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A mechanistic understanding of the genetic basis of complex diseases such as diabetes
mellitus remain elusive due in large part to the activity of genetic disease modifiers that
impact the penetrance and/or presentation of disease phenotypes. In the face of such
complexity, rare forms of diabetes that result from single-gene mutations (monogenic
diabetes) can be used to model the contribution of individual genetic factors to pancreatic
b-cell dysfunction and the breakdown of glucose homeostasis. Here we review the
contribution of protein coding and non-protein coding genetic disease modifiers to
the pathogenesis of diabetes subtypes, as well as how recent technological advances
in the generation, differentiation, and genome editing of human pluripotent stem cells
(hPSC) enable the development of cell-based disease models. Finally, we describe a
disease modifier discovery platform that utilizes these technologies to identify novel
genetic modifiers using induced pluripotent stem cells (iPSC) derived from patients with
monogenic diabetes caused by heterozygous mutations.

Keywords: IPS (induced pluripotent stem) cell, pluripotent stem cell (PSC), beta cell (b cell), diabetes, disease
modifier, MODY (mature onset diabetes of the young), candidate gene approach, GWAS (genome-wide
association study)
INTRODUCTION

Diabetes mellitus is a worldwide healthcare problem that is rapidly increasing in prevalence. In the
United States alone, over 10% of the population is affected, with approximately 1.5 million
Americans newly diagnosed with diabetes each year (1). Particularly troubling is the dramatic
increase in the incidence of diabetes in children, the consequences of which are expected to lead to
increased complications and comorbidity as adults (2, 3). With obesity rates projected to increase in
the United States over the upcoming decades, there is little chance that the trend of increasing
diabetes prevalence will reverse itself (4). In addition to decreasing quality of life, diabetes is
associated with significant morbidity and mortality, including retinopathy, neuropathy,
cardiovascular and kidney disease (5). Diabetes also puts individuals at risk of having more
complicated courses of common illnesses, with recent studies documenting increased morbidity and
mortality in patients with diabetes who contracted COVID-19 (6–8).

Though often referred to as a single condition, diabetes is likely many overlapping diseases, with most
stemming from pancreatic b-cell dysfunction and the disruption of glucose homeostasis due to abnormal
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insulin secretion and/or responsiveness (9). The two most common
forms of diabetes, type I (T1D) and type II (T2D), are associated
with the eventual loss of insulin-secreting pancreatic b-cells, which
can occur either early (T1D) or late (T2D) in disease progression. In
the case of T1D, autoimmune destruction results in b-cell death and
subsequent insulinopenia, although there is increasing support for
the role of b-cell stress in T1D onset (10, 11); T2D is characterized
by a combination of peripheral insulin resistance and inadequate b-
cell compensation, resulting in a metabolic syndrome that leads to
eventual b-cell exhaustion and loss of b-cell mass (12, 13). T1D and
T2D display a multifactorial etiology on both a population and
individual level, likely motivated by a complex combination of
genetic, epigenetic, and environmental factors (14). Furthermore,
there is substantial heterogeneity within the underlying b-cell
pathophysiology of each of these disorders (9).

Apart from the two major types, there are also 14 known
types of monogenic diabetes, historically called MODYs (mature
onset diabetes of the young), which are caused by single gene
mutations that result in b-cell dysfunction (15–18). Monogenic
diabetes is typically underrecognized and underdiagnosed, with
identified subtypes likely making up 2-5% of all diabetes cases
while additional causative genes undoubtably remain to be
discovered (17). To complicate matters further, a number of
MODY genes have been associated with the development of T1D
and T2D (19–21), suggesting that the pathophysiology of the
diabetes subtypes can often overlap. For example, there are
additional genes that can cause neonatal diabetes through
downstream impacts on pancreatic development, such as
GATA6 and NKX2.2, which are not traditionally included as
MODYs, although overlap in disease pathology occurs
depending on the timing of their presentation (22). There are
also numerous monogenic syndromes that have diabetes as a
component in all or some affected individuals, including cystic
fibrosis and Friedreich’s ataxia. While the underlying
pathogenes is of monogenic and neonata l diabetes
predominantly involves intrinsic defects of the b-cell,
syndrome-associated forms of diabetes may result from both
peripheral and b-cell defects, with the latter being understudied
in many cases (15, 16). Better studies of all forms of diabetes are
necessary to understanding the underlying pathophysiology of
this complex disease.
The Need for Human b-Cell Models in
Diabetes Research
For decades, studies using mouse models greatly advanced our
knowledge of diabetes (23). Mice are inexpensive relative to
larger animal models (i.e., non-human primates), recapitulate
human disease more closely than more basal organismal models,
and were genetically-manipulatable even before the invention of
modern genome editing techniques. As a result, mouse models
continue to be incredibly valuable for the study of whole-body
physiology, capable of providing complex metabolic readouts of
multiorgan systems, as is the case in oral glucose tolerance tests
and hyperinsulinemic euglycemic clamp studies. However, while
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mouse models play an essential role in the study of diabetes,
important differences in rodent versus human physiology have
sometimes limited the translatability of rodent datasets to the
complex presentation of the human diabetes subtypes. Therefore,
the development of in vitro human b-cell models will provide an
important adjunct to in vivo rodent models in the study
of diabetes.

