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Abstract

Environmental toxicants affect human health in various ways. Of the thousands of chemi-

cals present in the environment, those with adverse effects on the endocrine system are

referred to as endocrine-disrupting chemicals (EDCs). Here, we focused on a subclass of

EDCs that impacts the estrogen receptor (ER), a pivotal transcriptional regulator in health

and disease. Estrogenic activity of compounds can be measured by many in vitro or cell-

based high throughput assays that record various endpoints from large pools of cells, and

increasingly at the single-cell level. To simultaneously capture multiple mechanistic ER end-

points in individual cells that are affected by EDCs, we previously developed a sensitive

high throughput/high content imaging assay that is based upon a stable cell line harboring a

visible multicopy ER responsive transcription unit and expressing a green fluorescent pro-

tein (GFP) fusion of ER. High content analysis generates voluminous multiplex data com-

prised of minable features that describe numerous mechanistic endpoints. In this study, we

present a machine learning pipeline for rapid, accurate, and sensitive assessment of the

endocrine-disrupting potential of benchmark chemicals based on data generated from high

content analysis. The multidimensional imaging data was used to train a classification

model to ultimately predict the impact of unknown compounds on the ER, either as agonists

or antagonists. To this end, both linear logistic regression and nonlinear Random Forest

classifiers were benchmarked and evaluated for predicting the estrogenic activity of

unknown compounds. Furthermore, through feature selection, data visualization, and model

discrimination, the most informative features were identified for the classification of ER ago-

nists/antagonists. The results of this data-driven study showed that highly accurate and gen-

eralized classification models with a minimum number of features can be constructed
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without loss of generality, where these machine learning models serve as a means for rapid

mechanistic/phenotypic evaluation of the estrogenic potential of many chemicals.

Author summary

Chemical contaminants or toxicants pose environmental and health-related risks for

exposure. The ability to rapidly understand their biological impact, specifically on a key

modulator of important physiological and pathological states in the human body is essen-

tial for diagnosing and avoiding undesirable health outcomes during environmental

emergencies. In this study, we use advanced data analytics for creating statistical models

that can accurately predict the endocrinological activity of toxic chemicals based on high

throughput/high content image analysis data. We focus on a subclass of chemicals that

affect the estrogen receptor (ER), which is a pivotal transcriptional regulator in health and

disease. The multidimensional imaging data of these benchmark chemicals are used to

train a classification model to ultimately predict the impact of unknown compounds on

the ER, either as agonists or antagonists. To this end, we evaluate linear and nonlinear

classifiers for predicting the estrogenic activity of unknown compounds and use feature

selection, data visualization, and model discrimination methodologies to identify the

most informative features for the classification of ER agonists/antagonists.

Introduction

Characterization and prediction of the endocrine disruptive potential of complex chemical

mixtures are essential to prevent their adverse effects on human health while understanding

the biological pathways that lead to such undesirable health outcomes [1]. A key target of

endocrine-disrupting chemicals (EDCs) is the Estrogen Receptor (ER), a modulator of impor-

tant physiological and pathological states, including reproduction, metabolism, hormone-sen-

sitive cancers, and obesity. There are many natural and man-made compounds that are

capable of binding to the ER interfering with its activity, either as agonists, which activate a

biological response (i.e., genistein, bisphenol A); or as antagonists, which generally compete

with the endogenous hormones (i.e., 17β-Estradiol (E2)) to suppress the receptor function (i.
e., 4-hydroxytamoxifen, fulvestrant). Mechanistically, E2 activates the ER pathway cascade

through enabling a specific ER conformational change, receptor dimerization, DNA binding

to regulatory elements in the genome, coregulator recruitment, and gene transcription activa-

tion/repression [2–4].

The estrogenic potential of different chemicals can be measured using cell-based or cell-

free in vitro assays by recording several facets of the ER mechanism of action (i.e., ligand bind-

ing, cell proliferation, gene expression, etc.) [5–7]. Previously, a high content/high throughput

microscopy-based assay in HeLa cells, engineered to harbor a visible multicopy integration of

the ER response element present within the prolactin promoter/enhancer, was developed to

capture several mechanistic steps of the ER pathway by imaging [5, 7–10]. Coupled with stable

expression of GFP-ERα, this high content analysis-based approach allows the direct visualiza-

tion of ligand-induced DNA binding by ER as a visually distinct nuclear spot/array when

using standard fluorescent microscopy. Importantly, we observed differences in nuclear spot

size and intensity when cells were treated with ER agonists and antagonists, which could

potentially facilitate the characterization of ligands based upon their effect on ER activity when

compared to known agonists and antagonists.
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Furthermore, recent efforts have also focused on coupling high throughput experimenta-

tion with computational methods for enabling the rapid diagnosis of the estrogenic potential

of various chemicals via in silico predictions [6, 11–16]. Judson et al. [6] used a linear model to

predict the estrogenic activity of 1812 commercial and environmental chemicals based on the

activity patterns across in vitro assays. The accuracy of this linear model is further tested by

Browne et al. [13] for evaluating the ER agonist bioactivity, in which the authors postulated an

integrated methodology to discriminate bioactivity from assay-specific interference. Similarly,

Kleinstreuer et al. [15] used high throughput screening data of 1855 chemicals along with a lin-

ear additive model to predict the Androgen Receptor (AR) activity. Furthermore, Li and Gra-

matica [14] used AR data to develop quantitative structure-activity relationship (QSAR)

models to classify binders as AR agonist or antagonist. The authors also investigated the per-

formance of 4 different classification models, namely k-nearest neighbors (kNN), local lazy

method (lazy IB1), alternating decision tree (ADTree), and an integrated consensus model

[14]. In another study by Chierici et al. [16], deep learning and support vector machine (SVM)

models were developed using the Collaborative Estrogen Receptor Activity Prediction Project

(CERAPP) ToxCast data set for predicting the effects of EDCs on ER binding activity. A fur-

ther detailed overview of in silico toxicity predictions using machine learning algorithms is

provided in the notable review by Idakwo et al. [17].

