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Abstract Among social vertebrates, immigrants may incur a substantial fitness cost
when they attempt to join a new group. Dispersers could reduce that cost, or increase
their probability of mating via coalition formation, by immigrating into groups
containing first- or second-degree relatives. We here examine whether dispersing
males tend to move into groups containing fathers or brothers in gray-cheeked
mangabeys (Lophocebus albigena) in Kibale National Park, Uganda. We sampled
blood from 21 subadult and adult male mangabeys in 7 social groups and genotyped
them at 17 microsatellite loci. Twelve genotyped males dispersed to groups
containing other genotyped adult males during the study; in only 1 case did the
group contain a probable male relative. Contrary to the prediction that dispersing
males would follow kin, relatively few adult male dyads were likely first- or second-
degree relatives; opportunities for kin-biased dispersal by mangabeys appear to be
rare. During 4 yr of observation, adult brothers shared a group only once, and for
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only 6 wk. Mean relatedness among adult males sharing a group was lower than that
among males in different groups. Randomization tests indicate that closely related
males share groups no more often than expected by chance, although these tests had
limited power. We suggest that the demographic conditions that allow kin-biased
dispersal to evolve do not occur in mangabeys, may be unusual among primates, and
are worth further attention.

Keywords Dispersal . Gray-cheeked mangabeys . Kibale National Park . Lophocebus
albigena . Microsatellites . Relatedness

Introduction

For many social primates, dispersal and subsequent immigration into a new group
can have substantial fitness costs (Isbell and van Vuren 1996; Pusey and Packer
1987). In addition to costs related to increased predation risk and decreased
knowledge of food resources, immigrants may receive aggression from group
residents, e.g., olive baboons (Papio anubis): Packer (1979); long-tailed macaques
(Macaca fascicularis): van Noordwijk and van Schaik (1985); Hanuman langurs
(Semnopithecus entellus): Borries (2000); and white-faced capuchins (Cebus
capucinus): Fedigan (1993). Resident male olive baboons herd females away from
immigrant males, and may also chase these males, sometimes severely wounding
them (Packer 1979). Further, immigrants may also initially take on low ranking
positions in the existing dominance hierarchy, e.g., vervets (Cercopithecus aethiops):
Henzi and Lucas (1980); long-tailed macaques: van Noordwijk and van Schaik
(1985); and Japanese macaques (Macaca fuscata): Sprague (1992).

Given that access to kin increases the likelihood of forming coalitions and may
decrease the probability of aggression, researchers have often suggested that
dispersers could reduce fitness costs by immigrating with relatives (Cheney and
Seyfarth 1983; Johnson and Gaines 1990; Ross 2001). In some species, relatives, or
familiar individuals suspected of being relatives, immigrate into groups together, e.
g., rhesus macaques (Macaca mulatta): Drickamer and Vessey (1973); Japanese
macaques: Kawanaka (1973); yellow baboons (Papio hamadryas cynocephalus):
Cheney and Seyfarth (1977); vervets: Cheney and Seyfarth (1983); squirrel monkeys
(Saimiri boliviensis): Mitchell (1994); and white-faced capuchins (Cebus capuci-
nus): Jack and Fedigan (2004). For example, male squirrel monkeys emigrate from
their natal groups with age-mates, often spending time together in all-male bands
before eventually entering new mixed-sex groups with the same individuals
(Mitchell 1994). Male coalitions are essential for gaining entry into a group, and
for maintaining membership in it (Jack and Fedigan 2004). Genetically related
immigrant male rhesus macaques are more likely to support each other in aggressive
interactions and to reach high-ranking positions in the dominance hierarchy than are
males that immigrate alone (Meikle and Vessey 1981). Even singly dispersing
individuals of some species immigrate into groups containing relatives, e.g., vervets:
Cheney and Seyfarth (1983) and western gorillas (Gorilla gorilla): Bradley et al.
(2007). For example, male vervets immigrate into groups containing related males,
which decreases the likelihood that resident males and females will be aggressive
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toward them. In addition, young males sometimes immigrate together with peers or
brothers (Cheney and Seyfarth 1983). Female western gorillas are more likely to
immigrate into groups containing female relatives, making female kin associations
possible (Bradley et al. 2007).

