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Abstract: Increasing prevalence of A. baumannii was found in the faecal samples of inpatients without
infection caused by A. baumannii (0.15%; 55/7806). The aim of the study was to determine whether
there is a relationship between the clinical strains and the increased faecal occurrence. Characteristics
of faecal and clinical isolates were compared between 2017 and 2019, and the direction of causality
was assessed by Granger causality tests. In the case of the antibiotic resistance, faecal carriage of
carbapenem-resistant Acinetobacter baumannii (CRAb) was Granger-caused by prevalence of CRAb in
inpatients (F = 15.84, p < 0.001), but inpatient prevalence was not Granger-caused by CRAb faecal
carriage (F = 0.03, p = 0.855). Whole genomes of 16 faecal isolates were sequenced by Illumina MiSeq;
cgMLST types were determined. In faecal isolates, the occurrence of carbapenem resistance was lower
than among the clinical isolates from the same period; only blaOXA-72 harbouring ST636 and ST492
were detected, and the blaOXA-23 harbouring ST2 and ST49 strains previously dominant in clinical
isolates were absent. Carriage of blaOXA-72 was linked to pMAL-1-like and pA105-2-like plasmids in
ST636 and ST492 isolates, respectively, both in clinical and faecal isolates. The new ST636 and ST492
strains may colonise the gut microbiota of the patients, which thus may play a role as a reservoir.

Keywords: asymptomatic carriage; resistance reservoir; microbiota; class D carbapenemase

1. Introduction

Healthcare-associated infections (HCAI) are among the most important emerging
threats worldwide [1–3]. It is estimated that the number of deaths associated with multidrug-
resistant (MDR) pathogens could reach 10 million by 2050, and the cost for control of resis-
tance can reach USD 2.9 billion in the United States [1,4,5]. Moreover, the HCAIs caused
by MDR bacteria are a major burden on the health care system; for example, ventilator-
associated pneumonia lengthened the hospital stay by 9.1 and 38.7 bed-days in adult and
neonatal intensive-care units (ICUs), respectively [6]. One of the major sources of HCAIs
is the patient’s own microbiota; the intestinal microbiome is considered an important
reservoir for these drug-resistant microorganisms and plays a crucial role not solely in
the spread of antimicrobial-resistant strains but also acts as a hidden reservoir for genes
conferring antibiotic resistance [7–9]. The rate of asymptomatic colonization of the gastroin-
testinal tract by extended-spectrum β-lactamase- (ESBL-) producing bacteria can reach 14%
globally [10–13]; The colonisation with carbapenem-resistant Enterobacterales occurs less
frequently (<10%) than with ESBL producers but shows an increasing rate [13].

Epidemiological studies indicate that MDR A. baumannii carriage rates are significantly
lower compared to that of MDR Enterobacterales or enterococci as the latter are often part of
the normal microbiota of healthy individuals, while A. baumannii is mainly environmen-
tal and rarely found in the intestinal tract of persons without prior hospital admission.
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However, intestinal colonisation, when present, may serve as an infectious source for the
colonised or other patients. As carbapenem-resistant A. baumannii (CRAb) is a major agent
in HCAI, faecal carriage of CRAb and its role in the strain dynamics of CRAb are worthy of
attention [14].

Our working group has been following up the molecular epidemiology of CRAb
clinical isolates since 2010 in the university [15,16]; the (ST2; ST49) dominant in the first part
of the study period were replaced by blaOXA-72 producers (ST636, ST492) in 2016–2017. The
present study investigates the prevalence and antibiotic resistance of the faecal A. baumannii
isolates collected between January 2017 and April 2019 in order to characterise the role of
faecal CRAb carriage in their molecular epidemiology in comparison with contemporary
clinical isolates from 2017.