Different from the aforementioned studies, we present here an integrated, data-driven

framework for characterizing the endocrine-disrupting potential of chemicals that affect ER

functions. In this framework, the high throughput/high content image analysis data, which

provides hundreds of intensity and geometry-based features per cell, are used to generate clas-

sification models for promptly detecting the endocrine disruptive potential of unknown com-

pounds as ER agonists or antagonists. We benchmark our approach using a group of control

chemicals and present a systematic computational approach for predicting the estrogenic

potential of unknown chemicals. Furthermore, by incorporating feature selection steps in this

framework, we identify the most informative image-based features that enable a highly accu-

rate separation between an ER agonist and antagonist without the loss of generality.

Results and discussion

During and after environmental emergencies (i.e., hurricanes), humans are exposed to a num-

ber of chemicals, which in return creates an urgent need for the precise identification of their

estrogenic potentials using rapid assessment techniques. Towards this goal, we collected 18

biologically independent experiments each containing 4 technical replicates of 45 benchmark

compounds and 3 control treatments used at a single concentration with resulting high con-

tent analysis generating 7680 data points (192 observations x 40 features) per experiment. We

aim to construct robust, generalized data-driven models that can accurately predict the endo-

crine-disrupting potential of unknown compounds from a limited number of experimental

observations. To this end, one experimental data set is randomly selected for constructing the

classification models among the 18 repeated image analysis experiments.

The selected data set is first pre-processed to extract the active subset of the 45 benchmark

chemicals, and the uncorrelated features are identified using the computational methodology

described in section Materials and Methods. A total of 64 observations were removed from

each data set due to a failure to detect adequate visible DNA binding to characterize the com-

pound. These observations were associated with compounds known to be inactive or very

weak estrogens. Then, the clean data is split into training and test sets. Although it is common

to split the data set using 80–20 or 70–30 rules (i.e., 80% training—20% testing), the experi-

mental analysis on the 32 active benchmark chemicals yields an unbalanced data set due to the
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limited number antagonist versus agonist compounds. Hence, we constructed our training

data set using all technical replicates of the 4 antagonist compounds and the 5 randomly

selected agonist compounds with varying potency (Table 1) such that the classification models

are trained on data where the distinct characteristics of the two classes of estrogenic activity

are learned precisely. The remaining 23 agonist compounds and their respective 4 technical

replicates in the chosen experimental data are reserved as the test set, enabling the fair assess-

ment of the classification accuracy and other performance metrics of the model. As a result,

the final training data matrix size with 9 chemicals becomes 36 observations x 5 features, the

final testing data matrix size with 23 chemicals becomes 92 observations x 5 features of the

selected image analysis experiment. The distribution of this training and testing data is also

visualized through Principal Component Analysis (PCA) where a biplot of the first two com-

ponents is provided in S1 Fig. Besides, the other 17 biologically independent image analysis

experiments of the same list of benchmark chemicals are used for quantifying the classification

model performance of estrogenic potential of chemicals subject to experimental noise.

Linear classification results

The five biologically relevant features that were identified (see Materials and Methods for fea-

ture selection and descriptions) are used to construct individual linear classification models

with a single descriptor. The best performing model is then selected out of these five logistic

regression classifiers based on their Akaike Information Criteria (AIC) value, 5-fold training

cross-validation (CV) accuracy, and testing accuracy. The results of linear classification train-

ing with the logistic regression model are provided in Table 2.

The results show that a logistic regression model with a single image analysis feature can

accurately map the separation between agonist and antagonist compounds in the training

phase. Specifically, we observe that linear classifiers trained with “Array PI Variance,” “Array

Table 1. List of training compounds for the classification analysis. The agonist and antagonist compounds with varying ER potency selected for model training and

their respective 4 technical replicates are included in the training data.

CASRN Compound Name ER Activity [6] Potency [6]

115-32-2 Dicofol Agonist Very weak

56-53-1 Diethylstilbestrol Agonist Strong

53-16-7 Estrone Agonist Moderate

60168-88-9 Fenarimol Agonist Very weak

789-02-6 o,p’-DDT Agonist Weak

68392-35-8 4-Hydroxytamoxifen Antagonist -

82640-04-8 Raloxifene Hydrochloride Antagonist -

10540-29-1 Tamoxifen Antagonist -

54965-24-1 Tamoxifen citrate Antagonist -

https://doi.org/10.1371/journal.pcbi.1008191.t001

Table 2. Linear classification model training results with one experimental feature. The bootstrap confidence intervals (CI) for β1 are presented alongside with AIC,

training CV accuracy, and testing accuracy results.

Experimental Feature in Model β1 95% CI of β1 AIC CV Accuracy Testing Accuracy

Array to Nucleoplasm Intensity Ratio 7.12 (5.49, 7.59) 4.00 1.00 0.96

Array PI Variance 8.25 (4.48, 8.75) 4.00 1.00 0.87

Array Area - 0.65 (-0.70, -0.59) 4.00 1.00 0.87

Array Mean PI 0.20 (0.12, 0.44) 27.92 0.87 0.85

Array Total PI - 0.11 (-0.21, -0.03) 46.90 0.78 0.70

https://doi.org/10.1371/journal.pcbi.1008191.t002
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to Nucleoplasm Intensity Ratio” and “Array Area” descriptors can classify the compounds

with 100% training CV accuracy. The linear models with “Array Mean PI” and “Array Total

PI” features have an inferior training performance, as the AIC values for these two models are

higher and the CV accuracies are lower compared to the other models. This observation is also

consistent with the Receiver Operating Characteristic (ROC) curves and the Area Under the

Curve (AUC) values shown in S2 Fig.