Gray-cheeked mangabeys (Lophocebus albigena) are arboreal, forest relatives of
the widely studied savanna baboons (Papio spp.), and have become a common
subject of behavioral research (Arlet et al. 2007; Chancellor and Isbell 2009;
Janmaat et al. 2006; O’Driscoll-Worman and Chapman 2006; Olupot et al. 1994;
Waser 1977). As in baboons, macaques, and many other cercopithecine primates,
male mangabeys generally leave their natal groups just before reproductive maturity,
often spending many months alone before successfully joining another group. A
stable, matrilineal core of 6.2±0.8 adult females can be joined by 3.1±1.2 adult
males (Olupot and Waser 2010), but male tenure in groups varies widely (Olupot
and Waser 2005). Adult males often make individual forays to neighboring groups,
shadowing them for a few hours or days, and when they are able to maintain
prolonged contact with the new group’s females, those visits can progress to
secondary dispersal. Not surprisingly, resident males are often aggressive toward
visitors, and the males that succeed in immigrating into the new group are those able
to mate in the new group despite the harassment they receive (Olupot and Waser
2001a, b). If the intensity of aggression received by a “visiting” male from resident
males is influenced by their relatedness to him, his ability to enter and mate in a new
group might be influenced by the presence of close male relatives.

Between 1996 and 2000, Olupot darted and radiocollared males in Kibale
National Park, Uganda, documenting many aspects of dispersal and providing an
opportunity to examine the role of kinship in male dispersal decisions. We here
estimate the coefficient of relatedness among adult males based on blood samples
collected during the process of attaching radiocollars, and then document the degree
to which males join groups containing possible male relatives. Based on previous
studies of closely related species (Cheney and Seyfarth 1983) and the theoretical
advantages of male coalition formation, we predicted that dispersing male
mangabeys would follow kin. Although 2 microsatellite markers for gray-cheeked
mangabeys have already been developed (Clisson et al. 2000), the species is not well
characterized genetically and it was necessary for us to evaluate additional markers
and compare them with baboons and macaques.

Methods

Subjects

Between 1996 and 1998, Olupot darted and radiocollared all 25 adult male residents
of 7 adjacent social groups in the vicinity of the Makerere University Biological
Field Station, Kibale National Park, Uganda. He also darted subadult males, solitary
males, and immigrants when possible. He scored males as adult or subadult based on
body mass and dentition, and took 1–2 ml of whole blood from each individual
(Olupot 2000a, b; Olupot and Waser 2005) Through mid-2000, he located and
observed each male with an operating radiocollar 2–3× per week, thereby
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documenting male associations with social groups and each other as well as naturally
occurring dispersal events (Olupot and Waser 2001a, b, 2005). Some blood was used
for viral assays, but samples from 21 males (18 adult, 3 subadult) remained in 2007
and we transferred these samples to the Molecular Anthropology Laboratory at the
University of California, Davis for genetic analyses.

Markers

We extracted DNA from whole blood samples using the QiaAmp DNA blood mini
kit (Qiagen Inc., Valencia, CA) following the manufacturer’s directions. The close
genetic relationship between gray-cheeked mangabeys and other cercopithecines,
particularly Papio (Fleagle and McGraw 1999; Page and Goodman 2001), suggested
that cross-amplification would be possible, and we selected 17 loci proven to be
informative in Papio or Macaca for genotyping. For polymerase chain reaction
(PCR) amplification, we used 1.25 μl of DNA extract in each 12.5-μl reaction
(67 mM Tris-Cl, pH 8.8, 16 mM (NH4)2SO4, 0.01% Tween-20, 0.05 mM each
dNTP, 0.2 μM each primer, 1.7 mM MgSO4, 0.025 units/ml of Invitrogen Platinum
Taq). We optimized annealing temperatures and extension times of the thermocy-
cling conditions to each microsatellite primer pair (Table I), but generally included
60 cycles with denaturing at 94°C for 20 s, a variable annealing time and
temperature, extension at 72°C for 45–90 s, and a variable final extension time at
72°C. We analyzed all samples on the ABI 3130 DNA Sequencer with the Liz 500
size standard, following the manufacturer’s instructions. Three of the markers
(D7s1826, D7s794, and D8s1106) had a 6-base-pair “pig tail” on the reverse primer.
We adjusted allele sizes for these markers accordingly.

The ABI 3130 DNA Sequencer initially assigned allele sizes to the hundredth
base pair. As it is impossible for an individual to have an allele size of less than a
whole base pair, we rounded the decimal values either up or down to the nearest base
pair, and identified any 2 bands differing by <1 base pair as the same allele. Because
all markers included in this study contained tetranucleotide (4-base pair, bp) repeat
motifs, fragment sizes that are multiples of 4 were expected, though not required
because insertions or deletions can increase or decrease the motif length by ≥1 bps.
When we identified individuals with alleles that met the criteria above, but did not
exhibit solely alleles that represented the 4-bp repeat motif, we regenotyped the
individual at that locus until a concordant genotype was produced from ≥2
independent PCR reactions.

