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Standard echocardiographic view recognition is a prerequisite for automatic diagnosis

of congenital heart defects (CHDs). This study aims to evaluate the feasibility and

accuracy of standard echocardiographic view recognition in the diagnosis of CHDs in

children using convolutional neural networks (CNNs). A new deep learning-based neural

network method was proposed to automatically and efficiently identify commonly used

standard echocardiographic views. A total of 367,571 echocardiographic image slices

from 3,772 subjects were used to train and validate the proposed echocardiographic

view recognition model where 23 standard echocardiographic views commonly used

to diagnose CHDs in children were identified. The F1 scores of a majority of views

were all ≥0.90, including subcostal sagittal/coronal view of the atrium septum, apical

four-chamber view, apical five-chamber view, low parasternal four-chamber view,

sax-mid, sax-basal, parasternal long-axis view of the left ventricle (PSLV), suprasternal

long-axis view of the entire aortic arch, M-mode echocardiographic recording of the aortic

(M-AO) and the left ventricle at the level of the papillary muscle (M-LV), Doppler recording

from the mitral valve (DP-MV), the tricuspid valve (DP-TV), the ascending aorta (DP-AAO),

the pulmonary valve (DP-PV), and the descending aorta (DP-DAO). This study provides

a solid foundation for the subsequent use of artificial intelligence (AI) to identify CHDs

in children.

Keywords: standard echocardiographic view, congenital heart defect, deep learning, convolutional neural

network, knowledge distillation

INTRODUCTION

Congenital heart defects (CHDs) are the most common birth defects in China, with an incidence
rate of approximately 0.9% in live births, and are the main causes of death in children aged
0–5 years (1). Precise preoperative diagnosis helps to develop the most reasonable surgery and
interventional treatment plan for CHDs. Transthoracic echocardiography (TTE) can provide
sufficient information about the structure of the heart to evaluate hemodynamics and cardiac
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function. It is currently the most commonly used non-invasive
examination method for CHDs. Many factors contribute to the
heterogeneity of echocardiographic diagnosis, such as inherent
pulse variability in the heart, speckled noise and artifacts
in echocardiogram, and inter- and intra-class differences in
standard echocardiographic views (2). The anatomical structure
and spatial configuration of CHDs are complex and changeable,
and accurate diagnosis through TTE is complicated and time-
consuming, and it is heavily dependent on the accurate judgment
of each echocardiographic view by experienced cardiologists.
In China, there is a lack of experienced cardiologists at the
grassroots level, especially in rural areas. It takes a great effort to
train an experienced doctor. In addition, many cardiologists lack
experience in diagnosing CHDs. Experienced cardiac surgery
centers usually have long waiting lists for appointments, and
cardiologists are overworked, leading to an imbalance between
supply and demand. Therefore, it is very necessary to establish an
automatic diagnosis system of CHDs to alleviate the difficulty of
CHD diagnosis at the grassroots level.

In recent years, artificial intelligence (AI) based image
recognition technology, especially deep learning via
convolutional neural networks (CNNs), have been greatly
improved and increasingly applied to diagnostic imaging in
medical fields (3–11). Currently, AI based analytic software
has been applied to the research of valvular diseases. Jin et
al. (12) has compared the accuracy of anatomical intelligence
ultrasound (AIUS) and manual depiction of the mitral valve
prolapse degree and found that AIUS can significantly improve
accuracy and reduce analysis time. According to the research
of Choi et al. (13), the aortic valve (AV) regurgitation volume
measured by three-dimensional full volume color Doppler
echocardiography has a high correlation and consistency with
those measured by magnetic resonance spectrum, which can be
used to quantitatively evaluate the AV disease.