Furthermore, the results show that “Array Area” and “Array Total PI” features have a nega-

tive effect on the linear classifier whereas the rest of the features have a positive effect. Specifi-

cally, values of the β1 parameter for “Array PI Variance” and “Array to Nucleoplasm Intensity

Ratio” are the highest, respectively, indicating that a compound with higher values of these

two features has an increased probability of being an antagonist. In addition, among these two

most prominent features for the linear classification of estrogenic potentials of unknown

chemicals, we observe that the model parameters of “Array to Nucleoplasm Intensity Ratio”

and “Array PI Variance” have a relatively wider range of 95% confidence intervals.

Finally, the testing accuracy of trained models is evaluated using all technical replicates of

the remaining 23 active compounds in this experiment. The testing accuracy results show that

although “Array PI Variance” has a larger weight in the linear classifier compared to the rest of

the descriptors, “Array to Nucleoplasm Intensity Ratio” has a higher testing accuracy for pre-

dicting the class information of the unseen chemicals. Table 2 shows that the linear classifier

with “Array to Nucleoplasm Intensity Ratio” has a testing accuracy of 96% where this number

drops to 87% when “Array PI Variance” is used as the sole predictor in the linear model. As a

result, both predictors can perfectly map the separating linear boundary between the agonistic

and antagonistic behaviors of chemicals in the training phase, whereas the linear model with

“Array to Nucleoplasm Intensity Ratio” has a superior testing performance with a higher

potential for achieving generality.

Nonlinear classification results

The nonlinear classification analysis results are summarized in Table 3 where it shows the

ranking of the experimental features based on the mean decrease in the Gini index score. The

mean decrease in Gini index score is a measure of how strong a feature is for separating differ-

ent classes of information, where prominent features lead to a larger decrease in this index.

The results of the Random Forest (RF) model indicate that “Array to Nucleoplasm Intensity

Ratio” is the top informative feature followed by “Array Area” and “Array PI Variance.” The

mean decrease in Gini index for these 3 descriptors are very close to each other, showing that

they are equally important for modeling the estrogenic potential of chemicals. The nonlinear

classification results are consistent with the linear model, where these 3 features had 100%

training CV accuracy and minimum AIC. Through careful consideration of the model param-

eters and the testing accuracy in linear models, we were able to distinguish “Array to Nucleo-

plasm Intensity Ratio” and “Array PI Variance” as the top two informative features for linear

Table 3. Experimental features ranked with respect to their mean decrease in the Gini index.

Experimental Feature Mean decrease in Gini index

Array to Nucleoplasm Intensity Ratio 5.79

Array Area 5.17

Array PI Variance 5.15

Array Mean PI 0.97

Array Total PI 0.19

https://doi.org/10.1371/journal.pcbi.1008191.t003
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classification of agonist and antagonist compounds. Different than the linear analysis, we

observe that the “Array Area” is the second most important feature for the nonlinear classifica-

tion of estrogenic compounds whereas in the linear model the second-best feature was identi-

fied as “Array PI Variance.” Moreover, the model performance assessment with the training

and testing data showed 100% and 93% classification accuracy, respectively. This high perfor-

mance on the training data is expected as the model has learned the patterns within this set

with high precision. The high testing accuracy of this model, on the other hand, shows that RF

retains its predictive capability over a set of compounds that the model has not seen. As these

initial tests show satisfactory results, further characterization of the model performance over

biologically independent experiments is provided in the following section.

Visualization and evaluation of agonist and antagonist distributions

In addition to the classification model development and using their mathematical properties

to extract valuable information on the experimental features, additional insights on the separa-

tion between agonist and antagonist compounds are obtained through exploratory data analyt-

ics. To this end, we have plotted the density distributions of agonist/antagonist compounds for

all independent experiments using the top important features identified by both linear and

nonlinear classification analysis, namely the “Array to Nucleoplasm Intensity Ratio” and

“Array PI Variance.” The density plots are provided in Figs 1 and 2 where the separation

between agonistic and antagonistic behaviors of the chemicals, based on the values of the

aforementioned descriptors, are visualized. The results in Figs 1 and 2 show that the “Array PI

Variance” and “Array to Nucleoplasm Intensity Ratio” lead to a clear distinction between an

agonist and antagonist for all experiments. To clearly distinguish between these two prominent

features, the separation between the agonist and antagonist density distributions are quantified

by calculating the Hellinger Distance (HD). This metric provides a measure of the distance

between probability distributions and takes the values between 0 and 1, where smaller HD

indicates that the two distributions are similar and the separation between them through the

use of this feature is not statistically significant.

In Fig 1, the results show that the HD between the density distributions of agonist and

antagonist compounds based on the “Array to Nucleoplasm Intensity Ratio” is high (min =

0.61, max = 0.90). Specifically, for independent experiments 3, 5, 9, 11, 15, and 17 there is a

clear separation between agonistic and antagonistic behavior based on this descriptor, hence a

linear classifier enables a highly accurate separation between these two estrogenic potential clas-

ses. However, in experiments 4, 10, and 16, a portion of the density distributions of these two

estrogenic activities overlap and may lead to misclassification of compounds if the normalized

“Array to Nucleoplasm Intensity Ratio” value of an agonist/antagonist falls into this overlapping

region. Overall, we observe that ER antagonists possess strong signals for this experimental fea-

ture, thus enabling the separation of these two classes via a linear logistic regression model.