To test for allelic dropout and misidentification of heterozygotes, we randomly
selected one third of individuals and regenotyped for every marker, and compared
the replicate genotypes to the original. If the 2 genotypes matched, we considered
the assignment correct. If the genotypes were not the same, e.g., the individual was a
homozygote in the first PCR and a heterozygote in the second, we regenotyped the
individual until ≥2 concordant genotypes were produced.

We estimated population genetic parameters from genotypic data with the
adegenet 1.1 package for R. We used ML-RELATE, which generates maximum
likelihood estimates of genetic relatedness, r (Kalinowski et al. 2006), to assess
genetic relationships between all pairs of males. In addition, the program uses
k-coefficients, or probabilities that a dyad shares 0, 1, or 2 alleles (Blouin 2003) in
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common, to estimate the relative likelihoods that individuals are siblings, parent and
offspring, or unrelated.

We generated mean relatedness values within and between groups by averaging
the estimates of r between each male and each of the other males in or out of his
group, creating a single measure for each individual to avoid pseudoreplication. To

Table I Primer sequences and annealing temperatures for Lophocebus albigena markers

Locus name Forward and reverse primer sequences Anneal/ext/final ext

D2s1333 3′: CTT TGT CTC CCC AGT TGC TA 62°C/30 s/60 min

3′: TCT GTC ATA AAC CGT CTG CA

D3s1768 3′: GGT TGC TGC CAA AGA TTA GA 60°C/45 s/60 min

3′: CAC TGT GAT TTG CTG TTG GA

D4s243 3′: TCA GTC TCT CTT TCT CCT TGC A 60°C/45 s/5 min

3′: TAG GAG CCT GTG GTC CTG TT

D5s820 3′: ATT GCA TGG CAA CTC TTC TC 56°C/45 s/5 min

3′: GTT CTT CAG GGA AAC AGA ACC

D5s1457 3′: TAG GTT CTG GGC ATG TCT GT 58°C/45 s/5 min

3′: TGC TTG GCA CAC TTC AGG

D6s501 3′: GCT GGA AAC TGA TAA GGG CT 58°C/45 s/5 min

3′: GCC ACC CTG GCT AAG TTA CT

D7s1826 3′: CAT CCA TCT ATC TCT GTA ATC TCT C 60°C/45 s/5 min

3′: GTT CTT TAT TTA ACA CAC CTG TCT CAA TCC

D7s794 3′: GCC AAT TCT CCT AAC AAA TCC 60°C/45 s/5 min

3′: GTT CTT TAT GCC CAT GTG TTA GGG TT

D8s1106 3′: TTG TTT ACC CCT GCA TCA CT 60°C/45 s/5 min

3′: GTT CTT TTC TCA GAA TTG CTC ATA GTG C

D11s2002 3′: CAT GGC CCT TCT TTT CAT AG 60°C/45 s/5 min

3′: AAT GAG GTC TTA CTT TGT TGC C

AGAT007 3′: CAA TGT TAA CTG ACT GCA TTG CTG 60°C/45 s/60 min

3′: TGG AAG CTA CAA TTC AAG ATG AGA

270o7 3′: GAG CTC TGT GGA TTG CTG TGT AGA TTT 62°C/45 s/5 min

3′: GGC ACG TGC CTG TAG TCC CAG TTA T

272o12 3′: GTG TTC ATC TGG GAA TTT 54°C/45 s/5 min

3′: GCT AGC TAA CTA GAC AGG TAG TT

D10s611 3′: CAT ACA GGA AAC TGT GTA GTG C 64°C/45 s/5 min

3′: GTT CTT CTG TAT TTA TGT GTG TGG ATG G

D14s306 3′: AAA GCT ACA TCC AAA TTA GGT AGG 54°C/45 s/5 min

3′: TGA CAA AGA AAC TAA AAT GTC CC

D16s750 3′: ATA GCA AGT ACT GAA TGA CCT GG 52°C/45 s/5 min

3′: GCA AAG CAC TGG GAG ATT TA

D4s1626 3′: TAC ACT TGA ACA AAG TAA GGA TGC 60°C/45 s/5 min

3′: GTT CTT AAA GGA AAA GGA ATG GGA TG
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compare the mean relatedness of individuals within and between groups, we
performed a Wilcoxon signed-ranks test.