Standard echocardiographic view recognition provides the
foundation for the clinical diagnosis of heart diseases. Recent
CNNs based on deep learning methods have been applied
in standard echocardiographic view recognition and achieved
superior performance than traditional methods. Extensive
research has been focused on fetal ultrasound (14, 15).
Baumgartner et al. (14) proposed a two-dimensional full CNN
containing six convolutional modules, which replaced the
commonly used full connection layer with the convolutional
and global average pooling layers, and recognized 12 standard
views of fetal ultrasound with an average accuracy of 69% and
average recall rate of 80%. Sridar et al. (15) also started with
fetal ultrasound data and used the AlexNet neural network pre-
trained with a natural image dataset to identify 14 views. They
designed a strategy for simultaneous training using two parallel
networks. The input of one network was the entire ultrasonic
image used to learn the global semantic information of the image.
The input of the other network was random local segmentation
of ultrasonic images used to learn the local features of the
image. The average accuracy rate and average recall rate were
76.47 and 75.41%, respectively. Zhang et al. (16) attempted to
develop a fully automated echocardiographic clinical diagnosis
system consisting of standard view recognition, cardiac structure

segmentation, and heart disease diagnosis. They applied a 13-
layer CNN network to standard view recognition, and obtained
a global accuracy of 84% on standard view recognition using
277 cases through a five-fold cross validation. Their model
can be used to detect hypertrophic cardiomyopathy, pulmonary
arterial hypertension, and cardiac amyloidosis. However, their
work was far from the diagnosis of common CHDs since the
standard views they used were mainly derived from five views
including parasternal long axis (PSLA), parasternal short axis,
apical 2-chamber (A2C), apical 3-chamber (A3C), apical 4-
chamber (A4C).

In this study, we used 367,571 echocardiographic images from
3,772 subjects to build a 24-category classification model that can
identify 23 standard echocardiographic views and one “other”
view. To our knowledge, this is the first work that covers the
most commonly used CHD diagnostic views. As we all know,
there is a trade-off between the complexity and accuracy of the
model. Achieving high accuracy and timeliness simultaneously
is challenging, especially when a large number of views need
to be identified. Our experimental results demonstrate that the
proposed knowledge distillation method maximizes the accuracy
of the network while keeping the complexity of the network
unchanged and has important clinical significance. Ultrasound
examination of CHDs is a dynamic scanning process and
images collected are mostly non-standard views and unevenly
distributed. Compared with existing work, the data set used in
our study is the largest taken from a real historical examination
database, closer to the routine CHD diagnosis, which is another
clinical contribution of this work.

METHODS

Subjects
The experimental data consists of a training data set (3,409 cases
and 247,750 TTE images) and a test data set (363 cases and
119,821 TTE images), both from the Shanghai Children’sMedical
Center. The TTE images are retrieved from a historical real
examination database in PACS system (Table 1). The 363 cases of
the test data set include 193 male cases and 170 female cases, with
an average age of 5.6 years. There were 170 healthy children, 102
children with CHDs, and 91 children with CHDs after surgery.
Table 2 lists the characteristics of the test dataset. The machines
used were mainly Philips iE33 and EPIC 7C. Six professional
ultrasound doctors participated in the data annotation, of which
four ultrasound doctors participated in the annotation of the
training data set, and two ultrasound doctors participated in
the annotation of the test data set. To avoid human bias, all
images were annotated and confirmed by two doctors. More
specifically, each image was annotated by a senior resident or
attending physician with more than 5 years of experience, and
then reviewed and confirmed by an associate chief physician or
chief physician with at least 10 years of experience. All data was
tailored to anonymize patient information.

Data Preprocessing
Usually, the boundary area of each frame of echocardiogram
contains a large amount of background information
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TABLE 1 | View distribution of our data.

Views Training data set Test data set

sub4C 2,679 3,042

subSALV 2,698 1,143

subSAS 26,183 11,922

subCAS 11,552 8,271

subRVOT 12,094 5,458

A4C 23,845 14,313

A5C 5,034 2,383

LPS4C 20,082 14,414

LPS5C 12,481 4,657

sax-basal 17,368 10,459

sax-mid 6,393 5,813

PSLV 16,610 9,280

PSPA 18,510 7,419

supAO 7,684 5,070

DP-MV 1,445 586

DP-TV 1,414 519

DP-AAO 1,500 665

DP-PV 1,497 769

DP-DAO 857 449

DP-OTHER 2,186 1,418

M-AO 600 389

M-LV 1,030 220

M-OTHER 34 20

Others 53,974 11,142

Total 247,750 119,821

TABLE 2 | Characteristics comparison between the CHD group and the normal

groups of the test data set.