While a variety of T1D and T2D mouse models exist, none
have been able to comprehensively mimic human diabetes (23–
25). For T1D, both genetic and chemically-induced models are
used, with the latter resulting in b-cell destruction and
insulinopenia, but neither method allowing for the study of the
autoimmune processes that drive disease pathophysiology (24,
25). Even mouse models with an autoimmune component do not
exactly resemble T1D due to interspecies differences, including
well described mechanisms for the regulation of immune cell
activation, homing, and target cell interactions (26). As a result,
diabetes manifests differently in the two species: for example, the
commonly-used non-obese diabetic (NOD) mouse strain
exhibits pronounced insulitis and rapid b-cell destruction,
while b-cell loss in human T1D is associated with gradual and
milder infiltration of islets (27). In the case of T2D, there are a
myriad of diet-induced obesity and genetic models that can be
used (23, 25). However, the complex polygenic nature of human
obesity can be difficult to model using inbred mice strains, and
observed effects of sex, age, and epigenetic factors on diet-
induced obesity may not be the same between species, though
these differences may provide some insight into genetic loci that
result in phenotypic variation (23).

While mouse models have yielded significant insights into
monogenic causes of diabetes, they do not always fully
recapitulate the human disease. One example involves GATA6
and GATA4, members of the GATA family of transcription
factors, which are the most highly expressed isoforms in the
pancreas. Heterozygous, largely de novo, mutations in GATA6
are the most common cause of pancreatic agenesis, resulting in
neonatal diabetes as described by multiple groups (28–37).
Though less common, GATA4 haploinsufficiency can also
result in neonatal and early childhood-onset diabetes (38, 39).
However, in mice, GATA4 and GATA6 appear to be completely
redundant isoforms, as the loss of a single allele of either GATA4
or GATA6 does not appear to impact pancreatic development or
glucose homeostasis, and the loss of three of the four Gata4/6
alleles is needed to recapitulate the human phenotype (40, 41).
Another example is the most common form of monogenic
diabetes, MODY3, caused by heterozygous mutations in the
transcription factor HNF1a . Mice with heterozygous
mutations in HNF1A are healthy (42) and mice with HNF1A
null mutations can have a diabetic phenotype, but with
significant variability dependent on genetic background (43).
These results suggest that there are complex, human-specific
genome-phenotype interactions that must be additionally
investigated using human models. Therefore, the combined
and complementary use of both in vitro human b-cell models
and in vivo rodent models will greatly advance our knowledge of
the pathophysiology of diabetes.
June 2021 | Volume 12 | Article 682625
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The Emergence of the Stem Cell-Derived
b-Cell as a Model
While mouse models have and certainly will continue to advance
our knowledge of diabetes, b-cell-centric research in diabetes has
unfortunately been hindered by the lack of human models. Most
immortalized b-cell lines are rodent-derived, though several
human lines, including the EndoC-bH1 (and subsequent bH2
and bH3) line, are becoming more widely used (44, 45).
However, b-cell lines can exhibit differences from in vivo
human b-cells due to their immortalized status, can be difficult
to genetically manipulate, and cannot be used to study b-cell
development. While the use of cadaveric human islets in research
has greatly expanded due to the success of programs such as the
Network for Pancreatic Organ Donors with Diabetes (https://
www.jdrfnpod.org) and the Integrated Islet Distribution
Program (https://iidp.coh.org), these resources unfortunately
remain scarce and precocious. Furthermore, the genetic,
epigenetic, and environmental characteristics of donors are
largely unknown, while islets themselves cannot be genetically
manipulated efficiently.

To address these limitations, great strides have been made
over the last two decades in the development of human
pluripotent stem cells (hPSC), a term which includes both
embryonic stem cells (ESC) and induced pluripotent stem cells
(iPSC) [reviewed in (46, 47)]. Efficient methods for the
production of hPSCs have completely changed the face of
biomedical research and have opened new avenues of
therapeutic development for a multitude of diseases. The
subsequent development of techniques to differentiate hPSCs
into pancreatic b-cells have enormous potential to contribute to
the study of diabetes. Built upon foundational research within
mouse developmental biology [reviewed in (48)], modern
techniques of stem cell differentiation leverage known
inductive signals that drive development in vivo by replicating
these signals temporally and spatially to drive development in
vitro [reviewed in (49)]. The first lab-guided hPSC differentiation
protocols were developed to generate definitive endoderm (50),
followed quickly by protocols capable of driving hPSCs towards
pancreatic progenitors and endocrine cells (51). While these
protocols initially required that pancreatic progenitors be
transplanted into mice to mature into functional b-cells,
current protocols can achieve functionality in vitro without
transplantation (52–54) This field has become robust with
technical advancements being published regularly by
laboratories around the world, resulting in the generation of b-
like cells that are closer and closer to their natural counterparts,
though continued optimization of functionality is required
(55–62).

With advances in directed in vitro differentiation, stem cell-
derived b-cells provide a tremendous opportunity to study
pancreatic development and endocrine diseases in a human
model system, particularly when combined with recent
advances in genome editing technology. Using clustered
regularly interspaced short palindromic repeats (CRISPR)-Cas9
technology (63, 64) (see Section 2), targeted mutations in hESC
lines can be made, generating mutant and control isogenic lines
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that avoid confounding results due to differing genetic
backgrounds. In addition, iPSCs can be generated from
reprogramed patient donor blood or skin fibroblasts (46, 47),
resulting in a unique platform within which to study the specific
contribution of single mutations to b-cell development and/or
function. While these systems certainly have caveats, including
expense, labor-intensiveness, and lab-to-lab variability, the
expanding use of stem cell-derived b-cells stands to drive our
knowledge of diabetes pathophysiology forward beyond the prior
limitations of mouse and cell line models. In this review, we will
review the current methods of genome editing in hPSCs, discuss
how this can be applied to the evaluation of candidate genes in
the study of diabetes, and examine the use of stem cell-derived b-
cells as a platform for the identification of novel genetic modifiers
of diabetes.
GENOME EDITING IN hPSCs

