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Neutrophils are vital components of innate and adaptive immunity. It is widely
acknowledged that in various pathological conditions, neutrophils are activated and
release condensed DNA strands, triggering the formation of neutrophil extracellular
traps (NETs). NETs have been shown to be effective in fighting against microbial
infections and modulating the pathogenesis and progression of diseases, including
malignant tumors. This review describes the current knowledge on the biological
characteristics of NETs. Additionally, the mechanisms of NETs in cancer are discussed,
including the involvement of signaling pathways and the crosstalk between other cancer-
related mechanisms, including inflammasomes and autophagy. Finally, based on previous
and current studies, the roles of NET formation and the potential therapeutic targets and
strategies related to NETs in several well-studied types of cancers, including breast, lung,
colorectal, pancreatic, blood, neurological, and cutaneous cancers, are separately
reviewed and discussed.
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INTRODUCTION

Neutrophils are recognized as the most abundant leukocytes in the blood, comprising
approximately 50%–70% of all circulating leukocytes in humans and 10%–25% in mice (1–3).
They are widely acknowledged as vital members of both innate and adaptive immune responses and
defendants against exogenous invaders, including various kinds of bacteria, viruses, and fungi (4–6).
Under microbial infection or foreign invasion, neutrophils are rapidly activated and accumulated,
which contribute to the restriction and clearance by triggering reactive oxygen species (ROS)
production, endocytosis, degranulation, etc. (7). In 2004, Brinkmann et al. observed a special form
of neutrophil degranulation, consisting of DNA fibers decorated with granule proteins, which were
initially termed neutrophil extracellular traps (NETs) (8). They revealed that the formation of
extracellular DNA traps contributed to the constraining and killing of invasive bacteria (8). In the
last 17 years since their initial discovery and definition, numerous studies have been devoted to
uncovering the characteristics of NETs. Studies have also demonstrated the physiological and
pathological functions of self-defensive mechanisms in various types of disorders via the
involvement of inflammatory and immune responses (9–12). Recently, NETs have been
demonstrated to be involved in the pathogenesis and progression of malignant tumors. An
increasing number of studies have revealed the pro-tumor effects of NETs. These effects are
mediated via mechanisms including the establishment of an inflammatory microenvironment and
interaction with other pro-tumor mechanisms such as inflammasomes and autophagy (13–17). In
August 2021 | Volume 11 | Article 7143571

https://www.frontiersin.org/articles/10.3389/fonc.2021.714357/full
https://www.frontiersin.org/articles/10.3389/fonc.2021.714357/full
https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles
http://creativecommons.org/licenses/by/4.0/
mailto:linghuenqiang@vip.sina.com
mailto:csxlily@163.com
https://doi.org/10.3389/fonc.2021.714357
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2021.714357
https://www.frontiersin.org/journals/oncology
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2021.714357&domain=pdf&date_stamp=2021-08-12


Shao et al. Neutrophil Extracellular Traps in Cancer
this review, knowledge on the biological characteristics of NETs
is presented. Furthermore, the roles of NETs and potential
therapeutic targets and strategies related to NETs in several
types of cancer, including breast, lung, colorectal, pancreatic,
blood, neurological, and cutaneous cancers, is discussed in detail
through a review of the latest related studies.
PART I: BIOLOGICAL CHARACTERISTICS
OF NETS

NETs are extracellular strands of decondensed (unwound) DNA
fibers in complex with histones and neutrophil granule proteins,
including matrix metalloproteinase (MMP), neutrophil elastase
(NE), myeloperoxidase (MPO), cathepsin G, complement
factors, and other enzymatically active proteases and peptides
(18–20). In the first few years since its initial report in 2004 (8),
the term “neutrophil extracellular trap-osis (NETosis)” was
widely used in related studies instead of NETs. The extensive
use of the term NETosis was based on reports demonstrating that
most extrusion of DNA strands resulted in their death, which
allowed neutrophils to serve in immune reactions after their
death (21–24). However, a strong concern was raised, since an
increasing number of studies had reported that the occurrence of
NETs does not necessarily lead to neutrophil death (9, 25–27).
Therefore, it was strongly recommended by the Nomenclature
Committee on Cell Death (NCCD) in 2018 that the term
“NETosis” should be replaced with “NETs” or “NET
formation” to include the DNA extrusion in the absence of cell
death (28). Given this consideration, in this review, “NETs” or
“NET formation” is used instead of “NETosis” in the
following sections.