CHD group

(n = 193)

Normal group

(n = 170)

P-value Statistical

method

Age (years) 4.42

(1.33–8.17)

4.67 (2.56–7.52) 0.5028 Mann Whitney test

Female/Male 103/90 91/79 0.9754 Chi-square test

Associated

cardiac

conditions

ASD (n = 29)

PDA (n = 9)

VSD (n = 30)

PS (n = 9)

AS (N = 4)

TOF/DORV

(n = 4)

Other CHD

(n = 17)

CHD after

operation

(n = 91)

KD (n = 23)

Normal

(n = 147)

ASD, atrial septal defect; VSD, ventricular septal defect; PDA, patent ductus arteriosus;

PS, pulmonary stenosis; AS, aortic stenosis; TOF, tetralogy of fallot; DORV, double outlet

of right ventricle; Age, Median (25% Percentile−75% Percentile).

that is not useful for diagnosis. In order to extract the
discriminative features embedded in the image, the
central fan-shaped area was cropped, and each cropped

image frame was resized to a fixed size of 192 ×

256 pixels.

Standard Echocardiographic View
Recognition
In clinical practice, the diagnosis of various CHDs involves
a series of standard scans. Standard echocardiographic view
recognition is a prerequisite for automatic CHD diagnosis. In
this study, we established a 24-category classification model that
can recognize 23 standard echocardiographic views commonly
used to diagnose CHDs in children and one “others.” As
shown in Table 1, the 23 views include subcostal four-chamber
view (sub4C), subcostal short-axis view of the left ventricle
(subSALV), subcostal sagittal view of the atrium septum
(subSAS), subcostal coronal view of the atrium septum (subCAS),
subcostal short-axis view through the right ventricular outflow
tract (subRVOT), apical four-chamber view (A4C), apical
five-chamber view (A5C), low parasternal four-chamber view
(LPS4C), low parasternal five-chamber view (LPS5C), parasternal
short-axis view at the base of the heart (basal short axis, sax-
basal), parasternal short-axis view at the level of the mitral
valve (short axis at mid, sax-mid), parasternal long-axis view
of the left ventricle (PSLV), parasternal view of the pulmonary
artery (PSPA), suprasternal long-axis view of the entire aortic
arch (supAO), Doppler recording from the mitral valve (DP-
MV), the tricuspid valve (DP-TV), the ascending aorta (DP-
AAO), the pulmonary valve (DP-PV), the descending aorta
(DP-DAO), other Doppler recordings (DP-OTHER), and M-
mode echocardiographic recording of the aortic (M-AO), the
left ventricle at the level of the papillary muscle (M-LV), other
M-mode echocardiographic recordings (M-OTHER). Except for
these 23 views, all other views are classified as “others.”

Figure 1 demonstrated the example images of the 24 standard
echocardiographic views. Among these views, subcostal views
are of great significance for the diagnosis of congenital heart
disease in infants and young children, especially for the diagnosis
of atrial septal defect (ASD). Apical and low parasternal views
are mainly used for the diagnosis of ASD, ventricular septal
defect (VSD), tetralogy of Fallot (TOF), and atrioventricular valve
diseases. The parasternal views are mainly used for the diagnosis
of AV, pulmonary valve (PV) diseases, ASD, VSD, TOF, and
patent ductus arteriosus (PDA). M-mode ultrasound is mainly
measured next to the parasternal to assess the size of the heart
chamber and the systolic function of the left ventricle. Pulse
Doppler is mainly used to measure the blood flow velocity of
various valves and blood vessels to determine whether there
is stenosis.