The development of genome editing technologies capable of
selectively targeting sites within the human genome has
revolutionized our ability to investigate the genetic
underpinnings of disease. In the case of diabetes, ESCs and
patient-derived iPSCs from multiple genetic backgrounds can
now be genetically edited and paired with lab-guided
differentiation protocols to build powerful and scalable cell-
based models of multiple diabetes subtypes (65, 66). Genome
modifications in each system are achieved through nuclease
localization with a target sequence, the induction of a double
stranded DNA break (DSB), and the activation of endogenous
cellular DNA repair mechanisms such as homologous
recombination (HR) and non-homologous end-joining (NHEJ)
(67, 68). Several types of gene modification can be accomplished
through these mechanisms, including (1) ‘gene disruption’
through the addition/subtraction of short nucleotide sequences
and frame shift mutation induction (2), ‘gene correction’
through targeted base substitutions that restore gene function
using a homologous donor DNA construct as a template, and (3)
‘gene addition’ through the introduction of a complete transgene
into a specific locus. Here we briefly review several of the most
popular methods for the selective editing of hPSCs, each of which
exhibit advantages and disadvantages when editing specific cell
types (69).

Zinc Finger Nuclease (ZFN) and
Transcription Activator-Like Effector
Nuclease (TALEN)
Zinc finger nuclease (ZFN) and transcription activator-like
effector nuclease (TALEN) are structurally similar in that they
both rely on the C-terminal FokI endonuclease domain to
generate DSBs within a targeted sequence (70–72). ZFN
architecture combines multiple zinc finger protein DNA-
binding domains (motifs) (73) with the nuclease domain of the
FokI restriction enzyme that performs optimally when targeting
long (12-18 bp) and unique sequences within the eukaryotic
genome (74). In contrast, TALENs employ multiple
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transcription activator-like effector (TALE) DNA binding
domains – a class of proteins isolated from the Xanthomonas
bacteria that have evolved to alter the transcription of host plants
(75). In either case, the two distinct regions of the nuclease each
perform a unique function, with zinc finger motifs or TALEs
binding to DNA while the FokI nuclease domain induces a DSB
within a target sequence upon dimerization (76, 77).

While structurally similar, there are distinct advantages and
disadvantages of each system. Typically, ZFN-based platforms
afford greater flexibility in targeting, while also allowing for
independent optimization of the two subunits for simplified
retargeting (78). Drawbacks of ZFNs include the cost of
application, a suite of complex design constraints that must
account for context-dependent interactions between fingers (79),
and a higher prevalence off-target effects and translocations than
other methods (80). In contrast, the highly conserved stretches of
33-35 amino acids (AA) that TALEN-based approaches employ
addresses many of the design complexity concerns of ZFNs,
while maintaining high cleavage activity rates, a broad targeting
range specificity, and improved cytotoxicity (81). However,
TALEN-based approaches have been shown to produce off-
target effects and suffer from dramatically lower efficiencies
when targeting sequences that are methylated or do not
include thymidine (82, 83). Comprehensive reviews that
provide specific recommendations for the design and
reproducible integration of ZFN (78, 84) and TALEN-based
(85) genome editing approaching in hESCs and iPSCs are
available elsewhere.

Clustered Regularly Interspaced-Short
Palindromic Repeats (CRISPR)/Cas
(CRISPR)/Cas-based gene editing platforms have become
incredibly popular tools to modify the genome of hPSCs since
the introduction of the technology in 2012 (86). Based on the
adaptive immune system of bacteria and archaea, CRISPR was
made possible by the discovery of DNA fragments within the
E. coli genome from past viral and bacteriophage invaders known
as clustered regularly interspaced short palindromic repeats
(CRISPRs). Unlike ZFNs and TALENs which use proteins,
CRISPR loci are transcribed during viral infections to produce
an RNA-guided DNA endonuclease that selectively binds and
cuts invading viral DNA (87). CRISPR sequences exhibit a
repetitive pattern, wherein short DNA sequences (24-48 bp)
are followed by their reverse complement and a protospacer that
matches part of the viral genome. Through coordination with
RNase III, CRISPR-associated (Cas) proteins, and trans-
activating CRISPR RNA (tracrRNA), long RNA transcribed
from CRISPR loci are cleaved into short, spacer-derived RNA
(crRNA) (88). TracrRNA and crRNA then act together to guide
the Cas9 protein to a target cut site located within the genome of
an invading virus, causing a DSB [for a review, see (89)].

When used in genome-editing platforms, tracrRNA and
crRNA can now be combined into a single “guide RNA”
(gRNA) molecule (86) and administered with the Cas9 protein
to selectively cut target DNA sequences (90). Multiple CRISPR/
Cas9 systems have been developed specifically for hPSCs that are
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capable of editing or replacing genome sequences (91, 92) and
are quickly replacing TALEN-based systems due to their ease of
generation, efficiency, and cytocompatibility (93, 94). Drawbacks
of CRISPR-based methods include the re-cutting of target
regions after DSB repair and the prevalence of erroneous
insertion or deletions (indels) on the non-targeted allele,
making the generation of single allele edits difficult. Recent
protocols, including one from our laboratory (95), address
these issues through the use of two single stranded
oligonucleotide repair templates, with one expressing the
desired sequence change and the other maintaining the normal
sequence. These repair templates also contain silent mutations
that prevent gRNA recognition and re-cutting, facilitating the
selective editing of a single allele with an average efficiency of
close to 10%. In addition, off target cutting of CRISPR/Cas9 at
other sites in the genome is also an issue but it can be mitigated.
First, in the hPSC system, off target cutting is less prevalent than
in somatic cells, mostly likely due to the fact the pluripotent stem
cells are very sensitive to DNA damage and cells that have
undergone multiple DNA cuts are less likely to survive (96).
Second, careful design and testing of potential off target sites can
also be used to minimize the impact of off target cutting. Overall,
genome editing technologies in hPSCs are advancing to the stage
where virtually all coding mutations can be repaired or
introduced in a single allele manner, an important advance
given the majority of monogenic genetic diseases of the
pancreas are caused by heterozygous mutations.
THE ROLE OF CANDIDATE GENE AND
GWAS APPROACHES IN THE STUDY
OF DIABETES