Similarly, in Fig 2, we observe that the HD distance of “Array PI Variance” measurements

for all independent experiments is high (min = 0.66, max = 0.85), indicating that this feature is

a valid descriptor for agonist versus antagonist separation. Different from Fig 1, here we

observe that ER agonists have strong signals for this experimental feature in 12 out of 18 exper-

iments. Furthermore, although the range of HD values are similar for both features, the num-

ber of experiments with HD> 0.8 is higher for “Array to Nucleoplasm Intensity Ratio”

compared to “Array PI Variance.” This result indicates that “Array to Nucleoplasm Intensity

Ratio” is more favorable for classification model building as this feature provides a clear

distinction between ER agonists and antagonists over multiple biologically independent

experiments.
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Furthermore, we perform unpaired two-sample Wilcoxon test (i.e., Wilcoxon rank-sum

test), a non-parametric alternative to the unpaired two-sample t-test, on the training data to

compare the distributions of agonist and antagonist compounds per experimental feature. The

Wilcoxon rank-sum test results in Table 4 show that the median measurements of agonist and

antagonist compounds for “Array to Nucleoplasm Intensity Ratio,” “Array Area,” “Array PI

Variance,” and “Array Mean PI” are different with p-values equal to zero. This statistically sig-

nificant difference between agonist and antagonist distributions further strengthens the evi-

dence that these features are appropriate for modeling the separation between two-classes of

ER activity. In the case of “Array Total PI”, we fail to reject the null hypothesis, indicating that

the distributions of agonist and antagonist compounds do not possess a statistically significant

difference for this feature. Hence, the separation of the agonist and antagonist compounds

with this descriptor is less desirable and will lead to misclassifications with worse predictive

capability. This outcome is also consistent with linear and nonlinear classification results

where this feature ranked the worst in training and testing accuracy (Table 2), as well as in fea-

ture importance (Table 3), respectively.

Classification model performance over independent experiments

In addition to the HD calculations and the Wilcoxon rank-sum test, the predictive capabilities

of the trained and tested logistic regression (linear) and RF (nonlinear) classifiers are validated

with a set of new 17 biologically independent experiments, and their corresponding predictive

performance is quantified with a two-fold approach. First, the model performance is quanti-

fied using the 4 technical replicates of 23 unseen agonist compounds in 17 independent experi-

ments that the model has not been trained on (Fig 3).

The blind validation accuracy results in Fig 3 shows that the predictive performance of the

logistic regression model with “Array PI Variance” feature is inferior to the logistic regression

model with “Array to Nucleoplasm Intensity Ratio” and the RF classifier. In 4 out of 17 experi-

ments, the validation accuracy of this model is below 80% whereas, for the logistic regression

model with “Array to Nucleoplasm Intensity Ratio” and the RF classifier, the validation accu-

racies exceed 90% for all experiments. Furthermore, the predictive capability of the latter two

models is comparable to each other, where only in experiments 1 and 6, a relatively high differ-

ence between the validation accuracies of these two models is observed. In experiments 1 and

6, the validation accuracy of the RF model is 95% and 97%, respectively, whereas for the logis-

tic regression model with “Array to Nucleoplasm Intensity Ratio” has a validation accuracy of

91% for both replicate testing. The lowest prediction accuracy for these two models is 95% for

the RF classifier and 91% for the logistic regression model with “Array to Nucleoplasm Inten-

sity Ratio” whereas this number drops to 75% for the logistic regression model with “Array PI

Variance.” Moreover, the 95% CI of the validation accuracy is also provided in Fig 3. The RF

and logistic regression models using “Array to Nucleoplasm Intensity Ratio” have tighter CI

around the validation accuracy whereas the other logistic regression model has a wider CI on

the prediction accuracy for all independent experiments. Overall, the blind validation accuracy

results indicate that the nonlinear RF and linear logistic regression model with “Array to

Nucleoplasm Intensity Ratio” are more favorable for predicting the estrogenic potential of

unknown compounds as they have a more robust performance and can sustain their predictive

capabilities over multiple biologically independent experiments.

Fig 1. Density distribution of agonist (blue) and antagonist (red) compounds for the "Array to Nucleoplasm

Intensity Ratio" feature.

https://doi.org/10.1371/journal.pcbi.1008191.g001
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Fig 2. Density distribution of agonist (blue) and antagonist (red) compounds for the "Array PI Variance " feature.

https://doi.org/10.1371/journal.pcbi.1008191.g002
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Second, in Fig 4, accuracy, sensitivity, specificity, and balanced accuracy of different classifi-

cation models are reported for these 17 experiments, but with all 32 active compounds. These

results indicate that all three classification models have high accuracy and sensitivity for pre-

dicting the estrogenic potential of all active compounds considered in this study. Specifically,

all models predict> 90% accuracy in 11 out of 17 experiments. Moreover, we observe that

specificity and balanced accuracy of the logistic regression model with “Array PI Variance” is

higher overall, when compared to other models, whereas the sensitivity of the RF classifier and

logistic regression model with “Array to Nucleoplasm Intensity Ratio” is higher across

Table 4. P-values reported from the Wilcoxon rank-sum test. The bolded values represent p-value> 0.05.

Experimental Feature p-value

Array Total PI 0.067

Array Area 0.000

Array Mean PI 0.000

Array PI Variance 0.000

Array to Nucleoplasm Intensity Ratio 0.000

https://doi.org/10.1371/journal.pcbi.1008191.t004

Fig 3. Model validation results with 23 unseen agonist compounds over 17 experiments for the logistic regression

model as a function of “Array PI Variance,” the logistic regression model as a function of “Array to Nucleoplasm

Intensity Ratio” and the Random Forest classifier.

https://doi.org/10.1371/journal.pcbi.1008191.g003
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different replicates. For the latter two models, we observe that the specificity value is zero for 5

experiments, indicating that these models identified all compounds as agonists and failed to

classify the 4 antagonist compounds correctly. As a result, their balanced accuracy is also lower

(50%), as this performance metric averages specificity and sensitivity values.

Data quality monitoring

This biphasic performance of each model on the identification of antagonist compounds sug-

gests an underlying property of the experimental data sets that determines model performance.