As we all know, there is a trade-off between the complexity
and accuracy of the model. Achieving high accuracy and
timeliness simultaneously is challenging, especially when a large
number of views need to be identified. Inspired by the idea of
probabilistic knowledge transfer method (17), which considered
knowledge distillation as a metric learning problem, we proposed
a CNN method that performed standard echocardiographic
view recognition through knowledge distillation. Knowledge
distillation enables the student network learn the generalization
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FIGURE 1 | Example images of the 24 standard echocardiographic views: (a) LPS4C; (b) LPS5C; (c) subCAS; (d) subSAS; (e) sub4C; (f) subRVOT; (g) subSALV; (h)

DP-MV; (i) DP-PV; (j) DP-DAO; (k) DP-OTHER; (l) DP-TV; (m) DP-AAO; (n) OTHER; (o) A4C; (p) A5C; (q) sax-basal; (r) sax-mid; (s) PSLA; (t) PSPA; (u) supAO; (v)

M-OTHER; (w) M-AO; (x) M-LV.
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FIGURE 2 | The proposed network architecture for standard echocardiographic view recognition.

ability of the teacher network, through replacing the hard
original one-hot label with the soft label, and learn the ability
to distinguish similar features (17–20). Therefore, on the one
hand, the knowledge distillation method compresses the model,
on the other hand, it enhances the generalization ability of
the model. As shown in Figure 2, ResNet-34 (21) was used as
the student model and ResNeSt-200 (22) was applied as the
teacher model. Our distillation method works by matching the
probability distribution of logits of the student and the teacher.
In each iteration of the training phase, the student learn from
data by minimizing the cross entropy loss. And meanwhile with
Kullback-Leibler divergence as the loss function, the output logits
of the student will be constantly close to that of the teacher.
As a result, we balanced the performance of the model and the
complexity of running time through realizing the knowledge
transfer from the teacher model to the student model.

Model Training
We trained the teacher model and the student model
simultaneously and also applied transfer learning to the
pre-trained backbone network using the large-scale natural
image dataset ImageNet (23). To enhance the diversity and
robustness of data, a series of online data augmentations
including horizontal and/or vertical flipping with a random
probability of p = 0.5 and random rotation with a random
probability of p= 0.5 were also implemented. Stochastic gradient

descent (SGD) was used as the optimizer with an initial learning
rate of 0.001, a decay factor of 0.1 for every 10 epochs, and a
mini-batch size of 128.

All codes were implemented using Python 3.7 and Pytorch
1.4.0. The experiments were carried out on a workstation
platform with 8 NVIDIA TITAN RTX GPUs, 24GB GPU
memory, 256G RAM, and 80 Intel(R) Xeon(R) Gold 6248 CPU
@ 2.50GHz, using Ubuntu 16.04.

RESULTS

In this study, four performance evaluation metrics including
Precision, Sensitivity, Specificity, and F1 Score were applied to
validate the performance of the proposed view recognitionmodel
and they are defined as follows:

Precision=
TP

TP + FP
(1)

Sensitivity = Recall =
TP

TP + FN
(2)

Specificity =
TN

TN + FP
(3)
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F1= 2x
Precision ∗ Recall

Precision+ Recall
(4)

where TP, FP, TN, and FN are the true positive, false positive,
true negative, and false negative rates, respectively. TP and TN
represent the positives and negatives of correct predictions with
respect to the ground truth. FP and FN represent the positives
and negatives of incorrect predictions with respect to the ground
truth. F1 Score is the harmonic average of precision and recall
with a value ranged in [0–1]. The higher the value means that the
model has better performance.

Common CHDs in children include ASDs, VSD, PDA,
pulmonary stenosis (PS), aortic stenosis (AS), TOF, and so
on. Table 3 lists the diagnosable CHDs corresponding to each
standard echocardiographic view. More specifically, the most
commonly used ASD diagnostic views include sub4C, subSAS,
subCAS, LPS4C, and sax-basal. The most commonly used views
for the diagnosis of VSD are sub4C, subRVOT, subSALV, A4C,
A5C, LPS4C, LPS5C, and PSLA. The most commonly used

views for PVS diagnosis include the subRVOT, sax-basal, and
PSPA. The most commonly used views for diagnosing PDA
include PSPA and supAO. The most commonly used views to

diagnose TOF include sub4C, subRVOT, A4C, A5C, LPS4C,
LPS5C, sax-basal, PSPA, and PSLA. M-AO and M-LV are used

for heart size measurement and heart function calculation.
The blood flow spectrum of the four valves and descending
aorta in these 23 views provide the basis for the subsequent

diagnosis of valvular and aortic arch diseases. As shown in

Table 3, the F1 scores of the subCAS+SAS, A4C, A5C, PSLV,
LPS4C, sax-mid, sax-basal, supAO, M-AO, M-LV, M-other, DP-

MV, DP-TV, DP-AO, and DP-DAO are all higher or close
to 0.90.