The availability of standardized laboratory protocols for the
generation of glucose responsive b-cells from hPSCs that have
undergone selective genome editing has the potential to
dramatically increase our knowledge of genes that contribute
to diabetes. Traditionally, the functional contribution of genes to
disease states has come from the deletion or mutation of a single
gene target. The use of candidate genes, chosen as they are
known clinically to cause disease, has been employed for the
study of monogenic diabetes. However, given the increasing ease
of genome and exome sequencing, comparisons of genetic
variants between diabetic and non-diabetic populations
through GWAS analysis using genome sequencing has
generated a large list of variants associated with all forms of
diabetes, most of which are in non-coding regions of the genome
(97–100). Newly developed stem cell platforms can be used to
target these variants, initially by targeted mutation of the gene
thought to be regulated by a given variant (101). The direct
targeting of a non-coding variant has been studied in neonatal
diabetes caused by GATA6 (102), and similar approaches could
also be used for variants associated with more common causes of
diabetes. Care will need to be taken as it is possible that most
non-coding variants may have a small impact on gene expression
and disease penetrance on their own. While we are still in the
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https://www.frontiersin.org/journals/endocrinology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/endocrinology#articles


George et al. PSCs, Diabetes, and Disease Modifiers
early stages of utilizing these approaches in stem cell-derived b-
cells to interrogate the roles of specific genes in b-cell
development and function, we predict that this will become
more commonplace and contribute to our understanding of b-
cell physiology and disease.

Studying Known Causes of
Monogenic Diabetes
There are dozens of types of diabetes caused by single gene
mutations, including monogenic, neonatal and syndrome-
associated diabetes (15–17, 103–105). Monogenic forms of
diabetes are often caused by heterozygous coding mutations
within genes that influence b-cell function [reviewed in (106)].
Many forms of monogenic diabetes have been recognized for
decades and more gene causes are likely to be found in the
upcoming years with the increasing use of exome and genome
sequencing (17, 18). In addition, many of the genes associated
with monogenic diabetes have numerous reported mutations
with potentially different consequences on protein function and
therefore on b-cell dysfunction (107–109). Stem cell-derived b-
cells may provide a platform in which to investigate some of
these polymorphisms, and may help to provide some insight into
genotype-phenotype correlations.

The modeling of monogenic diabetes using stem cell-derived
b-cells has been extensively described. To date, hPSC lines have
been made with mutations in HNF1A (110–114), HNF1B (112,
115, 116), HNF4A (112, 117–119), PDX1 (107, 120, 121),
KCNJ11 (122), GCK (112), and CEL (112). Of the studies
listed, only two used genome-editing to make mutant hESC
lines (113, 121), with the remainder generating patient-derived
iPSC lines. While some studies simply described the derivation of
iPSC lines from patient samples, most publications included lab-
guided differentiations to b-cells and subsequent studies on b-
cell gene expression and biology (111, 113–115, 117–119, 121).

MODY3, caused by heterozygous mutations in the
transcription factor HNF1a, is the most common form of
monogenic diabetes (15, 103) and is currently the most
extensively-researched monogenic form of diabetes using stem
cell-derived b-cells. HNF1a has been of particular interest
because of its additional association with T1D and T2D in
several large population studies (19–21, 123). Several studies
on the role of HNF1A has been performed in mice, but mouse
models with heterozygous deletion of HNF1A do not have
diabetes and thus have provided limited insight into MODY3
(124). To date, three publications from different groups have
modeled HNF1A-deficiency in stem cell derived b-cells, with two
employing patient-derived iPSC lines (111, 114) and the other
using hESC lines (113). These studies have yielded significant
insights into the complex role HNF1a plays in controlling b-cell
development, metabolism and function and have discovered new
downstream targets of this transcription factor that had not
previously been identified in mouse studies.

While the underlying pathogenesis of monogenic diabetes
results from intrinsic b-cell defects, the role of b-cell dysfunction
in many syndrome-associated forms of diabetes, such as cystic
fibrosis (CF)-related diabetes, is largely unknown (105). There is
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significant interest in these fields to generate syndrome-related
iPSC lines for use in multiple areas, but this will ultimately aid in
the study of rare causes of diabetes by providing accessible
resource lines. Groups have already generated stem cell derived
b-cells to model b-cell dysfunction in Wolfram syndrome (125,
126) and Friedreich’s ataxia (127). In addition, CF iPSC lines
have been made and differentiated in the pancreatic ductal
endothelium to study the effects of CF-related pancreatic
exocrine function (128). These lines and others generated for
non-diabetes study can always be used to produce stem cell
derived b-cells and advance our knowledge of these understudied
forms of diabetes.

Another avenue of study using stem cell derived b-cells as a
model is to focus on genes that are thought to play a role in b-cell
development, identity, or function but that may not have been
described as monogenic causes of disease. In an impressive paper
by Zhu and colleagues, researchers used genome editing to
generate hPSCs knockout lines to further probe the role of 8
known pancreatic transcription factors, including PDX1, RFX6,
PTF1A, GLIS3, MNX1, NGN3, HES1 and ARX (121). Many of
these factors had only been studied previously in rodent models
and, through lab-directed differentiation, their role in human b-
cell development and function could be interrogated for the first
time. This reverse candidate approach using stem cell derived b-
cells will provide a significant basis for future advances.