Under normal conditions, most DNA strands in neutrophils
are highly wrapped around histones into heterochromatin within
the nucleus (18, 29, 30). The protein–DNA interactions largely
constrain the potential energy of DNA to extend, which leads to
transcriptional inactivity (31). Under certain stimuli, such as
microbial and sterile agents in vivo or phorbol 12-myristate 13-
acetate (PMA), lipopolysaccharide (LPS), and intracellular
calcium ion flux in vitro, the condensed DNA strands in
neutrophils are uncoi led as fibrous polymers . The
decondensation of DNA strands leads to the release of such
potential energy, thus facilitating the formation of NETs
(illustrated in Figure 1) (32, 33). To date, two proteases have
been commonly acknowledged to be vital in the process of NET
formation (18, 34–36). The first is peptidyl arginine deiminase 4
(PAD4), which catalyzes the conversion of arginine in histones to
citrullines. Such citrullination significantly weakens the original
positive charge of histones and weakens the strong histone-DNA
binding, which leads to the decondensation of nuclear DNA and/
or mitochondrial DNA. Besides PAD4, the other vital protease is
NE, which is considered to facilitate the destruction of histone–
DNA binding by cleaving histones. Deficiency in either PAD4 or
NE in mice has been shown to prevent generation of NETs (37–
39). After the decondensation of chromatins and disintegration
of nuclei, DNA structures decorated with histones and granule
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proteins are extruded throughout the cellular membrane with the
assistance of gasdermin D. Gasdermin D has been shown to
function in the formation of pores, which results in the release of
NETs (40, 41). However, several studies have demonstrated that
PAD4 is not always necessary for NET formation. For instance,
some researchers have argued that the role of PAD4 in NADPH-
oxidase (NOX)-dependent NETs remains controversial. They
observed the formation of NETs in the absence of detectable
histone deamination (32, 42, 43). These studies indicate the
complexity of the processes and mechanisms of NET formation.

To date, various signaling pathways have been shown to be
involved in NET formation. Changes in the levels of signaling
pathway-related proteins have been detected, including protein
kinase C (PKC), extracellular regulated protein kinase 1/2
(ERK1/2), c-Jun N-terminal kinase (JNK), Akt, and Scr (44–
46). In addition, several mechanisms, including those involved in
inflammasomes and autophagy, have been shown to interact with
NETs in diseases (47–49). Since the initial discovery of bacterial
infection as a stimulating factor for NETs, an increasing number of
stimuli have been uncovered in the recent decade to trigger NET
formation. In addition to bacteria, several other factors, including
interleukin (IL)-8 (a major neutrophil chemoattractant) (50, 51),
PMA (a PKC activator) (52–54), LPS (a component of gram-
negative bacteria) (55, 56), certain kinds of toxins, intracellular
calcium ion flux, ionomycin, andA23187 (18, 42) have been shown
to stimulate NET formation. It is notable that the mechanisms for
the stimulation ofNET formationdiffer between in vitro and in vivo
conditions. For instance, LPS has been demonstrated to be effective
in inducing NET formation in vitro through direct stimulation of
neutrophils. However, it has been shown that LPS can only induce
NET generation by binding activated platelets (thrombocytes) in
vivo (57). Due to the complexity of in vivo conditions and the
relative limitations of research techniques, a limited number of
studies have addressed the specific inducers of NET formation in
vivo (33). To date, several factors, including exogenous infections
such as bacteria and fungi (10, 58, 59), inflammatory cytokine
stimulation (60, 61) and interaction with activated platelets (62)
have been recognized as stimuli in vitro. However, few specific
agents have been proven to be effective in inducing NET formation
in vivo.

Based on the knowledge of the biological and morphological
characteristics of NETs, several methods have been developed for
the detection and monitoring of NET formation, including
immunofluorescence, immunohistochemistry, intravital
microscopy, live cell imaging, DNA-intercalating dying
techniques, and immunoblotting. These methods mainly target
NET-related proteins, such as PAD4, NE, MPO, and MMP (33,
63–65). By means of these techniques and methods for NET
detection, NETs have been demonstrated to be highly involved in
the pathogenesis and progression of several kinds of disorders,
including inflammatory bowel disease (66–68), multiple sclerosis
(69, 70), atherosclerosis (71, 72), ischemic stroke (73), and some
other autoimmune diseases (11, 20, 74). Moreover, an increasing
number of studies have uncovered the involvement of NETs in
the onset and development of malignant tumors, which will be
discussed in detail in the following sections.
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PART II: NETS IN CANCER

