Figure 5A. Briefly, healthy rats were treated with AFB1 with or without M2 or with M2
alone by intraperitoneal injection for three days. After challenge with AFB1 rats, were given
a 7-day recovery period. We observed that the body weights of rats treated with AFB1 + M2
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were higher than those of rats given AFB1 alone, while M2 alone at 20 mg/kg showed
no cytotoxicity in rats (Figure 5B). In addition, comparisons of liver pathological tissue
slices showed that symptoms of hepatocellular edema and inflammatory cell infiltration
in the liver tissue caused by AFB1 exposure were effectively alleviated in rats treated
with M2 (Figure 5C). Similarly, immunohistochemical staining of liver tissues to detect
the formation of AFB1-DNA adducts indicated that adduct levels were lower in rats in
the AFB1 + M2 treatment group (Figure 5D). Moreover, M2 treatment was associated with
lower AFB1-induced MDA production in liver tissue, which implied that M2 might alleviate
AFB1-induced liver damage by decreasing oxidative stress (Figure 5E). Taken together,
these results indicated that BACH1 could serve as an effective target for the treatment
of oxidative damage induced by AFB1, while the M2 inhibitor of BACH1 could reduce
AFB1-induced liver damage (Figure 5F).
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without M2 treatment. (C) Liver histopathology of AFB1-exposed rats and control group. The specific
inflammatory cell infiltration is indicated with an arrow. Scale bar, 50 µm. (D) Representative light
microscopy images of immunohistochemical staining for AFB1-DNA adducts in liver tissues with
and without M2 treatment. Scale bar, 25 µm. (E) MDA levels in liver tissues with and without
M2 treatment. (F) Proposed molecular model of BACH1 and M2 in AFB1-exposed cells. * p < 0.05,
** p < 0.01, ns, not significant. p values were determined with two-tailed Students’ t-tests. ROS,
reactive oxygen species; MDA, malondialdehyde; AFB1, aflatoxin B1; WT, wild-type; KO, knockout;
DMSO, dimethyl sulfoxide; DMSO used as a negative control; Nrf2, NF-E2-related factor 2; ARE,
antioxidant response element; M2, 1-Piperazineethanol,α-[(1,3-benzodioxol-5-yloxy)methyl]-4-(2-
methoxyphenyl); SD rats, Sprague-Dawley (SD) rats.

4. Discussion

Aflatoxin B1 (AFB1) and its metabolites (e.g., AFM1) can accumulate in animal tissues
and be assimilated through human consumption of animal products. AFB1 toxicity in
livestock and humans can lead to adverse economic losses accompanied by serious health
concerns. Determining host factors required for AFB1 toxicity and revealing their molecular
mechanisms is essential for resolving aflatoxicosis through developing novel therapeutic
targets and through the targeted breeding of AFB1-resistant livestock, such as swine. We
executed a genome-wide CRISPR/Cas9 KO screening in PK-15 cells and identified several
host factors potentially related to the toxic effects of AFB1. Among the top candidates, the
transcriptional repressor BACH1 was the most significant target of AFB1. We subsequently
characterized BACH1 as a central mediator of AFB1-induced oxidative damage. Further-
more, using a structure-based virtual screening strategy, we developed a small-molecule
inhibitor (M2) that attenuates AFB1 toxicity via targeting BACH1.

BACH1 regulates the genes involved in mitotic chromatin dynamics, apoptosis, ox-
idative stress response, and cell cycle [26]. However, no studies have yet reported the
link between AFB1 and the molecular mechanism of BACH1 in AFB1 toxicity. We con-
ducted an RNA-Seq analysis to uncover the gene regulatory network relevant to AFB1
toxicity and found significant enrichment for differentially upregulated genes involved
in the oxidation–reduction process in BACH1-KO cells. Other studies have reported that
AFB1 negatively affects the balance between antioxidants and pro-oxidants, resulting in
elevated lipid peroxidation and oxidative damage [23,27]. Oxidative stress is associated
with multiple disorders such as cancers, atherosclerosis, and Alzheimer’s disease [28]. Our
results showed reduced ROS and MDA in BACH1 KO cells with an increased expression of
antioxidant genes such as HMOX1 and MGST1 (Figure 5F). Therefore, BACH1 is a crucial
factor in AFB1-induced oxidative damage by regulating the expression of antioxidant genes.

Currently, reports on BACH1 inhibitors are limited, with little or no information on
their characterization and outcomes on AFB1 resistance [29–31]. Structure-based virtual
screening has several advantages in identifying potential inhibitors of specific genes, such as
reduced time constraints, cost-effectiveness, and higher throughput than the conventional
screening of drug panels [32]. Using a structure-based virtual screening approach, we
developed several inhibitors that effectively decreased AFB1 toxicity by targeting BACH1.
Although M1 has a similar backbone to M2, M1 lacks the 1,3-benzodioxin functional
moieties and has no resistance to AFB1 toxicity (Figures 4B and S10A). Therefore, the
1,3-benzodioxin functional moieties at the chemical structure of M2 may play a central role
in inhibiting AFB1 toxicity. We selected six other inhibitors with similar conformations to
M2 and tested their effects on AFB1 resistance. In human cells, M4, M5, M6, M7, and M8
exhibited anti-AFB1 effects (Figure S12B). Structural analyses of these compounds revealed
a 1,3-benzodioxin structure. Specifically, M4, M5, and M6 contain tertiary amine positive
ions and elicit enhanced anti-AFB1 effects compared with M7 and M8 (Figure S12A,B). The
phenyl or benzyloxy moieties of M5, M6, and M8 may endow the tertiary amine cation with
stronger electrophilicity and enhance the polarity of the compounds with increased protein-
binding capacity. In addition, we found that the same inhibitors lead to increased resistance
to AFB1 in human cells than in porcine cells (Figure S12B,C). We used the human BACH1
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structure to conduct virtual screening since the porcine BACH1 structure is unknown. This
likely explains why the inhibitors conferred higher AFB1 resistance in human cells than
in porcine cells. We, therefore, suppose that the protein structure of BACH1 may differ
slightly between humans and pigs, even though the essential BACH1 binding amino acids
for M2 (Ser-13, Ser-14, and Ser-17) were conserved in both species. Overall, BACH1 is a
potential druggable target for AFB1 (Figure 5F). Further investigations are warranted for
comprehensively characterizing BACH1 and M2 interactions.

Finally, we found that an M2 inhibitor can attenuate AFB1 toxicity in rats. Since we
confirmed that M2 is effective in cells with acute exposure to AFB1, SD rats were used to
establish an in vivo model for oxidative damage induced by acute AFB1 exposure. The
results indicated that treatment with M2 reduces the formation of AFB1-DNA adducts and
MDA in liver tissue, thus alleviating liver damage. AFB1 is hepatotoxic and is a significant
factor in promoting the development of primary hepatocellular carcinoma (HCC) [5].
Moreover, other studies reported that BACH1 is upregulated in HCC samples, with BACH1
facilitating the growth and metastasis of HCC [33,34]. Therefore, we hypothesize that
M2 may be effective in treating HCC, although further studies are needed to confirm
this possibility.

5. Conclusions

In summary, we identified BACH1 as a novel host factor mediating AFB1 toxicity.
BACH1-defficient cells can tolerate high concentrations of AFB1 by increasing the expres-
sion of antioxidant genes. Additionally, the inhibitor M2, which targets BACH1, can
provide strong resistance to AFB1 toxicity in vitro and in vivo, suggesting its potential for
clinical development as a therapeutic intervention against AFB1 toxicity.
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