Randomization Tests

We performed a randomization test to determine whether the observed rate of
dispersal into groups containing relatives was greater than expected by chance. For
each observed dispersal by a genotyped male, we determined which of the adjacent 5
focal groups contained ≥1 adult male related to the emigrant by r>0.20 at the time
he left his group. We chose this cutoff to include first- (0.50, as with full brothers or
fathers and sons) and second (0.25)-degree relatives (as with half-brothers) but
exclude dyads of lower relatedness; for convenience, we refer to males whose
estimated r>0.20 as relatives. We then simulated the same number of dispersal
events, in each case choosing a destination for the male randomly from the adjacent
5 groups. For each dispersing individual in turn, we recorded whether his random
new group contained a male relative, iterating this process 1000 times. This
procedure yielded the number of times that mangabeys dispersing without regard to
the presence of relatives would be expected to immigrate into a group containing ≥1
relative by chance alone.

Estimators of genetic relatedness and relationship are subject to considerable error
(Blouin 2003; Csillery et al. 2006; Van Horn et al. 2008). For example, Van Horn et
al. (2008), using a larger data set than ours but a similar number of microsatellite
loci, found that 3.5% of baboon dyads classified as unrelated were in reality close
relatives, but that only 58% of dyads classified as related actually were. To assess
whether our estimate of the number of males dispersing into groups containing
relatives was sensitive to those errors, we performed another randomization test. We
reassigned relatedness to our dyads on the assumption that errors in our analyses
were of similar magnitude, converting a random 5% of our unrelated dyads, as
determined by our genetic analysis, to relatives and 40% of our related dyads to
nonrelatives. We then counted how many times dispersing males entered groups
containing relatives as defined by this procedure, and iterated the process 1000
times.

Finally, we randomized the distribution of adult males among the 7 study groups
in June of each year (1997–2000), maintaining the observed number of males in
each group, and counting the number of pairs of males related by r>0.20. Again, we
iterated this process 1000 times. This gave us the number of pairs expected to share a
group if males chose groups without regard to relatedness.

Results

Markers

We obtained genotypes at all 17 loci for 18/21 males; 3 males failed to amplify at 1
locus each. Lophocebus albigena was monomorphic at loci D3s1768 and AGAT007.
Two polymorphic loci exhibited a significant excess of homozygotes, suggesting the
presence of null alleles, and were eliminated from estimates of r. The remaining 13
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polymorphic loci were in Hardy–Weinberg equilibrium, and a number of alleles per
locus ranging from 2 to 6 (Table II); we used these loci for relatedness analyses.

Table II also includes comparative values for allele number, allele size range, and
observed heterozygosity at each locus for captive olive baboons (Papio hamadryas
anubis) at the Southwest National Primate Research Center and captive rhesus
macaques (Macaca mulatta) from a variety of U.S. and international primate centers.
The number of alleles at each locus is substantially lower in our sample of
Lophocebus than in either Papio or Macaca. Nevertheless, the observed heterozy-
gosity for Lophocebus is comparable to that observed in Macaca, and overlaps the
range of heterozygosities in Papio.

Relatedness and Dispersal

Among the 210 possible pairs among our 21 males, the mean relatedness was r=
0.07. Most pairs were unrelated, but 28 pairs were related by r>0.20, with a
maximum estimated r of 0.58.

Genotyped males dispersed into groups containing other genotyped males 12
times between 1996 and 2000. In 4 of these events, the disperser had no relatives in

Table II Summary of genetic data collected for Lophocebus albigena, compared with values for Papio
hamadryas anubis and Macaca mulatta

Lophocebus (N=21) Papio (N=+100) Macaca (N=392)