General Ideas on the Relations Between
NETs and Cancer
Notably, a search on the database of PubMed (www.ncbi.nlm.
nih.gov/pubmed/) using the keywords “neutrophil extracellular
traps” and (“cancer” or “tumor”) yielded 672 results by June
2021, with studies published in the last 4 years (2018–2021)
accounting for 65.9% (443 in 672). Demers et al. (75) first
reported the role of NETs in cancer. Since then, the prevailing
view is that NETs produce a pro-tumor effect through the
promotion of cancer cell proliferation, differentiation,
metastasis, and other pathological characteristics in various
types of malignant tumors (13, 76–81). For instance, it was
demonstrated that NE, an important granule protein in NET
microvesicles, could degrade the extracellular matrix and induce
the phosphatidylinositol-4,5-bisphosphate 3-kinase (PI3K)
pathway in cancer cells. The induction of the PI3K signaling
Frontiers in Oncology | www.frontiersin.org 3
pathway promotes cancer cell proliferation and migration (76,
77). Another member of the granule proteins, MMP, was also
reported to promote tumor growth and metastasis through
proteolysis of the extracellular matrix (13, 78). In addition, it
has been revealed that the proteases in NETs can induce the
remodeling of laminin, which triggers the integrin signaling
pathway in cancer cells and the awakening of dormant tumor
growth (13). Moreover, Teijeira et al. demonstrated that CXCR1
and CXCR2 agonist-induced NETs could wrap and coat cancer
cells, which shielded them from clearance and the cytotoxic
effects of cytolytic cytotoxic T lymphocytes (CTLs) and natural
killer (NK) cells (79). These data indicate that NETs may
function as a physical barrier preventing the interaction
between cancer cells and surrounding inflammatory and
immune populations (79, 80). It was further revealed that the
levels of intratumoral NETs and supranormal preoperative
serum MPO-DNA, regarded as a NET marker, were
significantly increased in metastatic cancer tissues (81). They
FIGURE 1 | Schematic illustration of NET formation. Under certain stimuli such as bacterial infection, cytokines, and LPS challenge, neutrophils are activated via the
modulation of cellular signaling pathways mediated by PKC, EK1/2, JNK, Akt, Scr, and so on. The tight electrostatic binding between DNA strands and histones in
nucleosomes is weakened, mediated by two kinds of proteases including PAD4 and NE. The decondensed DNA with citrullinated histones catalyzed by PAD4 are
decorated with several granule proteins including PAD4, NE, MPO, MMP, and gasdermin D and expelled from neutrophils as NETs. NETs, neutrophil extracellular
traps; LPS, lipopolysaccharide; PKC, protein kinase C; ERK1/2, extracellular regulated protein kinase 1/2; JNK, c-Jun N-terminal kinase; PAD4, peptidyl arginine
deiminase 4; MMP, matrix metalloproteinase; NE, neutrophil elastase; MPO, myeloperoxidase.
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showed that NETs could facilitate the growth of stressed cancer
cells by altering their bioenergetics, while the inhibition of NETs
leads to cancer cell death (81).

Cancer-associated platelet activation has been shown to
facilitate tumor progression and metastasis through protecting
cancer cells from shear forces and assault of immune cells,
opening the capillary endothelium to induce the epithelial–
mesenchymal transition (EMT) program and secreting pro-
tumor growth factors, etc. (82–84). Patients with malignant
tumors demonstrate an increase in platelet activation (82).
NETs have been shown to contribute to the formation of
arterial, venous, and cancer-associated thrombosis (15, 85).
These findings suggest that targeting NETs may serve as a
potential and promising approach to reduce thrombosis and
limit tumor progression and metastasis.

In addition, NETs have also been regarded as an important
member of the dynamic tumor immune microenvironment
(TIME), which may contribute greatly to impeding metastatic
dissemination (51, 86). Several factors have been revealed to
contribute to the formation of the TIME. Among them, cancer-
associated fibroblasts (CAFs) are regarded as one of the most
vital pro-tumor factors. Regarding the influence of NETs on
CAFs, it was reported that the formation of NETs originated
from CAFs in pancreatic ductal adenocarcinoma, thus producing
a pro-tumor microenvironment (87). For the mechanism by
which NETs influence the conversion of normal fibroblasts into
CAFs in tumors, a nuclear factor (NF)-kB-dependent manner in
stomal cells induced by activated neutrophils has been reported
(88). Furthermore, the overwhelming production of fibroblast
growth factors (FGFs) triggered by NETs in cancer was also
shown to be a potential mechanism for the promotion of CAFs
(89). However, due to the complexity of the conversion of
normal fibroblasts to CAF, more research is required to
explore the specific mechanisms mediated by NET regulation.

Although abundant experimental data suggest the pro-tumor
effect of NETs on cancer, it is not in the absence of controversy
(90, 91). Some researchers have argued that baseline NETs could
produce an anti-tumor effect by directly killing cancer cells or
limiting tumor growth and metastasis via stimulation of the
immune system (90). In addition, NETs have been shown to
limit the growth of cancer-related intestinal microbiota
populations, thus inhibiting the proliferation and metastasis of
colorectal cancer cells (91). Therefore, to ultimately take
advantage of NETs for cancer treatment, more knowledge
should be gained regarding the precise regulation of NETs.