As genome editing techniques improve and become more
well-established, the field is turning more to the use of isogenic
lines in which to study the contribution of a specific genes on b-
cell physiology. This involves making targeted mutations in
hESC lines or correcting mutations in patient-derived iPSC
lines, generating mutant and control isogenic lines that avoid
confounding results due to differing genetic backgrounds. In all
studies above using patient-derived iPSC lines to study
monogenic diabetes, the mutant stem cell-derived b-cells were
compared to unaffected family members or unrelated wild type
iPSC lines and not isogenic controls (111, 114, 115, 117–119).
With the increasing use of CRISPR/Cas9 technology, we
advocate the use of at least 2 pairs of isogenic lines, examining
a single clone for each, for interrogating the impact of a given
genome alteration. Alternatively, if using a single stem cell line,
the examination of several genome edited clones has been
suggested by leading stem cell journals such as Stem Cell
Reports (Information for authors). We would argue that 2
isogenic pairs is superior because it controls for both artifact
due to an acquired mutation in a single genome edited clone as
well as confirm any phenotype is general enough to be seen in 2
independent genetic backgrounds. The use of a single edited
clone per isogenic pair we feel is a good tradeoff between the
effort required to differentiate and analyze these clones while still
minimizing the impacts of clonal artifacts.

Leveraging GWAS to Identify and Validate
Candidate Genes in Diabetes
The cause of T1D and T2D is likely a complex combination of
genetic, epigenetic and environmental factors (14). In addition,
there is substantial heterogeneity within each of these disorders,
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so that the disease-causing combination in each affected
individual is slightly different (9). Therefore, a single gene-to-
disease strategy is not always effective in the study of T1D and
T2D. Technological advancements in next generation
sequencing, combined with the targeted efforts of several
consortia, continue to expand the size and scope of available
genomic datasets from diabetic patients (129–131). Previously,
the identification of diabetes-linked genes was the product of
quantitative trait mapping (QTL), obtained through the cross of
genetically engineered mice (132–134). Over the past decade as
the cost and availability of sequencing technology has improved,
GWAS have identified more than 60 loci for T1D (135) and more
than 240 associated with T2D (136), with the hereditability of
each now explaining approximately 15% (137) and 25-80% (138)
of the disease-risk for each subtype, respectively.

The explosion of available GWAS datasets for both T1D and
T2D can be leveraged by using stem cell derived b-cells. Using
this technique, novel genes that are revealed by GWAS,
individual exome, or genome sequencing associated with
diabetic populations can be targeted for study either in
isolation or as part of co-cultures where interactions between
adipocytes, immune cells, critical biological components and b-
cells are replicated in vitro (139–141). Through the use of stem
cell derived b-cells, these systems can ascertain whether a specific
locus causes b-cell-intrinsic dysfunction, while also probing the
contributions of the surrounding environment. For example,
polymorphisms in the human leukocyte antigen (HLA) DR
and DQ alleles increase T1D-risk by altering T-cell binding
[reviewed in (142)], which is predictably a b-cell-extrinsic
effect that can be observed in cell culture studies. Alternatively,
some polymorphisms in the insulin (INS) gene, a b-cell-specific
gene, have been described to influence T1D risk due to changing
insulin mRNA production in the thymus altering immune
tolerance (143, 144). However, other mutations in INS lead to
neonatal diabetes, thought to be caused by b-cell death due
to increased cell stress from misfolded insulin protein [reviewed
in (145)]. While the difference between polymorphisms and
mutations may be determined by their prevalence in the
population, modeling these gene differences in stem cell
derived b-cells may prove useful for understanding
their significance.

While GWAS studies can yield a potential target gene which
could be directly involved in disease, sometimes they identify an
associated region of unclear significance. GWAS comparing the
islets of diabetic and non-diabetic individuals suggest that most
T2D-associated variants do not reside in coding regions (146,
147). In order to understand the role of these variants, iPSC
banks from T1D, T2D and non-diabetic patients can be used to
probe these differences on a multigene scale. Multiple iPSCs from
T1D and T2D patients have been made (148–151), and there are
consortia and foundations that are focused on making larger
banks of available diabetes and non-diabetes iPSC lines,
including the Human Islet Research Network (HIRN, https://
hirnetwork.org/hpap-overview) and the New York Stem Cell
Foundation (NYSCF, https://nyscf.org/research-institute/
repository-stem-cell-search/). Several groups have also recently
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performed lab-directed differentiations on patient-derived iPSC
lines to generate stem cell derived b-cells to examine broad
molecular and functional differences (150, 151). Unlike the need
for the generation of isogenic lines in the study of monogenic
diabetes, making banks of T1D, T2D, and non-diabetic stem cell
derived b-cells can be used to study many factors contributing to
b-cell pathophysiology in diabetes. One caveat of the use of non-
isogeneic lines is that differences in genetic background amongst
disease and control lines leads to tremendous variability in
phenotype and necessitates large sample numbers to dissect the
underlying biology.
GENETIC DISEASE MODIFIERS
AND DIABETES

The way genetic factors interact with disease can be highly
variable. Even in canonical examples of monogenic Mendelian
diseases such as cystic fibrosis and sickle-cell anemia where a
disease endophenotype is linked to a single mutation (152),
fraternal twins that reside within the same household can
present vastly discordant phenotypes (153). The results of
longitudinal twin studies add to a growing body of clinical
evidence that underscores the importance of ‘disease modifiers’
that alter the penetrance, expressivity, rate of progression, and/or
presence of disease endophenotypes through the modification of
disease-linked genes (154, 155). While the terminology used to
describe the mechanisms of oligogenic inheritance continues to
evolve, for the purposes of this review we have chosen to classify
genetic disease modifiers within two groups based on their mode
of action, or as either ‘protein coding’ or ‘non-protein coding’.