To help clinicians better understand the decision-making

mechanism behind the model, the activation map can be

visualized. As shown in Figure 3, the activation map reveals

the attention distribution of the network, where different colors

represent the weights of different pixels in the model’s prediction

process. The weight of the red part is larger, and the weight of

the blue part is smaller. The t-distributed stochastic neighbor

embedding (t-SNE) scatter plot in Figure 4 shows how ourmodel

TABLE 3 | Performance evaluation for different views.

Views Precision (95%CI) Sensitivity (95%CI) Specificity (95%CI) F1 Score (95%CI) CHD Type

subSAS 0.856 (0.849–0.862) 0.846 (0.840–0.852) 0.984 (0.984–0.985) 0.851 (0.851–0.851) ASD

subCAS 0.659 (0.650–0.668) 0.779 (0.771–0.788) 0.970 (0.969–0.971) 0.714 (0.714–0.714) ASD

subSAS+CAS 0.890 (0.886–0.894) 0.951 (0.948–0.954) 0.976 (0.975–0.977) 0.919 (0.919–0.919) ASD

subRVOT 0.828 (0.818–0.838) 0.839 (0.829–0.849) 0.992 (0.991–0.992) 0.833 (0.833–0.833) VSD, PS, TOF

sub4C 0.682 (0.663–0.700) 0.544 (0.527–0.562) 0.993 (0.993–0.994) 0.605 (0.605–0.605) ASD, VSD

subSALV 0.666 (0.631–0.701) 0.410 (0.382–0.439) 0.998 (0.998–0.998) 0.508 (0.508–0.508) VSD

A4C 0.925 (0.921–0.929) 0.972 (0.969–0.974) 0.989 (0.989–0.990) 0.948 (0.948–0.948) VSD, ASD, CAVC

A5C 0.889 (0.877–0.902) 0.917 (0.906–0.928) 0.998 (0.997–0.998) 0.903 (0.903–0.903) VSD, TOF

LPS4C 0.901 (0.896–0.906) 0.872 (0.867–0.878) 0.987 (0.986–0.988) 0.886 (0.886–0.886) ASD, VSD, CAVC

LPS5C 0.802 (0.790–0.813) 0.790 (0.779–0.802) 0.992 (0.992–0.993) 0.796 (0.796–0.796) VSD, TOF

PSLV 0.954 (0.949–0.958) 0.933 (0.928–0.938) 0.996 (0.996–0.997) 0.943 (0.943–0.943) VSD, AS, TOF

PSPA 0.855 (0.847–0.863) 0.846 (0.837–0.854) 0.991 (0.990–0.991) 0.850 (0.850–0.850) VSD, PS, PDA, TOF

sax-mid 0.972 (0.967–0.976) 0.920 (0.913–0.927) 0.999 (0.998–0.999) 0.945 (0.945–0.945) VSD, CAVC

sax-basal 0.880 (0.874–0.886) 0.871 (0.865–0.878) 0.989 (0.988–0.989) 0.876 (0.876–0.876) AS, ASD, VSD, PS, TOF

supAO 0.903 (0.895–0.912) 0.891 (0.882–0.900) 0.996 (0.995–0.996) 0.897 (0.897–0.897) PDA, COA

M-AO 0.959 (0.939–0.979) 0.900 (0.870–0.930) 1.000 (1.000–1.000) 0.928 (0.928–0.928) Assess the size of the heart

chamber and the systolic

function of the left ventricle
M-LV 0.850 (0.807–0.894) 0.982 (0.964–0.999) 1.000 (1.000–1.000) 0.911 (0.911–0.912)