Currently, there is still little knowledge on the specific
mechanisms of NET formation in cancer. Although some
findings have been obtained, there is no consensus regarding
this issue. A previous study revealed that NETs were produced by
neutrophils in a toll-like receptor 4 (TLR4) and high-mobility
group box 1 (HMGB1)-dependent manner in lung cancer cells
(92). In addition, it has also been reported that the chronically
inflammatory microenvironment contributes to the formation of
NETs via an MPO–NETs–antineutrophil antibody (ANCA) axis
in cancer (93, 94). Researchers have shown that NETs might act
as a central factor in the neutrophil–NET–cancer cycle, thus
Frontiers in Oncology | www.frontiersin.org 4
aggravating the pathogenesis and progression of cancer. Other
researchers have revealed that NETs might be associated with
other cellular processes, including inflammasomes and
autophagy, which will be discussed in the following sections.
INFLAMMASOMES, NETS, AND CANCER

Inflammasomes are multi-protein complexes that are widely
regarded as important factors of inflammation and innate
immunity responsible for the activation of inflammatory and
immune responses through the recognition of pathogen-
associated molecular patterns (PAMPs) or danger-associated
molecular patterns (DAMPs) (95). To date, several types of
inflammasomes have been reported, including the NOD-like
receptor family, pyrin domain-containing 1 (NLRP1), NLRP2,
NLRP3, NLR family caspase recruitment domain-containing
protein 4 (NLRC4), and double-stranded DNA sensors absent
in melanoma 2 (AIM2) (96–98). As previously reviewed by us,
the activation of inflammasomes involves the cleavage of
procaspase-1 into caspase-1, which subsequently catalyzes the
production and secretion of inflammatory cytokines, including
IL-1b and IL-18 (99, 100). The involvement of NF-kB signaling
in the initiation of inflammasome activation leads to increased
production of inflammasome components (99, 100). Recently,
numerous studies conducted by our laboratory and others have
demonstrated the roles of inflammasomes in various diseases,
including inflammatory bowel disease, multiple sclerosis,
atherosclerosis, stroke, and malignant tumors (96, 101–103). In
cancer, it has been revealed that the over-induction of
inflammasomes largely influences cancer cell death,
proliferation, and even tumor growth microenvironment, such
as intestinal microbiota populations and fibroblasts, which
indicates the wealth of putative inflammasome-based targeted
therapies for cancer (104–110).

As important components in immune reactions, NETs have
been shown to be closely linked to inflammasomes in some
autoimmune diseases and cardiovascular disorders (19, 111,
112). For instance, it has been previously described that the
formation of NETs by neutrophils could trigger the synthesis of
inflammasome-related IL-1b and IL-18 in macrophages through
cathelicidin LL-37-mediated potassium efflux from the cells. The
production of IL-1b and IL-18 subsequently promotes NET
formation during the occurrence of cardiovascular diseases (19,
113). Similar crosstalk between inflammasomes and NETs has
been reported in cancer. It has been demonstrated that NET-
associated serine proteases such as NE could act as alternative
enzymes for processing inflammasome-related IL-1b and IL-18,
which subsequently leads to the modulation of PGRN
inactivation and MMP-9 activation in cancer (114). In
addition, Albrengues et al. (13) reported in lung cancer that
NETs and NETs-mediated extracellular matrix remodeling acted
as critical mediators of awakening of dormant cancer cells by
LPS-mediated formation of inflammasomes in mice. This
process is mediated by the binding between NET-DNA and
extracellular matrix protein laminin and bringing NE and MMP-
August 2021 | Volume 11 | Article 714357
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9 to their substrates (13). To date, little evidence has been
available regarding the crosstalk between inflammasomes and
NETs in cancer (13, 114, 115). However, future studies should
further elucidate such interactions as they may unravel potential
novel therapeutic strategies for the treatment of cancer.

Autophagy, NETs, and Cancer
Autophagy, commonly recognized as a vital metabolic
mechanism relying on lysosomes, functions in degrading and
recycling long-lived, misfolded proteins and damaged organelles
to maintain cellular homeostasis (116–118). As previously
described, under organic stress, such as nutrient deprivation or
inflammatory loading, cytoplasmic materials are targeted and
sequestrated into autophagosomes, which are regarded as the
functional units of autophagy (119–121). The autophagosomes
fuse with lysosomes to form autolysosomes (119–121). Notably,
Yoshimori Ohsumi was awarded the 2016 Nobel Prize in
Medicine or Physiology for exploring the cellular autophagy
processes (122). Since its discovery by Christian de Duve in the
1960s (123), numerous studies from our laboratory and others
have uncovered the involvement of autophagy in various
diseases, including cardiovascular disorders, autoimmune
diseases, metabolic abnormalities, malignant tumors,
neurodegenerative diseases, and gastrointestinal diseases
(124–129).