2. Results
2.1. Prevalence, Susceptibility Testing and Resistance Genes

In an earlier study period (2011–2013) of faecal carriage only one A. baumannii isolate
was found in 5862 faecal samples (0.02%), while between January 2017 and April 2019,
7806 faecal samples were investigated, and 55 A. baumannii isolates (0.15%) were found
in the faecal samples of inpatients, which is an order of magnitude higher than detected
earlier. Other samples available from these carriers were negative for A. baumannii. Out of
these 55 isolates, 30 originated from paediatric, 15 from internal medicine and 10 isolates
from other wards; 15 of these 55 were resistant to imipenem and meropenem (CRAb), 17 to
ciprofloxacin, 9 to amikacin and tobramycin and 13 to gentamicin. (Figure 1). None of the
CRAb isolates originated from the faecal samples of paediatric patients. The blaOXA-40-like
carbapenemase was found in 19 isolates, curiously, four carbapenem-susceptible isolates
harboured a blaOXA-40-like gene. The earlier frequent blaOXA-23-like carbapenemases were
absent, except for two isolates co-carrying blaOXA-23-like together with a blaOXA-40-like genes.
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Figure 1. Comparison of resistance phenotypes between faecal and clinical isolates for different
antibiotics. The percentages show the prevalence of resistant isolates (Y axis). Significance levels:
*** p < 0.001; ns. not significant. Result of the clinical isolates from our previous work [16].

2.2. Whole Genome Sequencing (WGS)

Among the sequenced 16 faecal isolates, only blaOXA-72 harbouring ST636 (n = 11) and
ST492 (n = 2) were detected; two ST636 isolates carried blaOXA-72 and blaOXA-23 simultane-
ously (Table 1). Further investigation of the environment of the blaOXA-72 gene revealed that
the ST636 and ST492 isolates carry pMAL-1-like and pA105-2-like plasmids, respectively.
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Only three isolates belonged to other STs; the aac(6′)-Ib-cr and blaOXA-120 (blaOXA-51-like) car-
rier ST132, the blaOXA-20 (blaOXA-51-like) carrier ST45 isolate and the blaOXA-106 (blaOXA-51-like)
carrier isolate belonging to a novel sequence type (Table 1.). The WGS confirmed that
both faecal and clinical ST636 isolates are genetically very close to each other, with
only <= 4 alleles distance detected (Figure 2).

Table 1. The findings of whole genome sequencing antibiotic susceptibility testing of selected isolates
and the relation between Acinetobacter baumannii sequence types and acquired carbapenemases.

Isolate Year ST Acquired
CHDLs

Resistance Phenotype

IMP MEM COL CIP AMN GMN TMN

ab61
Ac.No.:

SRX14056986
2017 new None S S S R S S S

ab64
Ac.No.:

SRX14056995
2017 492 blaOXA-72 R R S R R R R

ab65
Ac.No.:

SRX14056996
2017 636 blaOXA-72 R R S R S R S

ab66
Ac. No.:

SRX14056997
2017 636 blaOXA-72 S S S R R S R

ab67
Ac.No.:

SRX14056998
2017 636 blaOXA-72 R R S R S R S

ab68
Ac.No.:

SRX14056999
2017 636 blaOXA-72 R R S R S S S

ab69
Ac.No.:

SRX14057000
2017 636 blaOXA-72 R R S S S S S

ab71
Ac.No.:

SRX14056988
2017 636 blaOXA-72 R R S R S R S

ab72
Ac.No.:

SRX14056989
2017 636 blaOXA-23

blaOXA-72 R R S R R R R

ab73
Ac.No.:

SRX14056990
2017 636 blaOXA-72 R R S R S R S

ab74
Ac.No.:

SRX14056991
2017 636 blaOXA-72 R R S R R R R

ab75
Ac.No.:

SRX14056992
2017 636 blaOXA-72 R R S R S R S

ab60
Ac.No.:

SRX14056985
2018 45 None S S S R R S R

ab63
Ac.No.:

SRX14056994
2018 492 blaOXA-72 R R S R R R R
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Table 1. Cont.