An exhaustive analysis of the correlation between data set features and model performance

identified cell density (number of cells per microscopic image) as having a strong negative cor-

relation (- 0.54 to -0.71) with model balanced accuracy. Cell density varies by 12.6% across

independent experiments (Fig 5A). Using a threshold of 255 cells/well to divide them into

‘Low-Density’ and ‘High-Density’ experiments, we observe superior performance by all three

models in the ‘Low-Density’ replicates (Fig 5B) with average balanced accuracy of 91% for the

logistic regression model with “Array PI Variance” predictor and 95% for the other models,

respectively. Reassessing the model performance metrics with only low-density experiments

reveals that the RF and the logistic regression model with the “Array to Nucleoplasm Intensity

Ratio” predictor are highly accurate and precise in predicting both classes of information (Fig

6). This result is not surprising based on the technical limitations of the assay and features

used by the model. Increasing cell density increases the likelihood of any individual cell in a

field being slightly out of focus. Since both “Array PI Variance” and “Array to Nucleoplasm

Intensity Ratio” are contrast based features, they are dependent on focus quality. While the

original optimization of cell density was based simply on the ability to detect the presence of a

nuclear spot, slightly lower cell densities may be required to produce higher quality data

required for high classification performance.

Overall, the nonlinear RF classification model and the linear logistic regression model with

“Array to Nucleoplasm Intensity Ratio” are found to be highly accurate and robust for

Fig 4. Effect of experimental variation on model performance. The 95% confidence intervals and the values used in constructing these

box plots are provided in S1–S3 Tables.

https://doi.org/10.1371/journal.pcbi.1008191.g004
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predicting the endocrine-disrupting potential of compounds on the ER. These holistic classifi-

cation models allow us to predict the ER activity of compounds without running in separate

agonist or antagonist modes and are shown to possess comparable classification performances

with the previously reported values [6, 13, 16]. In addition, among 40 different experimental

features studied in this work, “Array to Nucleoplasm Intensity Ratio” is found to be the top

informative feature through a series of supervised and unsupervised analyses, and the results

indicate that it is essential for predicting the ER activity of compounds through generalized

predictive models.

As this study benchmarked the predictive capabilities of our hybrid data-driven classifica-

tion models with satisfactory results, this methodology can be further used to predict the endo-

crine disruptive potential of novel chemicals. This prediction will require the high throughput

high content image analysis experiment to be conducted that meets the data quality monitor-

ing criteria (i.e., low-density experiment), where a measurement for the 5 selected features will

be recorded. For making predictions with the logistic regression model, we have already iden-

tified that this methodology provided superior predictions with the “Array to Nucleoplasm

Intensity Ratio” feature. By using the model parameters that are identified as a result of this

work and the pre-processed experimental measurement corresponding to “Array to Nucleo-

plasm Intensity Ratio”, the probability of this chemical being an antagonist is calculated by

evaluating Eq 2 in Materials and Methods. If this probability is less than 0.5, the compound

will be classified as an agonist, else as an antagonist. In the case of making predictions with the

RF model, the pre-processed measurements of all 5 experimental features will be used to pre-

dict an outcome. As the RF is a decision tree-based model, an outcome will be calculated from

all the trees and the majority vote is reported as the final class of the novel chemical. Hence,

Fig 5. Cell density negatively affects model performance. (A) The average number of cells per microscopic field for independent experiments.

The dashed line indicates the threshold for low- and high-density replicates. (B) Box plots of model balanced accuracy performance observed in

low- and high-density experiments.

https://doi.org/10.1371/journal.pcbi.1008191.g005
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the established models can rapidly identify the endocrine disruptor potential of chemicals by

function evaluation and subsequently classify them as ER agonists or antagonists. This prompt

evaluation provides key information regarding the potential health effects of unknown chemi-

cals and enables decision makers to take mitigating actions during exposures.

Materials and methods

Benchmark chemicals

Forty-five chemicals (Table 5) with varying estrogenic potentials were obtained from the

United States Environmental Protection Agency (EPA) and were utilized for benchmarking

our data-driven framework. The same compounds have been used by NIEHS/EPA as a set for

developing computational models of the ER pathway [6].

Experimental data generation

High throughput microscopy and high content analysis-based experiments were performed

using the GFP-ERα:PRL-HeLa cell line model following the experimental methodology

described previously [5, 7–10]. This cell model allows for the direct simultaneous visualization

of compound-dependent effects on several aspects of the ER signaling pathway, including ER

expression, nuclear translocation, chromatin binding, and chromatin remodeling (Fig 7).

Importantly, we have previously observed qualitative and quantitative differences in ER path-

way signaling endpoints in the cell model-based compound activity class (Fig 7B and 7C) [5,

7–10]. 384 multiwell plates seeded with cells were treated for 2 hrs with a single concentration

(10 uM) of 45 reference compounds provided by the EPA along with 3 control treatments.

Control treatments included externally sourced agonist 17β-estradiol (E2, 20 nM), antagonist

4-hydroxytamoxifen (4HT, 20 nM), and negative control (DMSO, 0.5%). The experimental

design included 4 technical replicates of each treatment, resulting in 192 different sample

observations. Samples were imaged using an automated epifluorescent image cytometer and

analyzed using myImageAnalysis/Pipeline Pilot to generate 40 different descriptors per cell

Fig 6. Data quality monitoring is essential for achieving high classification performance. Classification model performances with only low-

density experiments.

https://doi.org/10.1371/journal.pcbi.1008191.g006
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Table 5. Summary of benchmark chemicals analyzed in this work. The ER activity information is adapted from Judson et al. [6].