Locus
name

No. of
alleles

Min.
Size

Max.
size

He Ho No. of
alleles

Min.
size

Max.
size

Ho No. of
alleles

Min.
size

Max.
size

Ho

D2s1333 5 282 298 0.66 0.67 10 278 314 0.86 19 265 349 0.49

D3s1768 1 158 158 0 0 14 178 230 0.80 19 174 226 0.75

D4s243 5 160 176 0.52 0.48 8 153 181 0.76 – – – –

D5s820 6 195 230 0.75 0.62 – – – – – – – –

D5s1457 4 121 133 0.64 0.76 – – – – 13 113 141 0.50

D6s501 3 176 184 0.62 0.71 17 174 238 0.85 12 169 237 0.58

D7s1826 3 137 150 0.47 0.52 10 122 158 0.79 10 126 158 0.53

D7s794 3 144 157 0.22 0.14 11 146 183 0.66 10 145 185 0.57

D8s1106 3 154 162 0.44 0.29 10 131 167 0.79 20 128 212 0.60

D11s2002 3 263 298 0.62 0.57 8 254 282 0.79 10 250 282 0.46

AGAT007 1 164 164 0 0 9 157 189 0.81 14 157 189 0.64

270o7 2 195 99 0.04 0.05 – – – – 9 177 220 0.58

272o12 6 148 165 0.71 0.32 – – – – 9 138 162 0.78

D10s611 4 152 164 0.61 0.68 18 149 213 0.91 13 170 222 0.76

D14s306 4 162 182 0.48 0.48 10 156 188 0.78 14 157 158 0.72

D16s750 4 97 102 0.61 0.27 – – – – 4 100 112 0.51

D4s1626 5 158 186 0.67 0.68 14 232 284 0.85 31 162 217 0.66

PHA microsatellite data from the Southwest National Primate Research Center Primate Genetics and
Genomics Database (http://baboon.sfbrgenetics.org/Bab_Polymorphisms/STRpageBL.php); MM micro-
satellite data from Smith et al. (2006)
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any adjacent group at the time of dispersal. During the other 8, the disperser had 1–2
possible relatives in neighboring groups, but only once did he enter a group that
contained a relative (for this pair, r=0.30). This result was insensitive to errors
associated with estimating genetic relatedness; correcting for relatives misclassified as
nonrelatives and vice versa, the mean number of dispersers that entered groups
containing males classified as relatives was 1.2±1.0 (mean±SD). In 68% of our 1000
randomizations, dispersers entered groups containing a relative no more than once.

By chance, the number of dispersers expected to enter a group containing a
relative was 2.2, and the probability that ≥1 disperser would enter a group containing
a relative was 0.93 (Fig. 1). Therefore, males entered a group containing a male
relative no more often than expected by chance

When we examined the distribution of relatedness within and among social
groups, we found that 1 of our 3 genotyped subadults was related by r=0.50 to an
adult male in his group, suggesting that they were a father–son pair. This pair shared
the same group for ≥3 of the 4 yr of the study. The other 2 subadult males were not
related to any other males in their groups by r>0.20. The mean r between subadults
and other males in their groups was 0.06, virtually identical to their relatedness to
males in other groups (r=0.08).

Excluding the subadults, the mean value of r among males sharing a group was
0.04. For males in different groups, the mean r was 0.08. In other words, relatedness
among adult males in the same group was marginally lower (p=0.04, N=18,
Wilcoxon signed-ranks test) than that among adult males in different groups. This
pattern of mean male relatedness, together with that reported above for dyads
involving subadult males, provides no support for the idea that dispersal produces
clusters of male relatives.
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Fig. 1 Expected (histogram from randomization test) and observed (dashed line) number of males that
immigrated into groups containing probable brothers during the study.
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No related adult males shared groups at the start of the study, and the 1 male that
immigrated into a group containing an apparent relative stayed only 6 wk before
emigrating again. The numbers of pairs of relatives expected to share groups each year
by chance were 1.1 (1997), 2.9 (1998, when the observed case occurred), 1.3 (1999),
and 1.5 (2000). The probabilities that relatives would share groups at least as often as
observed by chance were 0.79 (1997), 0.86 (1998), 0.84 (1999), and 0.86 (2000).
Therefore, male relatives shared groups no more often than expected by chance.

Discussion

Markers

Primers for microsatellites polymorphic in other cercopithecines were readily
adapted to use with Lophocebus albigena. The number of alleles per locus was
relatively low, as might be expected if there is an ascertainment bias, but observed
heterozygosities were comparable to those observed in captive populations of olive
baboons and rhesus macaques. In light of the Uganda mangabey’s recent assignment
by Groves (2007) to its own species (Lophocebus ugandae) based on cranial
measurements, it is increasingly relevant to also investigate the genetics of this group
of primates.

Opportunities for Kin-biased Dispersal

An unexpected result of our analysis is that only 28/210 (13%) of our dyads have r
values high enough to be characterized as likely relatives. In other words, the genetic
data suggest that most dispersing mangabeys will not have nearby male kin to
follow. As noted earlier, one problem associated with relatedness estimators is that
they may be biased. Could the apparent lack of brothers in nearby groups be an
artifact of that limitation? In fact, the pattern of type I and type II errors reported by
Van Horn et al. (2008), suggest that relatedness estimators overestimate the number
of related dyads. If the pattern of errors reported by Van Horn et al. (2008) for
baboons also applies to mangabeys, the true percentage of male dyads that are
relatives (22/210 = 10%) may be even lower than our estimate (28/210 = 13%). In
other words, the pattern of type I and type II errors associated with relatedness
estimators reinforces, rather than weakens, the conclusion that opportunities for kin-
biased dispersal are rare.