Isolate Year ST Acquired
CHDLs

Resistance Phenotype

IMP MEM COL CIP AMN GMN TMN

ab70
Ac.No.:

SRX14056987
2018 132 None S S S S S S S

ab62
Ac.No.:

SRX14056993
2019 636 blaOXA-23

blaOXA-72 R R S R R R R

IMP = imipenem; MEM = meropenem; COL = colistin; CIP = ciprofloxacin; AMN = amikacin; GMN = gen-
tamicin; TMN = tobramycin; R = resistant; S = susceptible Ac.No. = accession number; ST = sequence type;
CHDLs = carbapenem hydrolysing class D β-lactamase.
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Figure 2. Minimum spanning tree based on cgMLST allelic profiles of A. baumannii isolates. Each
circle represents an allelic profile based on sequence analysis of 2390 cgMLST target genes. Circles
with dashed lines represent the faecal isolates, while the solid-contoured circles show the clinical
isolates, colour-grouped by genotype. The numbers on the connecting lines illustrate the number of
allelic differences. Closely related genotypes (<10 allelic differences based on presence-absence) are
shaded. The cgMLST data of the clinical isolates were derived from our previous study [16].

2.3. Comparison of Faecal and Clinical Isolates

The resistance rate among clinical isolates from 2017 were significantly higher to
imipenem (95.4% vs. 27.3%; p < 0.001), meropenem (95.4% vs. 27.3%; p < 0.001), ciprofloxacin
(96.9% vs. 30.9%; p < 0.001) and gentamicin (96.9% vs. 23.6%; p < 0.001) (Figure 1). This
difference was not significant in the case of amikacin and tobramycin, but the resistance
rates to these antibiotics were also higher in clinical isolates (Figure 1).

Prevalence of the blaOXA-40-like carbapenemase genes were significantly higher in clini-
cal A. baumannii isolates (76.9% vs. 36.4; p < 0.001), two isolates carried only the blaOXA-23-like
gene, while in the faecal isolates there were no strains carrying only the blaOXA-23-like car-
bapenemase. The proportion of isolates carrying two carbapenemases was also significantly
higher among clinical isolates (15.4% vs. 3.6%; p < 0.05) (Figure 3). There was no significant
difference for the aminoglycoside resistance armA gene (9.2% vs. 3.6%) (Figure 3).
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Figure 3. The prevalence of resistance genes among the clinical and faecal A. baumannii isolates.
The percentages show the prevalence rate among the isolates (Y axis). Significance levels: * p < 0.05;
*** p < 0.001; ns not-significant. The results of clinical isolates from our previous work [16].

The minimum inhibitory concentrations (MICs) of imipenem and meropenem were
uniformly >32 mg/L in case of CRAb isolates. The time-kill analysis showed that there is
no difference between the faecal and clinical strains in growth dynamics in the presence
of carbapenems (data not shown). Meropenem was bactericidal at 128 mg/L in the case
of ST492 isolates, but a bactericidal effect was never found against ST636, neither against
isolates carrying blaOXA-72 nor against isolates with both blaOXA-72 and blaOXA-23. Imipenem
was bactericidal at 256 mg/L against all investigated isolates.

The blaOXA-72 carriage was linked to pMAL-1-like and pa105-2-like plasmids in ST636
and to ST492 isolates both in clinical and faecal isolates, and in one clinical isolate we found
a complete pMAL-1 plasmid (GeneBank ID: KX230793.1) as a single contig with 99.99%
identity. The blaOXA-23 gene was linked to Tn2008 (GeneBank ID: LN877214.1) transposon
in all cases.

Faecal carriage of CRAb was Granger-caused by prevalence of CRAb in inpatients
(F = 15.84, p < 0.001), but inpatient prevalence was not Granger-caused by CRAb faecal
carriage (F = 0.03, p = 0.855). In contrast, neither faecal carriage of carbapenem-susceptible
A. baumannii was Granger-caused by prevalence of carbapenem-susceptible A. baumannii in
inpatients (F = 2.15, p = 0.155) nor vice versa (F = 0.13, p = 0.726).