The influence of autophagy on the pathogenesis and
progression of cancer tends to be regarded as a double-edged
sword (130–134). In contrast, autophagy has been considered to
maintain stemness, induce recurrence, and develop resistance of
cancer cells to anticancer agents. The administration of
rapamycin, an autophagy inducer, has been shown to be
effective in alleviating cancer (131–133). Additionally,
autophagy has also been reported to inhibit tumor initiation
through the induction of autophagic cell death, and chloroquine,
an autophagy inhibitor, has been used in anti-tumor therapy
(131, 134). These studies indicate the complexity of autophagy
mechanisms in cancer.

The dichotomous effects and complex mechanisms of
interactions between autophagy and NETs have also been
demonstrated in cancer. It has been reported that the
induction of autophagy (formation of autolysosomes) in
leukemia cells leads to the release of NETs, which results in the
deterioration of acute promyelocytic leukemia (135). In addition,
Boone et al. (136) revealed that NETs were upregulated in
pancreatic cancer via receptor for advanced glycation end
products (RAGE)-dependent/autophagy-mediated pathways.
Regarding the effect of autophagy and NET crosstalk in cancer,
it was previously revealed that the administration of chloroquine
significantly reduced the hypercoagulability in pancreatic cancer
by inhibiting NETs, suggesting a positive effect of suppressing
autophagy–NET interaction in the alleviation of cancer (137).
However, autophagy has been reported to be involved in the
effects of interferon (IFN)-g on cell growth inhibition and
cytotoxicity in lung epithelial malignancies via the induction of
PAD4-mediated NETs (138). Consequently, to ultimately take
advantage of interactions between autophagy and NETs in
Frontiers in Oncology | www.frontiersin.org 5
cancer treatment, further studies are required to explore
this issue.
PART III: NETS IN DIFFERENT
TYPES OF CANCER

During the 16 years since the initial discovery of NETs in 2004,
an increasing number of researchers have focused on the study of
NETs in cancer. Fortunately, to date, the effects of NETs in
several popular types of cancer have been widely revealed to
illustrate the whole picture. In this section, the roles of NETs and
potential therapeutic targets and strategies related to NETs in
several types of cancers, including breast, lung, colorectal,
pancreatic, blood, neurological, and cutaneous cancers are
described and discussed in detail based on the latest studies
available in the current database (listed in Table 1).

Breast Cancer
Breast cancer is regarded as one of the three most commonly
diagnosed cancers worldwide, especially in women (160). Breast
cancer is one of the most studied type of cancer-related to NETs.
It was first reported by Demers et al. (75) that, in a murine late-
stage breast cancer model, the formation of NETs corresponded
with cancer-associated thrombosis in the lung. The formation of
thrombosis contributed to a poor prognosis and cancer-caused
death. In addition, the expression levels of PAD4 genes were
shown to be high in murine breast cancer 4T1 cells and PAD4-
mediated NETs, which contributed to the release of cancer
extracellular chromatin networks (CECN) both in vitro and in
vivo (139). PAD4-mediated NETs were demonstrated to
promote breast tumor growth and cancer metastasis into the
lung, since the deletion of PAD4 genes in mouse models largely
attenuated breast cancer cell proliferation and migration (139).
In addition, Martins-Cardoso et al. (140) revealed that NETs
promoted a pro-metastatic phenotype in human breast cancer
cells by inducing the EMT program.

Regarding the exploration of therapeutic targets related to
NETs in the treatment of breast cancer, a brilliant study by Yang
et al. (141) uncovered a potential specific mechanism for the
influence of NETs in breast cancer metastasis. In this study, the
researchers revealed that the DNA components of NETs (NET-
DNA) could act as a chemotactic factor to attract breast cancer
cells rather than merely “trap” them, thus leading to the
occurrence of liver metastases in patients with early-stage
breast cancer (141) . They also suggested that the
transmembrane protein CCDC25 might act as a potential
NET-DNA receptor in breast cancer cells by sensing
extracellular DNA. The activation of CCDC25 consequently
enhanced cell motility through the subsequent activation of the
ILK-b-parvin pathway. These data indicate an appealing
therapeutic strategy that takes advantage of targeting CCDC25
for cancer metastasis prevention (141). It has been commonly
revealed that patients with breast cancer are at a relatively higher
risk of developing thrombosis. Gomes et al. (142) demonstrated
that blockade of inflammasome-related IL-1b production and
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secretion attenuated cancer-associated thrombosis in a NETs-
dependent breast cancer model, indicating the vital role of the
crosstalk between NETs and inflammasomes in the treatment of
breast cancer.