M-OTHER 0.944 (0.839–1.000) 0.850 (0.694–1.000) 1.000 (1.000–1.000) 0.895 (0.895–0.895)

DP-TV 0.975 (0.962–0.988) 0.975 (0.962–0.988) 1.000 (1.000–1.000) 0.975 (0.975–0.975) Measure the blood flow velocity

of various valves and blood

vessels
DP-AO 0.946 (0.929–0.964) 0.928 (0.908–0.947) 1.000 (1.000–1.000) 0.937 (0.937–0.937)

DP-MV 0.972 (0.958–0.985) 0.990 (0.982–0.998) 1.000 (1.000–1.000) 0.981 (0.981–0.981)

DP-PV 0.761 (0.730–0.792) 0.730 (0.698–0.761) 0.999 (0.998–0.999) 0.745 (0.745–0.745)

DP-DAO 0.921 (0.896–0.947) 0.862 (0.830–0.894) 1.000 (1.000–1.000) 0.891 (0.891–0.891)

DP-OTHER 0.815 (0.796–0.835) 0.862 (0.845–0.880) 0.998 (0.997–0.998) 0.838 (0.838–0.838)

Other 0.613 (0.604–0.622) 0.616 (0.607–0.626) 0.960 (0.959–0.961) 0.615 (0.615–0.615) /

Total 0.865 0.848 0.994 0.853 /

ASD, atrial septal defect; VSD, ventricular septal defect; PDA, patent ductus arteriosus; PS, pulmonary stenosis; AS, aortic stenosis; TOF, tetralogy of fallot; DORV, double outlet of right

ventricle; CAVC, complete atrioventricular septal defect; COA, coarctation of aorta.
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FIGURE 3 | The activation maps of the apical four-chamber view and the subcostal sagittal view of the atrium septum. Different colors in the activation map represent

different weights in model prediction. The red part has a higher weight and the blue part has a lower weight.

clusters different views, where each point represents an image
of a view in the test data, and its color represents its true view
category. Each point in the scatter plot is a two-dimensional
projection of the 512-dimensional feature vector generated by
the last hidden layer of the model. We observe that most views
can be separated well, and only a few clusters are mixed, which
means our model can perform generally well on most views. The
confusion matrix shown in Figure 5 also demonstrates that the
proposed model performs well on most echocardiographic views.

There are some confusion between subRVOT and subSALV,
sub4C and subCAS+subSAS, LPS4C and LPS5C, and sax-basal
and PSPA.

To further evaluate our model, we compared our model
with ResNet-34 (the baseline student model), ResNeSt-200 (the
teacher model), and two other widely used deep learning
models, ResNeXt-50 (24) and DenseNet-161 (25). As shown in
Table 4, our model and the baseline ResNet-34 model have the
smallest parameters of 21.3M. The parameters of the ResNeXt-50
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FIGURE 4 | t-SNE visualization of CNN feature clusters for 24 echocardiographic views. Different views are represented with colored clusters and labels. The images

are sampled from the test set data and 256 samples were randomly sampled for each view. For views whose total number are <256, all samples are applied.

model, Densenet-161 model, and ResNeSt-200 model are 23.0M,
26.5M, and 68.2M, respectively. Our model achieved the highest
sensitivity of 0.865 and specificity of 0.994, and the second best
F1 score of 0.853, slightly lower than the highest F1 score of 0.854
of the teacher model. The precision rates of our model and the
teacher model are 0.848 and 0.856, respectively, and the highest
precision is 0.865 of DenseNet-161. With a comparable F1 score,
the teacher network ResNeSt-200 is almost three times that of

our model. Therefore, we can conclude that we achieved the
best overall performance through knowledge distillation using
the smallest model. In addition, an ablation study on pre-training
using image-net was also carried out. Experimental results show
that there are significant differences in precision (0.848 vs. 0.833),
sensitivity (0.865 vs. 0.856), specificity (0.994 vs. 0.993), and F1
score (0.853 vs. 0.841) with and without pre-training, as shown
in Table 4.
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FIGURE 5 | The confusion matrix between different echocardiographic views.

