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ABSTRACT

Cancer drug therapies are only effective in a small proportion of patients. To make 
things worse, our ability to identify these responsive patients before administering a 
treatment is generally very limited. The recent arrival of large-scale pharmacogenomic 
data sets, which measure the sensitivity of molecularly profiled cancer cell lines to 
a panel of drugs, has boosted research on the discovery of drug sensitivity markers. 
However, no systematic comparison of widely-used single-gene markers with multi-
gene machine-learning markers exploiting genomic data has been so far conducted. 
We therefore assessed the performance offered by these two types of models in 
discriminating between sensitive and resistant cell lines to a given drug. This was 
carried out for each of 127 considered drugs using genomic data characterising the 
cell lines. We found that the proportion of cell lines predicted to be sensitive that are 
actually sensitive (precision) varies strongly with the drug and type of model used. 
Furthermore, the proportion of sensitive cell lines that are correctly predicted as 
sensitive (recall) of the best single-gene marker was lower than that of the multi-
gene marker in 118 of the 127 tested drugs. We conclude that single-gene markers 
are only able to identify those drug-sensitive cell lines with the considered actionable 
mutation, unlike multi-gene markers that can in principle combine multiple gene 
mutations to identify additional sensitive cell lines. We also found that cell line 
sensitivities to some drugs (e.g. Temsirolimus, 17-AAG or Methotrexate) are better 
predicted by these machine-learning models.

INTRODUCTION

The analysis of tumour DNA has been investigated 
as a way to personalise cancer therapies for quite some 
time [1]. This analysis usually leads to the detection of 
somatic mutations, such as a specific single-nucleotide 
variant (SNV) or copy-number alteration (CNA), on 
oncogenes and tumour suppressor genes. Somatic 
mutations can affect the abundance and function of gene 

products driving tumour growth at the molecular level. 
These mutations can hence influence disease outcome 
and/or response to a given drug [2]. Genetic information 
has thus been found valuable for aiding the selection of 
effective treatment by relating the molecular profile of 
tumours to their observed sensitivity to drugs [3, 4].

Preclinical research on the identification of 
drug-gene associations that can be used as single-gene 
markers of drug response is often carried out on human 
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cancer tumour-derived cell lines [5–8]. Cell lines permit 
relatively quick and cheap large-scale in vitro experiments, 
which are generally not feasible on more accurate ex 
vivo or in vivo disease models [9, 10]. Here the somatic 
mutations of the untreated cell line are determined first. 
The viability of cells is thereafter measured to assess their 
intrinsic sensitivity or resistance to the tested drug. Lastly, 
the resulting in vitro pharmacogenomic data is analysed 
to establish which drug-gene associations are statistically 
significant and hence proposed as single-gene markers. In 
addition to single-gene marker discovery [6, 8, 11], such 
data sets have also been used for the development of multi-
variate models of cell sensitivity to drugs of various types 
(pharmacogenomics [12–14], pharmacotranscriptomics 
[15–19], QSAR [20, 21]) and their applications (drug 
repositioning [20, 22], molecular target identification [22–
24]). These in silico models are built with algorithms that 
learn from data, which are studied in the field of machine 
learning [25]. A common type of machine-learning 
algorithms generates classification models, also known 
as classifiers, which are often used to learn to group cell 
lines into two categories (sensitive or resistant to a drug). 
Pharmacogenomic data from the Genomics of Drug 
Sensitivity in Cancer (GDSC) [26] constitute one of the 
most comprehensive resources for methodology research 
on the identification of optimal genomic markers of cancer 
drug sensitivity (e.g. NCI-60 drugs are tested against only 
59 unique cell lines [5] and the CCLE assembled a larger 
collection of cell lines than GDSC but tested a smaller 
subset of cell lines per drug [7]).

Predictive models based on GDSC data have been 
mostly restricted to single-gene markers of drug sensitivity 
[6]. However, multi-gene models have been used for the 
related purpose of estimating the importance of somatic 
mutations for cell line sensitivity to each drug [6]. By 
contrast, we subsequently investigated the performance 
of multi-gene machine-learning models exploiting GDSC 
data on the prediction of cell sensitivity to drugs [12]. As 
in other efforts [7, 13, 14], we did not investigate how well 
machine-learning models perform compared to single-
gene markers across GDSC drugs. It is now clear that 
such comparative analysis is essential to understand the 
benefits provided by modelling multiple gene alterations. 
Beyond this research area, multi-variate machine-learning 
models are also starting to be advocated for genomic-
based prediction of other complex phenotypic traits [27].