3. Discussion

The study was inspired by the observation that the prevalence of CRAb in faecal
samples increased significantly in the study period 2017–1019 compared to 2011–2013
(0.02% vs. 0.15%, p < 0.05; unpublished data). CRAb isolates originated from asymptomatic
carriers, inpatients who did not show signs of A. baumannii infection, and it was not detected
in any of their other samples. In comparison to the clinical isolates, the in vitro resistance
was lower in the faecal A. baumannii isolates than in the clinical isolates in the case of all
investigated antibiotics. The results of the WGS showed that only the newly appeared STs
(ST636, ST492) could be found among the faecal CRAb isolates.
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Several studies report the gut colonisation by CRAb in infected ICU patients, and
prevalence rates were usually between 4.8% to 18.3%, but according to Corbella et al.
(1996), the colonisation may reach 72.2%, and notably, a relationship was found between
colonisation and nosocomial infections in ICUs, increased mortality rate and longer hospi-
talisation [17,18]. Our results are in concordance with the findings of Dijkshoorn et al., who
reported 0.8% and 1.0% prevalence of A. baumannii in healthy individuals [19]. However,
data is scant on the occurrence of CRAb among faecal samples of patients not infected
by CRAb. Li et al. [20] reported a comparable faecal prevalence of 1.48% (74/5000) in an
active surveillance of hospitalised patients using meropenem-containing selective medium,
but in this report, it is unclear whether these had infection with A. baumannii or were
colonised asymptomatically. The distribution of carbapenemase genes was markedly differ-
ent between isolates from infectious sites and faecal isolates [20]. Eight, five, two and two
A. baumannii isolates out of the sixteen were positive for blaOXA-23-like, blaOXA-40-like, blaVIM
and blaNDM genes, respectively, though lack of the blaOXA-51-like gene in three isolates raises
the possibility of misidentification in these cases [20].

In our setting, not only the incidence of faecal carriage of A. baumannii increased, but
CRAb strains also appeared in the faeces of asymptomatic adult, but not paediatric, carriers.
Faecal colonisation by CRAb, but not by carbapenem-susceptible A. baumannii, seems to
be consequent to the prevalence of CRAb infections as indicated by Granger causality
analysis. Similarly, colonisation of patients with ESBL-producing bacteria was shown
to be consequent to the prevalence of infections earlier in this setting [21]. Accordingly,
colonisation of the faecal microbiota seems to occur during hospital stay, which then
becomes a risk factor for colonising healthcare personnel, roommates or future room
occupants [22].

Furthermore, only the sequence types ST636 and ST492 harbouring blaOXA-72 carbapen-
emase gene were found, while the previously dominant ST2 isolates carrying blaOXA-23
were absent. This suggests that colonisation ability may be strain-specific, which, besides
their higher resistance against meropenem [16], may have contributed to the epidemic
success of blaOXA-72 carrying strains [23–25], as their worldwide emergence seems to be
contemporary to that of ST492 and ST636 [26].

Faecal carriage of multiresistant pathogens is an increasingly recognised problem,
which is aggravated by lack of effective methods for eradication from colonised patients.
Consequently, screening and isolation of positives patients remain most effective coun-
termeasure against spread [27], necessitating increased infection control activities and
allocation of time and resources.

The non-fermenting nosocomial Gram negatives A. baumannii and P. aeruginosa are
generally accepted to persist mainly in abiotic reservoirs, such as water pipes or fomites,
which is easier to contain using appropriate infection control practices [28,29]. Colonised
individuals are thought to play only a minor or negligible role. As evidenced from the
example of carbapenem-resistant Enterobacterales (CRE), faecal carriage may seriously ham-
per the eradication efforts of MDR pathogens from hospitals [30]. Therefore, appearance
of CRAb strains with an increased ability to colonise the human gastrointestinal tract is
alarming, since such a case will necessitate testing and infection control management of
faecal carriage and not only the environmental contamination.