TABLE 4 | Performance comparison.

Model Precision Sensitivity Specificity F1 score Parameters

ResNet-34 (baseline/student) 0.812 0.845 0.992 0.820 21.3M

ResNeXt-50 0.817 0.830 0.992 0.822 23.0M

Densenet-161 0.865 0.826 0.993 0.838 26.5M

ResNeSt-200 (teacher) 0.856 0.856 0.994 0.854 68.2M

Our model (w/o weight pre-training) 0.833 0.856 0.993 0.841 21.3M

Our model* (w/ weight pre-training) 0.848 0.865 0.994 0.853 21.3M

Bold value indicates the best performance in the corresponding criteria. * indicates the proposed method.
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DISCUSSION

In our study, we established a 24-category classification model
to accurately and efficiently identify 23 commonly used standard
echocardiographic views in the diagnosis of CHDs in children by
using an effective deep learning-based neural network method
through knowledge distillation. The most common CHDs in
clinics include ASD, VSD, PS, PDA, TOF, and so on. One of
the future work that we will conduct in the near future is to
investigate how well the proposed model performs for specific
congenital heart diseases (such as ASD).

Most of the ultrasound examinations for CHDs are the process
of dynamic scanning where images acquired are mostly non-
standard views and the image views are unevenly distributed. The
images used in our study are all retrieved from the historical real
examination database which is closer to the routine diagnosis
of CHDs. This requires a trade-off between the complexity and
accuracy of the model. The higher the model complexity, the
higher the accuracy, but the operating efficiency will decrease.
Therefore, we proposed a knowledge distillation method to
maximize the accuracy of the network while keeping the
complexity of the network unchanged. After training, the student
network can be directly used to recognize the input ultrasonic
image and achieve performance comparable to that of the
teacher network without adding additional model complexity
and time consumption.

Table 3 shows that F1 scores of the subCAS+SAS, A4C, A5C,
LPS4C, sax-mid, sax-basal, PSLA, supAO, M-AO, M-LV, DP-
MV, DP-TV, DP-AAO, and DP-DAO are all above or close to
0.90. Based on these views, common CHDs can be diagnosed,
including ASD, VSD, PS, and TOF. Initially, subCAS and subSAS
were treated as two separate views. However, due to the similarity
of their image appearance, it is difficult to distinguish them. In
addition, these two views are mainly used for the diagnosis of
ASD and the scanning process is often between the two views,
which makes the distinction more difficult. On the other hand,
the confusion between the two views has no significant difference
in the diagnosis of the disease. Therefore, wemerged subCAS and
subSAS into a new subCAS+SAS view.

As shown in Figure 5, the sub4C view was easily classified
as subCAS, the subSALV view was easy to get misclassified as
subRVOT, LPS5C view was easy to be misclassified as LPS4C
and sax-basal. The main reason for these misclassifications
was that these views were relatively close to each other.
Moreover, in the scanning process, image slices were collected
between these views, therefore it was more likely to cause
misclassification. In addition, the training samples of the above
views were also relatively small. Subcostal short-axis view of
the left ventricle is primarily used to diagnose muscular VSDs,
the information provided in this view can be supplemented
by sax-mid. Parasternal view of the pulmonary artery was
easily misclassified as sax-basal and “other” views. Through
further analysis of misclassified images, we found that images
that clearly showed the aortic root and pulmonary artery
branches were easily misclassified. The low F1 score of the
PV flow spectrum was caused by confusion with the blood
flow spectrum of the pulmonary artery branches. In addition,

the training data for the blood flow spectrum and the
M-mode ultrasound was also small. In the future, we will
add more training data to improve the performance of the
proposed model.

CONCLUSIONS

This study proposes an effective deep learning based method
to identify echocardiographic views commonly used in the
diagnosis of CHDs in children. Experimental results show
that the proposed method can maximize the accuracy of the
network while maintaining the complexity of the network.
Compared with existing standard echocardiographic view
recognition research, the images used in this study are all
from the historical real examination database which are more
realistic and authentic, providing foundation for subsequent
AI identification of various types of CHDs with greater
clinical significance.
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