Protein coding disease modifiers typically affect the
phenotypic expression of a disease through mutations in the
coding sequence of intact genes, leading to changes in protein
function (156). These changes can be either sufficient to elicit a
diseased state (i.e., a frame shift mutation within a coding
sequence of an important functional protein), or can affect the
molecular expression of other disease-linked genes through
alterations in regulatory DNA such as promoters and
enhancers (e.g. modifier genes) (157). In contrast, non-protein
coding disease modifiers include non-coding regulatory elements
and non-coding RNAs (ncRNA) (158). In either case, disease
modifiers can act to either enhance, silence, or modify the
expression of genes that can modify the activity of important
proteins whose dysregulation result in changes in the penetrance,
expressivity, and/or presence of a disease endophenotype.

Diabetes is a complex disease wherein patients express
significant heterogeneity in the progression, clinical phenotype,
and response to treatment. T1D and T2D show clear evidence of a
genetic component and familial reoccurrence (159, 160), with
observed associations with lifestyle, obesity, and cancer playing a
particularly significant role in T2D (161). In the face of this
variability, it is important to note that the direct influence of
specific mutations within protein-coding regions on the etiology of
diabetes have been described (162, 163). However, while
allelic variants have been shown to confer an increased risk of
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T1D/T2D, other subtypes of diabetes, such as monogenic diabetes,
are causally linked to single mutations, as described above. Apart
from changes in coding sequences, there is substantial evidence
that disease progression and severity of all forms of diabetes results
from the interaction of multiple non-coding genetic, epigenetic,
and environmental factors, which act in concert to cause b-cell
dysregulation and islet dysfunction (164, 165).

The influence of protein coding and non-protein coding
disease modifiers on each of the diabetes subtypes remain
active areas of research. In the case of monogenic diabetes,
modifier genes have been shown to explain some degree of
clinical variability (166), while several studies suggest that non-
coding disease modifiers influence the development of
gestational diabetes (167, 168). In this section, we provide a
brief overview of the two classes of disease modifiers, discussing
known associations with the diabetes subtypes when available.
To facilitate the further discovery of such mechanisms, we then
outline a disease modifier discovery platform that leverages
recent advancements in RNA sequencing, genome editing, and
laboratory-guided stem cell differentiation to identify genetic
disease modifiers of genetic disease caused by heterozygous
mutations, using monogenic diabetes as a model. Given the
limited availability of research on this topic, it is our hope that
the platform outlined here will support the discovery of novel
protein coding and non-protein coding disease modifiers that
can help explain the heterogeneity observed in diabetes subtypes.

Protein Coding Disease Modifiers
of Diabetes
The influence of modifier genes and allelic heterogeneity on
human disorders has been the subject of an ongoing discussion
within medicine for over a century (169), with multiple parallel
avenues of investigation within genetics (e.g. epistasis, oligogenic
inheritance) dedicated to understanding the effect of one gene/
allele on the phenotypic expression of a second gene/allele (154,
155). In the case of diabetes, there is a growing body of evidence
that some subtypes may be the result of oligogenic inheritance,
wherein the underlying etiology of the disorder is primarily
genetic, but still requires the synergistic action of several
genetic modifiers at disparate disease-linked loci (156, 170,
171). In this continuum between classical Mendelian and
complex traits, possible protein coding disease modifiers
include allelic heterogeneity that results from mutations within
disease-linked loci, the activity of modifier genes that regulate
others with important roles in glucose homeostasis, and the
presence/absence of single nucleotide polymorphisms (SNPs)
that are either necessary or sufficient to change the presence,
penetrance, expressivity/heritability, or rate of progression of
a disease.

As GWAS datasets expand to include sampling of diabetic
patients from varied ethnic backgrounds that present different
endophenotypes, the technology is poised to assist in the
identification of candidate disease-linked genes and SNPs that
reside within ‘modifier loci’ (172). While hundreds of candidate
genes that are linked with increased diabetes-risk have been
identified, the mechanisms underlying their action often
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remain unclear. One of the first identified and best understood
examples of how genetic protein coding disease modifiers
modulate the phenotypic expression of diabetes are the
multiple identified polymorphisms within the base pair
sequence of the HLA region of chromosome 6p21.3 on T1D
(173). In this case, variation within the coding sequence of the
HLA DR and DQ alleles produce changes in the amino acid
sequence of cell surface receptors, altering their binding affinity
to T-cells and increasing T1D-risk [reviewed in (142)].

Apart from polymorphisms in the HLA region, coding
mutations within genes that encode important pancreatic
transcription factors (TFs) have also been shown to modify the
phenotypic expression of diabetes (162, 163). Coding mutations
within the TCF7L2 (174), PDX1 (107), HNF1A (108), HNF4A
(175), and TM6SF2 (176) genes can result in the dysregulation of
blood glucose homeostasis by altering TF expression or
imparting direct functional consequences on b-cell or islet
function through alterations in a TF’s amino acid sequence.
For example, hundreds of missense mutations within PDX1
coding regions have been identified, with mutations within the
transactivation domain reducing gene activation and impairing
both b-cell development and function (107). In the case of
HNF1A, 11 rare coding variants have been identified that
result in a >40% reduction in transcription and are strongly
associated with monogenic diabetes (MODY3) in the general
population (108, 109). Similarly, a number of coding SNPs can
impart T1D and T2D susceptibility within groups with a shared
ancestral heritage, including SNPs in the SUMO4 (177) and
MGEA5 (178) genes, identified within Japanese and Mexican
populations, respectively.