Lung Cancer
Lung cancer is the most diagnosed and frequent cause of cancer-
related deaths worldwide, with approximately 1.8 million newly
diagnosed patients and 1.6 million deaths each year (161). Thus
far, NETs have been demonstrated to modulate the biological
characteristics of lung cancer cells, thus influencing the
pathogenesis and progression of lung carcinoma. For instance,
a brilliant study published in Science revealed that sustained lung
inflammation mediated by smoke exposure or nasal instillation
of LPS could awaken dormant cancer cells and facilitate
metastasis through the induction of NET formation (13).
Mechanistic analysis revealed that this process was potentially
via NE/MMP-9-induced cleavage of laminin, which
subsequently led to the activation of integrin a3b1 signaling in
dormant cancer cells (13). However, it is worth mentioning the
difference between lung cancer patients and tumor-bearing mice
models pointed out by Arpinati et al. (162). They argued in a
recent study that no predisposition of neutrophils to release
NETs in patients with lung cancer was found to be similar to that
in mice compared with healthy controls. These results indicate
that attention should be paid to the translation of experimental
Frontiers in Oncology | www.frontiersin.org 6
results obtained from animal studies into cl inical
applications (162).

Regarding therapeutic targets related to NETs in lung cancer,
it was previously revealed that the DAMP protein HMGB1
released by lung cancer cells contributes to the induction of
NETs that was dependent on the activation of TLR4 (92). In
addition, extracellular RNAs (exRNAs) produced by lung cancer
cells have also been demonstrated to induce NET formation,
which promotes cancer cell proliferation and migration (143). In
addition to exploring therapeutic targets, some researchers have
focused on the development of therapeutic strategies for the
treatment of lung cancer-related to NETs, using certain natural
compounds. Recently, Li et al. (144) revealed that emodin, the
main bioactive component of Rheum palmatum, could
significantly prevent hypercoagulation and lung carcinogenesis
by suppressing NET formation in lung cancer animal models.
However, most related research is still in the stage of animal
models. Therefore, more clinical studies are required for the
development of cancer therapies based on NETs.

Colorectal Cancer
According to the analyzed data in 2019, colorectal cancer is
considered to be the fourth most deadly cancer worldwide, with
900,000 deaths annually (163). Aging, western lifestyle, and
bowel inflammatory conditions (e.g., inflammatory bowel
diseases) serve as risk factors for the oncogenesis of colorectal
TABLE 1 | Potential pathophysiological and molecular mechanisms of NETs on different kinds of cancers.

Cancer Pathophysiological AND molecular mechanisms Reference

BreAst cancer In correspondence with cancer-associated thrombosis occurrence in lung (75)
Release of cancer extracellular chromatin networks (CECN) (139)
Activating the epithelial–mesenchymal transition (EMT) program (140)
Acting as a chemotactic factor in assistant with a transmembrane protein CCDC25 (141)
Interaction with inflammasomes (142)

Lung cancer Activating integrin a3b1 signaling via NE/MMP 9-induced cleavage of laminin (13)
Induced by a danger-associated molecular pattern protein high-mobility group box 1 (HMGB1) (92)
Induced by extracellular RNAs produced by lung cancer cells (143)
Preventing hypercoagulation and lung carcinogenesis (144)

Colorectal
cancer

Inducing procoagulant activity (PCA) and leading to a close interaction with platelets and endothelial cells (145)

NETs-associated carcinoembryonic Ag cell adhesion molecule 1 (CEACAM1) acted as an essential element for the interaction between
NETs and colorectal cancer cells

(146)

Mediated by KRAS mutation transferred by exosomes (147)
Forming a positive loop connecting between NETs and colorectal cancer liver metastasis mediated by IL-8 (148)

Pancreatic
cancer

Activating cancer-associated fibroblasts (87)

Modulating cell–cell junctions (149)
Epithelial–mesenchymal transition via IL-1b/epidermal growth factor receptor (EGFR)/extracellular regulated protein kinase (ERK)
pathway

(150)

Stimulating platelets and release of tissue factor via autophagy (137)
Blood cancerS Stimulating citrullination of histone H3 via the activation of PAD4 in multiple myeloma (151)

Activating platelets in myeloproliferative neoplasms (152)
Mediated by the Janus kinase (JAK)-activator of transcription (STAT) signaling (153)
Inhibited by ibrutinib in chronic lymphocytic leukemia (154)

Neurological
cancers

Involved by highly sensitive Troponin T (hsTnT) (155)

Regulated by the high-mobility group box 1 (HMGB1)/advanced glycation end products (RAGE)/IL-8 axis (156)
Cutaneous
cancers

Promoting the spontaneous and immunotherapy-induced adverse reaction of melanoma (157)

Association of IL-8 and NETs (158)
Producing an anti-tumor polarization of tumor-associated neutrophils mediated by type I interferons (IFNs)-related NETs suppression (159)
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cancer (163, 164). Richardson et al. (165) demonstrated that
patients with colorectal cancer have significantly increased NET
formation compared with healthy volunteers, and high levels of
NETs were shown to be associated with adverse patient
outcomes. Furthermore, NETs have been reported to be
involved in venous thrombogenesis in patients with colorectal
cancer via the induction of procoagulant activity (PCA), which
led to a close interaction with platelets and endothelial cells
(145). These data indicate that targeting NETs may be a potential
and promising way to tackle thrombosis in colorectal cancer.