The imprecision of relatedness estimators also places wide confidence limits
around our inference that dispersing mangabeys rarely have nearby brothers.
Nevertheless, if we use a more permissive definition of relatives, accepting every
dyad for which ML-Relate cannot reject sibling as a possible relationship, the
proportion of dyads that are related is 38/210 (19%). If we are conservative and
accept only dyads for which the hypothesis of no relationship is rejected, the
proportion drops to 7/210 (3%). Neither estimate suggests many opportunities for
kin-biased dispersal.

How many close male relatives might a disperser be expected to have, given
mangabey group size and demography? In the Appendix, we derive the likelihood
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that a dispersing male mangabey has a living brother. The results confirm our
inferences from male genotypes: only one third of male dispersers would be
expected to have a living maternal brother somewhere in the population, and at most
half would have a living father (Appendix). The proportion of those brothers (or
fathers) that might live in nearby groups given dispersal patterns, and the proportion
that a dispersing male might be able to recognize are both unknown. Dispersing
males might also have older paternal brothers; this likelihood depends on
assumptions about the mating system but is at most ca. 0.3 (Appendix). Assuming
that the mangabey mating system resembles that of baboons, paternal brothers would
likely be age-mates and age can be used as a proxy for relatedness (Alberts 1999);
however, the relatively small group size of mangabeys ensures that male age-mates
are rare. In 7 groups monitored continuously over 4 yr, none contained more than a
single subadult male (W. Olupot unpubl. data).

Relatedness and Dispersal

Opportunities to follow brothers were uncommon, and when they occurred, we
found no evidence to support the idea that mangabeys took them. Males dispersed
singly, and showed no tendency to target groups containing male relatives. Our
finding that only 1 of our dispersing males joined a group containing a male relative
was not changed by simulating the pattern of errors in relatedness estimation. Mean
relatedness estimates, which are more reliable than estimates of relatedness for
particular dyads, indicate that adult males in the same group are significantly less
related to each other than to males in other groups. It is difficult to reconcile this
result with the idea that males preferentially join groups containing brothers.

Our randomization tests had limited statistical power because of the rarity of adult
male relatives. If dispersal were kin-biased, we would have to follow a considerably
larger number of dispersal events to document it with certainty. Similarly, we could
not statistically reject the hypothesis of kin-biased dispersal. However, in each
randomization test we performed, the frequency with which males joined or shared
groups with likely brothers was lower, not higher than expected by chance.

Ecology, Demography, and the Evolution of Kin-biased Dispersal

Why do some primate species, but apparently not mangabeys, disperse selectively
into groups with relatives? One possibility is that kin-biased dispersal reflects
ecological, not social factors. For example, potential dispersal routes are limited by
predation in dwarf mongooses (Keane et al. 1996). Dispersers followed restricted
routes that had more vegetation or rock cover, and thus ended up in groups with
genetically similar individuals (Keane et al. 1996). Leopard predation is a major
cause of mortality in vervets (Cheney et al. 1981; Isbell 1990). Following restricted
dispersal routes by transferring to adjacent groups in the company of peers may
minimize this risk (Cheney and Seyfarth 1983). However, this constraint is unlikely
to apply to mangabeys. Predation is higher for solitary than for group-living males,
but mangabeys live in continuous-canopy forest and their major predator is the
crowned hawk-eagle (Stephanoaetus coronatus) (Olupot and Waser 2001a). It is
hard to imagine that safe dispersal routes are in short supply. Indeed, Olupot located
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isolated radiocollared males nearly 1000 times, at locations throughout the study
area (Janmaat et al. 2009).

For some species, it is conceivable that inbreeding avoidance prevents kin-biased
dispersal (Cavalli-Sforza and Bodmer 1971) because a male that transfers into a
small group following his brother may have difficulty avoiding mating with his
brother’s daughters. However, mangabey demography (Appendix) suggests that
males that follow relatives into a group would at worst breed with their half-
brothers’ daughters. The cost of inbreeding with relatives of this magnitude (r=
0.125) is generally small (Keller and Waller 2002). In addition, mangabey females
often mate with subordinate as well as dominant males (Arlet et al. 2008b),
suggesting that opportunities for outbred matings should be common.