Non-Protein Coding Disease Modifiers
of Diabetes
Recent advances in targeted RNA sequencing technology (RNA
Seq, RNA CaptureSeq) have greatly expanded our understanding
of transcriptomics (179), underscoring the potential importance
of regulatory elements in the control of disease-linked genes
(180–182). Rather than coding for a protein directly, non-coding
RNA (ncRNA) regulate the transcriptional or post-
transcriptional production and modification of proteins.
ncRNA make up 98% of the transcripts in the human genome,
can be either trans- or cis-acting, and are classified into groups
according to their length, morphology, and function (179, 183).
‘Short’ ncRNAs are less than 200 bp in length and perform a
diversity of functions during gene regulation, protein synthesis,
and the post-translational modification of proteins. Short
ncRNA include nuclear RNAs (snRNAs), small nucleolar
RNAs (snoRNAs), micro-RNAs (miRNAs), and transfer RNA
(tRNA), to name a only a few (184). In contrast, long non-coding
RNAs (lncRNAs) are 200 bps or longer and are generally only
involved in the regulation of gene transcription and epigenetic
regulation, although in some rare occasions they may produce
peptides (185).

To date, the influence of non-protein coding disease modifiers
on the pathogenesis of diabetes remains underdefined, providing
an exciting avenue for future research. GWAS comparing the
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islets of diabetic and non-diabetic individuals suggest that most
T2D-associated variants do not reside in coding regions (146,
147), adding to a growing, yet sparse, body of evidence that
glucose homeostasis is heavily controlled by the activity of non-
coding regulatory elements (186). For example, thousands of
miRNAs and lncRNAs have been isolated from islets (136), with
preliminary evidence suggesting that some miRNA are required
for islet development in mice (187) and b-cell function (188,
189). LncRNA in particular have been linked to several
important processes in diabetes (190), with overexpression
resulting in enhanced cell proliferation and fibrosis in the early
state of diabetic nephropathy [LncRNA CYP4B1-PS1-001 (191)].

Non-coding single nucleotide polymorphisms (ncSNPs), or
variations in a single DNA base pair that code for non-coding
regulatory elements, can also act as disease modifiers of diabetes
(182). More than 90% of disease-associated SNPs are located
within non-coding regions, resulting in possible functional
variants of promoters, enhancers, and ncRNA genes (192).
Through this mechanism, ncSNPs within important regulatory
regions can alter the splicing, binding, degradation, or sequence
of a ncRNA, which in turn can modulate the activity of multiple
regulatory elements that act to control other cellular processes,
such as transcription factor binding and chromatin states (193,
194). As an example, a recent study from our laboratory that
used genome editing to knock-out HNF1A in hESCs identified a
human-specific lncRNA (LINKA) that is a target of HNF1A and
is necessary for normal mitochondrial respiration within stem
cell-derived b-cells (113). Given that there is recent evidence that
islet-specific lncRNA and transcription factors co-regulate genes
associated with enhancer clusters (195, 196), we expect that
additional studies that expand upon the functional consequences
on ncSNPs and the potential targets of lncRNA in human islets
have great potential to explain some of the clinical heterogeneity
each diabetes subtype (197, 198).

Patient iPSCs as a Diabetes Disease
Modifier Discovery Platform for
Monogenic Diabetes
The discovery of genetic modifiers of diabetes have been slowed
by the complex presentation of the diabetes subtypes, with the
cause of each existing on a multi-dimensional continuum of
genetic, epigenetic, and environmental factors (14). However,
while progress has been hindered in some areas, success has been
achieved over the past two decades within monogenic diabetes,
with advancements in molecular genetics enabling the definition
of discrete etiological disease subtypes that can inform
preventative treatments through precision medicine (199). As
discussed in section 3, monogenic forms of diabetes result from
coding mutations in single identified genes which cause b-cell-
intrinsic dysfunction. This has allowed for targeted studies
focused on elucidating the role of the specific causative gene in
b-cell development and function. However, disease penetrance
and presentation can vary among individuals with the same
underlying pathogenic mutation, suggesting that additional
factors can influence the genotype-phenotype association
(15–18).
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The multifaceted nature of monogenic diabetes provides a
unique opportunity to model gene-phenotype relationships that
contribute to endophenotypes seen in the more common forms
of the diabetes and aid in the discovery of novel disease modifiers
(200, 201). Recent technological advancements in sequencing
technology, genome editing (see Section 2), and the generation
and guided-differentiation of iPSCs (see Section 1.2) now provide
the foundation for an iPSC-based discovery platform that can
identify novel protein coding and non-protein coding genetic
elements that modify the presentation and penetrance of
endophenotypes. Presented in Figure 1, genetic disease
modifier discovery begins with the identification of a
heterozygous coding mutation that results in monogenic
diabetes. Coding variant identification can be done on demand
through partial or whole genome sequencing given available
information regarding candidate genes (97), through exome
sequencing (98), or by leveraging publicly available GWAS
datasets that compare non-diabetic and diabetic patients (99)
(see Section 3). A useful database for monogenic diabetes
includes the products of the DIAbetes Genetics Replication
And Meta-analysis (DIAGRAM) Consortium (https://www.
diagram-consortium.org/).

Upon candidate allele or gene selection, the next step within
the disease modifier discovery platform is the production of iPSC
lines from diabetic patients with the desired coding mutation
(step 2, Figure 1). Due to recent technological advancements,
iPSCs can easily be generated from adult cells that are harvested
from blood or skin tissue (112, 202, 203). Once generated,
endodermal cells with the desired coding mutation can be
produced from iPSCs through exposure to the inductive
signals that drive in vivo development (48, 204). To this end,
several stepwise protocols that move cells through the multiple
stages of pancreatic development in vitro over a few weeks have
been developed (52–54). This process represents a relatively
efficient method for the generation of pancreatic b-cells using
tissue from multiple donors that share the identified coding
mutation but have varied genetic backgrounds that result in
different genetic modifiers, a distinct advantage when addressing
observed heterogeneity in phenotypic expression.