Exploring potential therapeutic targets related to NETs in
colorectal cancer, Rayes et al. (146) revealed that NETs-
associated carcinoembryonic antigen cell adhesion molecule 1
(CEACAM1) acts as an essential element for the interaction
between NETs and colorectal cancer cells, and deficiency in
CEACAM1 significant decreases cancer cell adhesion, migration,
and metastasis. Regarding the induction of NET formation,
KRAS mutation has been shown to contribute to neutrophil
recruitment and NET formation through exosomes in colorectal
cancer, which uncovered a novel mechanism of regulation of
NET formation in colorectal cancer (147). In addition, IL-8, a
tumor inflammatory cytokine, has been reported to be part of a
positive loop connecting NETs and colorectal cancer liver
metastasis (148). However, further studies are required to
develop effective therapeutic strategies for colorectal cancer,
taking advantage of these targets.

Pancreatic Cancer
Pancreatic cancer is a highly lethal cancer in the absence of a
standard screening program since most patients remain
asymptomatic until they reach an advanced stage (166). A
clinical study demonstrated that tumor-infiltrating neutrophils
(TINs) and their generated NETs could be treated as prognostic
factors for pancreatic cancer independent of the TNM staging
system (167). NETs have also been shown to promote liver
micrometastasis in pancreatic cancer by activating CAFs (87).
Notably, it has been commonly recognized that pancreatic
cancer induces a hypercoagulable state, which could result in
clinically apparent thrombosis (168). An increasing number of
studies have demonstrated the influence of NETs on
hypercoagulability and thrombogenesis (137, 149, 168). For
instance, Yu et al. (149) showed an association between the
upregulation of NETs and PCA in patients with pancreatic
cancer through the modulation of cell–cell junctions.
Furthermore, Hisada et al. (169) revealed that neutrophils and
NETs contribute to venous thrombosis in mice bearing human
pancreatic tumors and patients with pancreatic cancer,
indicating a thrombogenic effect of NETs in pancreatic cancer.

Regarding therapeutic targets related to NETs in pancreatic
cancer, Jin et al. (150) revealed that NETs could promote
migration and invasion of pancreatic cancer cells via EMT and
the IL-1b/epidermal growth factor receptor (EGFR)/ERK
pathway. These results indicate that blockade of the IL-1b/
EGFR/ERK signaling pathway might serve as a potential
strategy for the alleviation of pancreatic cancer. In addition, it
has been reported that targeting the interaction between NETs
and autophagy reduces hypercoagulability in pancreatic cancer
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(137). They showed that the administration of chloroquine for
the blockade of autophagy significantly lowered the rates of
venous thromboembolism in patients with pancreatic cancer
by suppressing autophagy-related NET formation. However,
further studies are needed for successful clinical application.

Blood Cancers
Blood cancers are a group of “invisible” cancers, as tumors are
seldomly observed in blood cancers (170). In a broad sense, blood
cancers include leukemia, multiple myeloma, and malignant
lymphoma. Regarding the effects of NETs on blood cancers, a
statistically significant increase in NET levels was found in patients
with multiple myeloma (MM) compared to healthy volunteers
both in the serum and plasma (171). Furthermore, MM cells have
been shown to stimulate citrullination of histone H3 and
subsequently lead to the formation of NETs through the
activation of PAD4 (151). In addition, NETs have been reported
to contribute to thrombogenesis, a major cause of mortality in
patients with myeloproliferative neoplasms (MPNs) via platelet
activation (152).

Regarding the therapeutic targets related to NETs in blood
cancers, it was reported by Wolach et al. (153) that NET
formation was increased in mice MPN models via the Janus
kinase (JAK)-activator of transcription (STAT) signaling. The
administration of ruxolitinib, a JAK2 inhibitor, effectively
suppressed NET formation and reduced thrombosis. In
addition, NET formation has been previously shown to
contribute to the pathogenesis of chronic lymphocytic
leukemia (CLL), and ibrutinib, a widely used chemotherapeutic
drug, alleviated CLL by slightly impairing NET production in
patients with CLL (154). Based on these findings, the modulation
of NET formation may be a potential and promising therapeutic
strategy for the treatment of blood cancers.