Could dispersing mangabeys avoid aggression by joining brothers? Aggression
from residents poses a substantial fitness cost to immigrants in many social species,
not only primates (Lambin et al. 2001; Ronce 2007; Waser 1996; Williams and
Rabenold 2005). Immigration is a stressful event for the closely related yellow
baboon and has been associated with high levels of cortisol (Alberts et al. 1992;
Bergman et al. 2005; van Schaik et al. 1991). Competition between male mangabeys
strongly predicts cortisol concentrations, with immigrants having higher concen-
trations than residents (Arlet et al. 2008a). However, we have no data to assess
whether the presence of kin reduces aggression toward immigrating males. Our
results instead imply that demographic factors strongly influence the evolution of
kin-biased dispersal. Where ecology does not constrain dispersal routes, we suggest
that kin-biased dispersal is likely to evolve only when 2 conditions are met: 1)
patterns of mate competition allow subordinate coalitions to successfully challenge
dominants for matings that would not otherwise have gone to either of them and 2)
demographic conditions are such that nearby groups often contain male relatives.

Kin-biased dispersal would evolve if males that have already dispersed increase
their inclusive fitness by easing their brothers’ entry into their social group (Cheney
and Seyfarth 1983). But a male that allowed his brother to immigrate would increase
his inclusive fitness only if offspring sired by his brother would not otherwise have
been sired by him. Unless brothers join coalitions that displace dominant males from
matings they would otherwise monopolize, it is difficult to see how this condition
could be met. Kin competition, as well as kin cooperation, influences inclusive
fitness (Lambin et al. 2001; Ronce 2007). Indeed, among primates kin-biased
dispersal is confined to species in which males commonly form coalitions (rhesus
macaques: Drickamer and Vessey 1973; vervets: Cheney and Seyfarth 1983; squirrel
monkeys: Mitchell 1994; white-faced capuchins: Jack and Fedigan 2004). The
pattern is similar in social carnivores, particularly lions (Packer and Pusey 1993).
Male coalitions are common in baboons, allowing subordinate males to improve
their probability of mating through coalition formation (Alberts et al. 2006). In
contrast, male coalition formation has not been reported in mangabeys (Arlet et al.
2008b). Demography may dilute the value of coalition formation in mangabeys
because most groups contain relatively few males (mean=3.1; Olupot and Waser
2010), and turnover is relatively high (median tenure of an adult male in a group =
17 mo; Olupot and Waser 2005).

Even more fundamentally, kin-biased dispersal cannot evolve unless recognizable
kin are available in nearby groups. Genetic and demographic evidence both suggest
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that this condition is rarely met for mangabeys. Whether it is met in other primates
appears not to have been examined; models have examined the impact of
demography on expected relatedness within but not between groups (Altmann
1979; Lukas et al. 2005). It is not immediately obvious what mating patterns and
birth/mortality schedules will create clusters of male relatives, and we believe this is
an issue worthy of more general examination.
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Appendix: The Likelihood of Having a Living Elder Brother

The likelihood that a given male, i, selected at random from the population will have
at least one living, elder maternal brother when he disperses can be derived by
considering the following 3 components:

1) The probability that i is the kth offspring born to his mother. Assuming that
twinning never occurs, birth order is a geometric process, equivalent to the
number of coin flips that occur before the first heads, i.e., how many births in a
family occur before i is born. If females have an average of n live births, then
we can assume that p, the probability that any given birth produces i, is p=1/n.
Plugging p into the geometric distribution gives:

Pði is the kth offspringÞ ¼ ð1� pÞk�1p ð1Þ

2) Given that i is the kth offspring in his family, he can have anywhere from zero
to k−1 elder brothers. Assuming that an offspring’s sex is random, the number
of elder brothers, v, is distributed as a binomial variable with the probability
that any given birth produces a male, m=0.5 for a 1:1 sex ratio at birth. This
gives:

Pði has v elder brothers i is the kth offspring
�� Þ ¼ k � 1

v

� �
mvð1� mÞk�1�v ð2Þ

Note that this probability includes all possible birth-order combinations for
the elder brothers. For example, if k=4 and v=2, the 2 brothers could be the
1st and 2nd offspring in the family, the 1st and 3rd, or the 2nd and 3rd. All 3
possibilities are included.
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3) To be alive when i disperses, a brother must survive the juvenile period (until
the age of dispersal) and then survive as an adult over w interbirth intervals,
where w is the number of intervals that separate the brother from i. Assuming a
constant length for intersbirth intervals, the probability that a brother is not alive
when i disperses is:

Pðbrother who is w intervals older than i is deadÞ ¼ 1� sjs
w
a

where sj and sa are the juvenile survival rate and the likelihood that an adult
male will survive 1 interbirth interval, respectively. Assuming that i has (k−1)
elder siblings and that we do not know their birth order, there is a 1/(k−1)
chance that a given brother will have any w value from 1 to k−1. Averaging sa
across the possible values for w gives the expected probability that any given
elder brother will no longer be alive when i disperses:

Pðany given elder brother is dead i has k � 1 elder siblingsj Þ ¼ 1� sj
k � 1

Xk�1

w¼1

swa

The probability that ≥1 brother is still alive is equal to 1 minus the probability
that all of the brothers are dead. If i has k−1 elder siblings, v of which are
brothers, and each brother’s survival is independent of the others, this is equal
to:

P
i has � 1 living brotherj

i is a kth offspring with v elder brothers

� �

¼ 1� 1� sj
k � 1

Xk�1

w¼1

swa

 !v

ð3Þ

Combining the equations (1–3) gives an approximate likelihood that a given
male will have at least one living maternal half-brother when he disperses. Note
that cases where k=1 or v=0 do not allow for any elder brothers, and so
contribute 0 probability to the sum.

P � 1 live brotherð Þ

¼
X1
k¼1

1� pð Þk�1p �
Xk�1

v¼0

k � 1
v

� �
mv 1� mð Þk�1�v � 1� 1� sj

k � 1

Xk�1

w¼1

swa

 !v !" #( )

ð4Þ

The probability that i will have ≥1 living paternal brother can be calculated
using the same formula by changing the parameters p and sa to reflect the
average number of offspring sired by males and the shorter interval that
separates paternal siblings, respectively.

Field data on mangabey demography are scarce. Olupot and Waser (2005)
estimated an adult male annual mortality rate of 0.08 in this population. In a captive
colony, Deputte (1991) recorded an average of 0.29 live births/yr for each of 9
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females over 19 yr, suggesting an interbirth interval, t, of ca. 3 yr. Together, these
figures suggest that the survival rate for an adult male over an interbirth interval sa is
0.923=0.78.

In the same colony, male masses first exceed those of females at 4 yr and reach a
plateau at 7 yr (Deputte 1992), and the first production of the adult male whoop-
gobble call, an event coinciding with natal dispersal in the field, occurs at 6–7 yr
(Gautier-Hion and Gautier 1976). We infer that the age of natal dispersal is ca. 6 yr.
No survival data are available for young male mangabeys, but a rough estimate of
survival to reproductive maturity can be taken as sj=0.5, the survivorship to age 6
reported for male baboons (Alberts and Altmann 2003).

If we assume that the average female has 5 offspring over her lifetime (p=0.2),
that the sex ratio at birth is 1:1 (m=0.5), and estimate sj and sa from Eq. 4, we
estimate the probability that a dispersing male has a living older maternal brother as
p(≥1 living maternal brother) = 0.33.

Even fewer data are available for paternal siblings. Mangabey groups in this
population contain on average 3.1 adult males and 6.2 females (Olupot and Waser
2010) and mean male tenure length in a group is 1.6 yr (Olupot and Waser 2005).
Assuming for simplicity that females come into estrus at evenly spaced intervals (t/
number of females), ca. 6.2×0.29=1.8 females will conceive each year and a male
will have 1.6×1.8=2.88 opportunities to sire an offspring. If males have equal
probabilities of paternity, then a male would sire (on average) about 2.88/3.1=0.93
offspring in each group, implying no opportunity for paternal siblings. If (as in
baboons) paternity is skewed toward dominant males and most dominant males are
young, an extreme assumption might be that a male sires all 2.88 young in his first
group and none thereafter. In this case, the interbirth interval between paternal
siblings would equal 1/1.8=0.56 yr. Assuming that the adult male mortality risk is
evenly distributed through time (sa=0.92

0.56=0.95), Eq. 4 yields a likelihood of
having ≥1 paternal brother of p(≥1 living paternal brother) = 0.30.

Given that neither maternal nor paternal half brothers will be common at the time
of dispersal, living full siblings will be even less so. Finally, if we assume a male
first establishes himself in a nonnatal group 7–8 yr after conception, an annual adult
male survival rate of 0.92 leads to the probability that his sire will still be alive in the
population of 0.928=0.51. We note that all of these probabilities will be lower for
males that disperse later in life.
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