CASRN Compound Name ER Activity [6] Potency [6]

140-66-9 4-(1,1,3,3-Tetramethylbutyl)phenol Agonist Weak

599-64-4 4-Cumylphenol Agonist Weak

521-18-6 5α-Dihydrotestosterone Agonist Weak

57-91-0 17α-Estradiol Agonist Moderate

57-63-6 17α-Ethinyl estradiol Agonist Strong

58-18-4 17α-Methyltestosterone Agonist Very weak

50-28-2 17β-Estradiol Agonist Strong

520-36-5 Apigenin Agonist Very weak

85-68-7 Butylbenzyl phthalate Agonist Very weak

80-05-7 Bisphenol A Agonist Weak

77-40-7 Bisphenol B Agonist Weak

480-40-0 Chrysin Agonist Very weak

486-66-8 Daidzein Agonist Weak

117-81-7 Diethylhexyl phthalate Agonist Very weak

84-74-2 Di-n-butyl phthalate Agonist Very weak

115-32-2 Dicofol Agonist Very weak

56-53-1 Diethylstilbestrol Agonist Strong

53-16-7 Estrone Agonist Moderate

120-47-8 Ethylparaben Agonist Very weak

60168-88-9 Fenarimol Agonist Very weak

446-72-0 Genistein Agonist Weak

520-18-3 Kaempferol Agonist Very weak

143-50-0 Kepone Agonist Weak

84-16-2 meso-Hexestrol Agonist Strong

72-43-5 Methoxychlor Agonist Very weak

789-02-6 o,p’-DDT Agonist Weak

104-40-5 p-n-Nonylphenol Agonist Very weak

72-55-9 p,p’-DDE Agonist Very weak

68392-35-8 4-Hydroxytamoxifen Antagonist -

82640-04-8 Raloxifene Hydrochloride Antagonist -

10540-29-1 Tamoxifen Antagonist -

54965-24-1 Tamoxifen citrate Antagonist -

1912-24-9 Atrazine Inactive -

50-22-6 Corticosterone Inactive -

66-81-9 Cycloheximide Inactive -

13311-84-7 Flutamide Inactive -

52-86-8 Haloperidol Inactive -

52806-53-8 Hydroxyflutamide Inactive -

65277-42-1 Ketoconazole Inactive -

330-55-2 Linuron Inactive -

57-30-7 Phenobarbital sodium Inactive -

32809-16-8 Procymidone Inactive -

57-83-0 Progesterone Inactive -

50-55-5 Reserpine Inactive -

52-01-7 Spironolactone Inactive -

https://doi.org/10.1371/journal.pcbi.1008191.t005

PLOS COMPUTATIONAL BIOLOGY Modeling estrogenic potentials of chemicals via machine learning

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008191 September 24, 2020 14 / 24

https://doi.org/10.1371/journal.pcbi.1008191.t005
https://doi.org/10.1371/journal.pcbi.1008191


[18]. The single-cell descriptors capture GFP-ERα fluorescence intensity (i.e., pixel intensity-

PI) and morphology features of each cell, nucleus, and PRL array. The single-cell population is

filtered to remove artifacts generated from cell toxicity, cell clusters, and incorrect segmenta-

tion. The remaining cell population (minimum of 500 cells per sample) data is averaged per

sample to yield a data matrix size of 192 observations x 40 features, where the categorical out-

put information for classification is provided in Table 5 in “ER Activity” column. A full list of

experimental features is provided in [10].

Computational methodology

The computational methodology follows a similar approach described in [19] where key steps

of the framework are summarized in Fig 8. First, a series of pre-processing steps are executed

to ensure accurate in silico predictions of ER activity with classification models. Once the pre-

processing is completed, the data set is then passed on to the feature selection phase, where col-

linear features are eliminated from the analysis using hierarchical clustering. Later, a two-class

classification problem is formulated using a subset of the features that are identified as

Fig 7. ER Signaling pathway endpoints detected using the GFP-ERα:PRL-HeLa cell model. (A) A graphical representation of the simplified ER genomic signaling

pathway with nodes identified by Judson et al. indicated in brackets [6]. Colored circles indicate endpoints directly accessible using the GFP-ERα alone and HCA.

Shaded circles indicate endpoints that require additional labeling methods (antibody staining/mRNA FISH) to detect. The detection of chromatin binding is used to

determine active/inactive samples in the current data sets. (B) Representative cell images from control samples. Red lines indicate the computational segmentation of the

cell image. Regions identified are labeled with lower-case letters. (C) Graphical representation of the ER signaling pathway endpoints previously observed to be different

when GFP-ERα:PRL-HeLa cells are treated with either agonists or antagonists [5, 7–10]. (D) Features selected for model development. Lines indicate ER pathway nodes

measured by feature. Due to the interconnected nature of ER chromatin binding and chromatin remodeling, some features likely measure effects on multiple nodes.

https://doi.org/10.1371/journal.pcbi.1008191.g007
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independent and biologically relevant in the previous step. Finally, model validation is per-

formed, and the predictive capability of the resulting classification model is quantified using

model performance metrics. A detailed description of each step is provided below.

Data pre-processing. The pre-processing steps used in this analysis are: (1) missing data

handling, (2) data cleaning, (3) outlier detection via unsupervised analysis, and (4) data nor-

malization. The experimental data is first analyzed for missing data entries. If any missing data

is detected, several procedures can be followed including, deletion of the entire row, deletion

of the entire column, or data imputation [20]. As the experimental data from the image analy-

sis did not have any missing points, no action is taken at this step, and the data matrix size of

192 observations x 40 features are retained.