After the generation of stable iPSC lines, the next step within
the disease modifier discovery platform is to selectively correct
the identified coding mutation and compare the resulting gene
mRNA and protein expression before and after correction
(step 3, Figure 1). As described in section 2, there are a
number of genome editing technologies available to
accomplish line correction, although CRISPR/cas9-mediated
systems are becoming the most frequency used within stem
cell models (63, 64). The goal of model generation is to compare
corrected and non-corrected lines to non-diabetic controls, to
which the mRNA and protein expression of the corrected gene
can be measured (step 4, Figure 1). Throughout this process, one
of two outcomes may be observed. Outcome 1: the correction of
the observed coding mutation can result in the complete
normalization of gene/protein expression. This result implies
that the coding mutation was completely responsible for the
decrease in gene expression and/or function (step 5A, Figure 1).
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Outcome 2: the expression of the monogenic diabetes gene is not
rescued to the levels observed in non-diabetic control cells. In this
case, expression is possibly being regulated by a modifier
elsewhere in the genome (step 5B, Figure 1). It is possible that
certain coding mutations may disrupt protein function while not
impacting mRNA or protein expression. Such a mutation can
still be studied with this platform as regulatory region variants
which decrease gene expression may still be detectable when
comparing the patient iPSC cell line to control lines.

In the event that the candidate gene expression is not
normalized by selective correction of the coding mutation, the
target gene may be under the regulatory control of one or more
disease modifiers (step 6, Figure 1). Disease modifiers can reside
either proximally or distally with respect to the coding mutation,
as well as either upstream or downstream from the affected gene,
making their location difficult to determine. An effective search
strategy can be to focus on proximal regulatory regions near the
gene of interest first, although if this approach doesn’t prove
fruitful then there are a number of computational approaches
that are specifically designed for the identification of regulatory
elements [reviewed in (205)]. Similarly, the sequencing and
chromatin mapping efforts of the ENCODE (https://www.
encodeproject.org/) (206), Epigenome Roadmap Consortia
(https://egg2.wustl.edu/roadmap/web_portal/) (207), and
Common Metabolic Diseases Knowledge Portal (https://
hugeamp.org) have provided extensive annotation of coding
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and non-coding regions within the human genome, as well as
the likelihood of variants to impact metabolic disease.

Through the use of public databases, it is now possible to
determine likely regulatory regions of the target gene of interest
that can then be interrogated by targeted sequencing of patient
iPS cell lines that could not be completely rescued by correction
of the coding mutation. If variants are discovered, they can be
studied by genome editing in the context of coding mutations or
in isolation to determine the impact on expression of the target
gene. For example, this strategy has been successfully used to
study pancreas agenesis caused by mutations in GATA6 within
our laboratory (102). A non-coding SNP was discovered in a
patient iPS cell line that regulated expression of GATA6 during
pancreas development in vitro and when interrogated in a cohort
of patients with the disorder was confirmed to be a disease
modifier. This strategy is especially useful in studying variants
that impact genetic disease caused by heterozygous coding
mutations. Variants that may have only a small influence on
gene expression and no impact on disease alone can synergize
with heterozygous coding mutations to bring target gene
expression below a critical threshold needed for function. This
platform does have some limitations including the requirement
to focus of monogenic heterozygous disorders and may not be
scalable to examine large numbers of genes with current
differentiation technologies. We suggest that this methodology
could be applied secondarily to any heterozygous iPSC disease
FIGURE 1 | Stepwise flow diagram of the process of genetic disease modifier discovery.
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modeling project that entails the creation of isogenic corrected
lines with minimal additional effort.
CONCLUSION AND FUTURE OUTLOOK

The recent development of techniques to differentiate hPSCs into
pancreatic b-cells has opened up new pathways to study the
pathogenesis of diabetes. These human-centric models,
combined with rapidly advancing genome editing techniques,
provide incredibly powerful and scalable platforms in which to
study the contribution of genetic elements to b-cell function,
while also addressing the limitation of mouse models.
Furthermore, the use of hPSCs provide unique opportunities in
which to accomplish the targeted study of b-cell dysfunction as
well as provide a platform to discover protein coding and non-
protein coding genetic modifiers. Given recent evidence that
large numbers of disease-linked variants do not reside in coding
regions and the presence of variants can be population-specific,
iPSC platforms that use patient-derived tissue hold great promise
for the discovery of novel genetic diseasemodifiers thatmay help to
explain the variability seen across and within diabetes subtypes.

While hPSC-based platforms represent a great leap forward in
our ability to study b-cell function, there are caveats to their use
that must be taken into account. hPSC derived b-cell generation
and culture is labor-intensive, requiring approximately 40 days of
differentiation and maturation. Additionally, though they do have
some degree of insulin secretion in response to glucose and other
secretagogues, significant uncertainty regarding their functionality
and maturity still exists (66, 208–211). Ideally, these protocols need
to be optimized to support the efficiency and accuracy of discovery
platforms utilizing stem cell-derived b-cells. However, further fine-
tuning of the established differentiation protocols will drive us
closer to an ideal ex vivo human model of pancreatic b-cells. In
addition to improving b-cell function, protocols need to be
Frontiers in Endocrinology | www.frontiersin.org 10
improved so that they are more universally successful, as certain
hPSC lines can more easily differentiated into b-cells than others
using current protocols.

The development of more universally-applicable protocols is
required as the use of patient iPSC lines expands. There has been
a recent flurry of publications that promise improved protocols
with better function and wider applicability, and advances will
continue to build on those already made (57, 212). Finally,
generation of islet cells in platforms combining different stem
cell-derived cell types will allow for more complex modeling of
the genetic and environmental factors driving all forms of
diabetes. Improving our knowledge of pancreatic b-cells
function and development in humans is essential for the
development of treatments for the millions of people affected
by diabetes.
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