Neurological Cancers
Neurological cancers are defined as a group of primary or
metastatic cancers of the central nervous system (CNS) (172).
According to the World Health Organization (WTO) in 2016
(173), neurological cancers comprise diffuse astrocytic and
oligodendroglial tumors, other astrocytic tumors, ependymal
tumors, other gliomas, lymphomas of the CNS, and metastatic
cancers. Regarding the role of NETs in neurological cancers, it
was previously reported that NETs could significantly promote
cancer-associated arterial microthrombosis in cancer patients
presenting with ischemic stroke and large elevations of highly
sensitive troponin T (hs-TnT) (155). In addition, in patients with
high-grade gliomas, a high level of thrombogenic NETs
produced by neutrophils was detected, which resulted in an
increase in venous thromboembolism (VTE) (174).

Regarding therapeutic targets related to NETs in neurological
cancers, Zha et al. (156) revealed that NETs generated by TINs
mediated the crossta lk between gl ioma and tumor
microenvironment in patients with malignant glioma. These
effects were demonstrated to be regulated by the HMGB1/RAGE/
IL-8 axis.However, little is knownabout the specificmechanisms of
NET formation in neurological cancers. Consequently, further
studies are required to ultimately develop therapies targetingNETs.
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Cutaneous Cancers
Cutaneous cancers, also known as “skin cancers”, are a group of
cancers that occur in the skin tissue. Cutaneous cancers are
divided into melanoma and non-melanoma, with the latter
including basal cell carcinoma and squamous cell carcinoma
(175). The mechanisms underlying the pathogenesis and
progression of cutaneous cancers are complex and remain
unclear. To date, modern research has demonstrated that
NETs are closely related to cutaneous cancers. NETs have been
reported to promote inflammation-mediated skin tumor cell
growth in mouse models (176). NETs have also been shown to
contribute to spontaneous and immunotherapy-induced adverse
reactions of melanoma murine models (157). In addition, similar
to other tissues, NET-mediated thrombosis was also found in the
skin tissue, indicating the positive effects of NETs on thrombosis
in cutaneous disorders (177).

IL-8 has been reported to be a potential therapeutic target
related to NETs, since the association of IL-8 and NETs was
revealed in patients with metastatic melanoma (158). In addition,
type I IFNs, widely used anti-inflammatory agents, have been
shown to induce anti-tumor polarization of tumor-associated
neutrophils in murine models and melanoma patients. The
transfer of neutrophils into an anti-tumor disturbs the
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formation of NETs and thus produces a tumor-suppressive
effect (159). However, additional studies are needed to develop
therapies for cutaneous cancers that target NETs.
CONCLUSION

Overall, recent studies have demonstrated the important roles of
NETs in cancer through modulation of the biological
characteristics of cancer cells including proliferation,
differentiation, and metastasis and induction of cancer-related
thrombogenesis (illustrated in Figure 2). So far, we have gained
significant knowledge on the biological features and regulation of
NET formation, as well as the mechanisms of the effects of NETs
on different types of cancers. However, because of the limitations
of current studies, the specific mechanisms of NETs and the
crosstalk between NETs and other cancer-related processes,
including inflammasomes and autophagy, remain unclear. The
specific mechanisms underlying NET formation also remain
unclear. Therefore, additional studies are required for the
successful application of knowledge regarding NET formation
and function in clinical practice through the development of
novel and promising therapeutic strategies against cancer.
FIGURE 2 | Schematic illustration of mechanism of NETs in cancer. Under cancer-related stimulation, the level and function of PAD4 are enhanced, leading to the
citrullination of histones and subsequent decondensation of chromatins. NET microvesicles with DNA-structural fibers decorated by histones, MMP, NE, MPO,
cathepsin G, and other granule proteins are extruded from neutrophils. NET formation modulates the biological characteristics of cancer cells in proliferation,
differentiation, migration, and metastasis through the involvement and crosstalk with some specific pathways and mechanisms including HMGB1/RAGE/IL-8 axis, IL-
1b/EGFR/ERK signaling pathway, JAK/STAT signaling pathway, integrin a3b1 signaling pathway, CEACAM1 signaling pathway, KRAS mutation, extracellular RNA
induction and crosstalk with inflammasomes and autophagy, and cancer-associated fibroblast and platelet activation. NETs, neutrophil extracellular traps; PAD4,
peptidyl arginine deiminase 4; MMP, matrix metalloproteinase; NE, neutrophil elastase; MPO, myeloperoxidase; HMGB1, high-mobility group box 1; RAGE,
advanced glycation end products; EGFR, epidermal growth factor receptor; ERK, extracellular regulated protein kinase; JAK, Janus kinase; STAT, activator of
transcription; CEACAM1, carcinoembryonic Ag cell adhesion molecule 1.
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