In the next pre-processing step, the data set is cleaned by removing the observations corre-

sponding to inactive compounds (Table 5). After this cleaning step, the data matrix size is

reduced to 32 active compounds with 4 technical replicates per compound (128 observations)

x 40 features. For outlier detection, the replicate observations of each compound are averaged,

yielding a data matrix size of 32 average observations x 40 features. Hierarchical clustering is

Fig 8. The classification framework for characterizing the estrogenic potential of chemicals. The computational

methodology is documented via R Markdown and provided in S1 File.

https://doi.org/10.1371/journal.pcbi.1008191.g008
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performed on the Euclidean distance-based dissimilarity matrix of this aggregate data with

complete linkage. The clustering analysis is visualized using a dendrogram tree as shown in

Fig 9. The results of the clustering analysis indicate that there are no global outliers present in

the data set as none of the compounds significantly differ from each other. We observe that the

active compounds are generally clustered under two groups based on their feature-specific pat-

terns and are not presenting themselves on a separate branch at the root node of the dendro-

gram tree. As a result, the imaging data for all 32 compounds are viable for further analysis.

The clustering is performed in R (version 4.0.0) using the hclust function under the stats

library.

In the final pre-processing step, the remaining 32 active compounds are normalized using

column-wise mean absolute deviation with respect to the control agonist E2 (Eq 1). The nor-

malization is performed on the complete cleaned data set with technical replicates (Data

Fig 9. Outlier analysis via hierarchical clustering shown on a dendrogram tree.

https://doi.org/10.1371/journal.pcbi.1008191.g009
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matrix size: 128 observations x 40 features). In Eq 1, i represents the rows in the data set (i.e.,
technical replicates of each compound) and j represents the columns in the data set (i.e., fea-

tures).

ER Datanormal
i;j ¼

ER Dataoriginali;j � medianðE2jÞ

meanðjE2i;j � meanðE2jÞjjÞ
8i; j ð1Þ

Feature selection. The ultimate goal of this work is to present a data-driven methodology

that integrates high content, high throughput image analysis-based data with machine learning

algorithms for developing a robust, generalized classification model that accurately predicts

the estrogenic potential of unknown chemicals. Within the scope of this work, as the image

analysis provides numerous fluorescence intensity and morphology features, several challenges

come to rise in classification model development: (1) Only a subset of experimental features

may provide valuable knowledge for the separation of agonist/antagonist ER activity and iden-

tification of those is a challenging task; (2) A subset of the features may be highly correlated,

and may cause bias, leading to loss of generality, precision and accuracy in the predictive capa-

bility of the data-driven model; (3) Modeling with a high number of features without an ade-

quate amount of samples may lead to overfitting.

In this work, we address the aforementioned challenges by incorporating a feature selection

step in our data-driven modeling framework. Feature selection or variable selection is one of

the key processes in machine learning model building, where the aim is to identify a subset of

features among many others that are uncorrelated and the most informative set of descriptors,

for a given data-driven modeling problem. There is a growing interest within various fields of

engineering and sciences for developing computationally efficient feature selection algorithms

that enable the identification of the minimum number of features for maximum predictive

capabilities in data-driven models [21–25]. Here, the feature selection is done in two steps: (1)

Through hierarchical clustering for identifying the groups of similar and correlated features,

and (2) Through a heuristic feature selection step, in which a single feature is selected from

each cluster based on the ER pathway model presented in [6].

In step 1, hierarchical clustering is performed on the pairwise similarity of experimental fea-

tures, calculated using the Pearson correlation, with complete linkage. From the clusters of

correlated features, groups that possess less than 5% similarity are identified as unique and

uncorrelated for classification analysis. The clustering outcome is shown in Fig 10 with 20

independent feature groups of which we can select a subset of these for analysis. Like in the

outlier analysis, the clustering for feature selection is performed in R (version 4.0.0) using the

hclust function under the stats library.

In step 2, the goal is to further reduce the number of features for the classification analysis

such that they are: (1) Selected from the independent groups of features following the cluster-

ing analysis (Fig 10); and, (2) the selected features are biologically relevant. The biological rele-

vance of features is assessed through cross-referencing the image-based features to the ER

pathway nodes presented in Judson et al. [6]. So, from 20 independent groups of features, the

top 5 biologically relevant features (one shape and four PI-related descriptors) that are closely

associated with a node on the ER signaling pathway, are selected. A summary of these features

along with their descriptions are provided in Table 6 as well as in Fig 7D. This selection

reduces the initial 40 image-derived features to 5, yielding a final data matrix size of 128 obser-

vations x 5 features that are passed on to the model development stage of the presented frame-

work. The final data matrix is also visualized using PCA, where a biplot of the first two

principal components is presented in S3 Fig.
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Classification model development using logistic regression and Random

Forest classifier

Once the feature selection step is completed, the clean normalized data set is split into training

and testing sets, and the training data are passed on to the model building phase for supervised

Fig 10. Uncorrelated feature selection using hierarchical clustering on pairwise feature similarity. The red line

indicates the 5% similarity cutoff used for identifying independent feature groups.

https://doi.org/10.1371/journal.pcbi.1008191.g010

Table 6. A subset of experimental features identified as uncorrelated and biologically significant for the classification analysis.

Feature Name Image-Based Property of the Feature ER Pathway

Endpoint

Biological Relevance

Array Area Size in pixels of visible promoter array A5 Describes chromatin remodeling of promoter

array

Array Mean PI Average intensity of the GFP signal at the visible promoter array A2 Describes level of GFP-ERα binding to the

promoter array

Array PI Variance Statistical variance of GFP pixel intensity at the visible promoter

array

A3 Describes GFP-ERα intensity distribution at the

visible promoter array

Array Total PI Total intensity of the GFP signal at the visible promoter array A1 Describes level of GFP-ERα binding to the

promoter array

Array to Nucleoplasm

Intensity Ratio

Ratio of GFP intensity at visible promoter array to GFP intensity

in the surrounding nucleoplasm

A4 Describes efficiency of GFP-ERα binding the

promoter array

https://doi.org/10.1371/journal.pcbi.1008191.t006
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analysis. In this work, the training set is a balanced subset of the active compounds that con-

tain both agonist and antagonist chemicals and their corresponding 4 technical replicates,

whereas the testing set is the remaining unseen active compounds with their corresponding 4

technical replicates, not used in the training phase.