4. Materials and Methods
4.1. Isolates

Faecal samples of inpatients (n = 7806) sent for routine faecal culture between
January 2017 and April 2019 at the Clinical Centre of the University of Debrecen were
investigated for carriage of multiresistant Gram-negative bacteria. Samples were cultured
on eosin-methylene blue agar (Neogen, Lansing, MI, USA) supplemented with 2 mg/L
cefotaxime. After identification by matrix-assisted laser desorption/ionisation time-of-
flight mass spectrometry (MALDI-TOF-MS) using a Microflex Biotyper (Bruker Daltonics,
Billerica, MA, USA), A. baumannii isolates were investigated further. The susceptibility to
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amikacin, tobramycin, gentamicin, imipenem, meropenem and ciprofloxacin were deter-
mined by Kirby–Bauer method according to the European Committee on Antimicrobial
Susceptibility Testing (EUCAST) guidelines (v 11.0) [31]; colistin susceptibility testing was
performed by microdilution test (Merlin Diagnostics, Bornheim, Germany). Faecal isolates
were compared to 65 clinical CRAb isolates (mainly from bronchial, wound and blood
samples) collected in 2017 in our previous research [16].

The direction of causality between faecal carriage and isolations from clinical disease
was analysed by Granger causality tests. Granger causality test is based on comparing
forecast quality of one time-series alone and when including another time series. If the
forecast quality is better in the latter case, then the first time-series is Granger caused
by the other, indicating a potential causality [32]. We collected the monthly incidence of
carbapenem susceptible A. baumannii and CRAb in faecal samples from inpatients and the
monthly incidence densities of inpatients infected by carbapenem-susceptible A. baumannii
and by CRAb per 100 occupied bed-days between 2017 and 2019. The Granger causality
was tested between the respective pairs of time series [33]. Difference in susceptibility and
resistance genes prevalence was analysed by chi-square test. The difference in imipenem
and meropenem resistance between the clinical and faecal A. baumannii isolates was inves-
tigated by time-kill analysis [16].

4.2. Resistance Genes

Based on previous experience, carbapenemases blaOXA-23-like, blaOXA-24/40-like,
blaOXA-51-like and the armA aminoglycoside resistance gene were sought by polymerase
chain reaction (PCR), as described earlier [16,34,35].

4.3. Whole Genome Sequencing

Based on resistance gene carriage, representative CRAb (n = 13) as well as carbapenem-
susceptible (n = 3) isolates were chosen for whole genome sequencing (WGS). The primary
consideration for the selection criteria was the resistance gene profile, previously deter-
mined by PCR, and we also took into account phenotypic resistance. For isolates with the
same resistance profile (genotype and phenotype), the origin of the faecal samples (hospital
department) served as an additional criterion. Libraries were prepared with the Nextera
DNA Flex library preparation kit (Illumina, San Diego, CA, USA) and sequenced with the
MiSeq Reagent Kit v2 (300 cycles, Illumina) on the MiSeq platform (Illumina). The result-
ing FASTQ files were quality-trimmed before being de novo assembled with the Velvet
assembler included in the Ridom SeqSphere+ software (Ridom GmbH, Münster, Germany).
The cgMLST analysis was carried out using the Ridom SeqSphere+ software based on the
‘A. baumannii cgMLST’ version 1.0 scheme. The generated raw sequence reads uploaded
to NCBI BioProject database (BioProject ID: PRJNA671692). The sequenced faecal isolates
were compared to clinical isolates from our previous study (BioProject ID: PRJNA671692).
The accession numbers of the faecal isolates are shown in Table 1. The antibiotic resistance
genes were sought for in the genomes by ResFinder (v3.9; 90% ID threshold, 60% minimum
length) and Comprehensive Antibiotic Resistance Database (CARD, v3.1.4).
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