Supervised learning algorithms are widely studied in many fields of engineering and sci-

ences primarily in classification and regression-type problems for predicting either a categori-

cal output or a continuous output, respectively [24, 26–32]. Classification is the problem of

finding the categorical output of a new observation and distinguishing between different clas-

ses of information via statistical recognition of patterns in a training data set. In this study, we

develop classification models to predict the endocrine disruptor activity of a set of benchmark

chemicals. In this effort, both linear and nonlinear models are tested and their predictive per-

formance on unknown chemicals is shown for comparison.

Linear classification is performed using the logistic regression model and the variables are

selected using the Akaike Information Criterion (AIC). The logistic regression model with one

predictor is provided in Eq 2,

P antagonistð Þ ¼
1

1þ expð� bo � xb1Þ
ð2Þ

where x is the value of a predictor, P(antagonist) is the probability that the outcome is an

“antagonist”, and β1 and βo are the parameters of the linear model where their values are

estimated using the training data. The goal of the logistic regression training stage is two-

fold: (1) To create a highly accurate and precise linear separating boundary between ER ago-

nist and antagonist compounds; and, (2) to identify the most descriptive feature out of the 5

selected in the Feature selection step such that the in silico distinction between an ER agonist

and antagonist is achieved without loss of generality. To this end, an exhaustive search is per-

formed where individual logistic regression models, of the form presented in Eq 2, are con-

structed for all possible combinations of single features. The best performing model in this

training phase with the minimum AIC, the highest CV training accuracy, and the highest test-

ing accuracy is selected. In addition, the most informative feature for the linear classification

problem is identified through analyzing the β1 parameter given that exp (−β1) quantifies the

increase in the odds of a compound being an antagonist. As a result, an important feature with

a larger weight in the closed-form equation will have a larger impact on the classification

predictions.

For nonlinear classification, we use the RF algorithm with built-in feature ranking. RF is a

nonparametric, tree-based ensemble learning method that uses multiple decision trees, inde-

pendently constructed with a bootstrap sample of training data, to predict an outcome based

on a majority vote [33]. The algorithm can identify “strong features” that causes a larger mean

decrease in accuracy and display the relevance of features used in the training stage via the

“Gini index” score [33, 34]. In our implementation, RF classifiers are constructed with 130

decision trees on the training data. The data-driven models for linear and nonlinear classifica-

tion are implemented in R (version 4.0.0) using the glm function in stats library, and random-

Forest function in randomForest library, respectively.

Model validation and performance metrics. Model validation is done with a two-fold

approach: (1) Using the technical replicates of unseen compounds that the model has not been

trained on with model performance metrics quantified over independent experiments; and,

(2) Using all technical replicates of active compounds in Table 5 with model performance met-

rics quantified over independent experiments. This two-fold approach allows us to quantify

and observe the robustness of the unbiased predictive performance of the trained classification
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model over multiple biologically independent experiments and enable us to diagnose potential

issues with the experimental data set (i.e., data quality monitoring).

The classification model performances are assessed using several evaluation metrics. These

include accuracy, sensitivity, specificity, and balanced accuracy. Accuracy is defined as
TPþTN

TPþFPþTNþFN, sensitivity (i.e., true positive rate) is defined as TP
TPþFN, specificity is defined as TN

TNþFP, and

the balanced accuracy is defined as the average of sensitivity and specificity, 1

2

TP
TPþFN þ

TN
TNþFP

� �
. For

this study, a “true positive” (TP) is defined as an agonist being correctly identified as an agonist

and a “false positive” (FP) is defined as an agonist being misclassified as an antagonist. On the

contrary, a “true negative” (TN) is defined as an antagonist being correctly classified as an antago-

nist and a “false negative” (FN) is defined as an antagonist being misclassified as an agonist.

Conclusions

We have developed an integrated data-driven framework that enables the rapid identification

of unknown pure chemicals that affect the estrogen receptor (ER) pathway as either agonists

or antagonists. High throughput microscopy and high content analysis-based data are utilized

to formulate highly accurate classification models by following a series of pre-processing, visu-

alization, unsupervised, and supervised analysis steps. The framework is benchmarked with a

set of chemicals with known ER activity. In the presented framework, a detailed pre-processing

step is executed where: (1) experimental image analysis data is scanned for missing data points;

(2) data is cleaned by removing the inactive compounds; (3) data set outliers are detected via

hierarchical clustering; and, (4) experimental features are normalized via mean absolute devia-

tion. Following pre-processing, the framework continues with a two-step feature selection

methodology where uncorrelated features are first identified by hierarchical clustering using

the pairwise similarity of the descriptors; secondly, the biologically relevant descriptor(s) are

selected for analysis. Both linear and nonlinear classifiers are tested as a part of this framework

for modeling endocrine-disrupting potentials of chemicals that affect ER functions, and their

predictive performances are quantified via evaluation metrics. The linear and nonlinear classi-

fication model results show that high throughput microscopy and high content analysis-based

experimental data can be used to train robust, highly accurate classifiers with a minimum

number of features and sampling points (i.e., one feature for linear classification and five fea-

tures for nonlinear classification). Through the results of this framework, we can identify the

topmost important feature for the classification of ER agonists/antagonists without loss of gen-

erality and provide recommendations for the appropriate model selection. In addition, the

presented data-driven framework serves as a guideline for rapidly scanning unknown chemi-

cals and obtaining their estrogenic potentials with high accuracy. This property of the frame-

work will be profound during environmental emergencies, where it is of the utmost

importance to rapidly identify the potential biological risks of unknown chemicals.
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