In practice, models based on one feature (single-
gene markers) can outperform models based on more than 
one feature (multi-variate classifiers). This is partially due 
to cell lines being often characterised by sparsely-valued 
binary features (i.e. features that are only present in a 
small fraction of the cell lines), which poses a challenge 
to classifiers acting on a high-dimensional feature space 
in that few differences between cell lines are available 
to support their effective discrimination. This leads to 
the following question: for which drugs are multivariate 

markers more predictive of cell line sensitivity than 
univariate markers? A recent study has finally investigated 
this question using large-scale GDSC data [8]. In brief, 
LOBICO logic modelling was used to build classifiers 
of predetermined complexity for each drug, followed by 
retaining the logic model with the best cross-validated 
performance. Due to the computational expense of 
seeking an optimal solution, these classifiers could only 
incorporate up to four binary features (e.g. whether four 
genes were mutated or not in the considered cell line). 
While the training procedure of LOBICO mathematically 
guarantees that the retained model will be the best among 
those based on binary features for a given complexity 
[28], it is important to note that better models can exist 
with higher complexities (e.g. those using more than 
four features), broader exploration of feature space (e.g. 
whole-exome variants), using continuous features (e.g. 
gene expression levels) or by simply using different sets 
of binary features (e.g. whether a particular point mutation 
is present in the gene instead of whether this gene has any 
mutation). A second limitation is that machine-learning 
models were only used to establish which molecular 
profiles were more informative on average across all 
drugs. Hence, the performances of these models were 
not compared against those of single-gene markers 
(this was only done with logic models). Third, both 
logic model selection and its classification performance 
measurement were carried using the same data folds 
in the adopted cross-validation procedure. Therefore, 
these cross-validated results provide an overoptimistic 
performance assessment of the selected model and result 
in not selecting models that would perform better on truly 
independent test sets, as demonstrated elsewhere [29–31].

Here we study the performance of machine learning 
exploiting all available gene mutations (instead of being 
limited to models using up to four mutations). This 
analysis is conducted as it would be done in practice 
by selecting the best single-gene marker and the best 
multi-gene model of the considered drug on a training 
set representing the data available at the time of model 
selection. We assess thereafter both models in an unbiased 
manner using a time-stamped independent test set, i.e. 
data that was released after training data and not used 
for model building or model selection. The advantages 
of using a time-stamped data partition are that this 
mimics a blind test: the experimenters avoid selecting a 
particular partition (perhaps best performing), we do not 
use the same data for both the selection and assessment 
of models (thus avoiding performance overestimation) 
and the negative impact of time-dependent batch effects is 
considered (e.g. drug sensitivities can diverge if different 
batches of fetal bovine serum are used in the cell cultures 
[32]).

Our focus is on somatically mutated genes for 
several reasons. First, it has been demonstrated that the 
performance of pan-cancer markers of drug sensitivity on 



Oncotarget97027www.impactjournals.com/oncotarget

an independent test set is most relevant to help to stratify 
patients for basket trials [33], where patients are included 
if their tumours harbour a particular gene mutation 
regardless of cancer subtype. Second, drug sensitivity 
predictors integrating data from multiple molecular 
profiling technologies are less amenable for clinical 
implementation due to much higher requirements in cost, 
time and resources per patient [34, 35]. Therefore, there 
is a practical need to understand how machine-learning 
models can improve the performance of single-gene 
markers in the context of a given profiling technology. 
While this issue has recently been investigated for gene 
expression profiles [31], it is currently unknown for 
which drugs combining multiple gene mutations via 
machine learning can outperform standard single-gene 
markers. Due to their relevance for both clinical and 
research contexts, we present here a full comparison of the 
predictive value of single-gene and multi-gene genomic 
markers.

RESULTS

How to compare single-gene and multi-gene 
markers of drug response

A drug-gene association or single-gene marker 
is effectively a classifier that uses a single independent 
variable or feature (the considered somatic DNA 
mutation). External validation of single-gene markers 
is unusual, as the validity of the drug-gene association 
is commonly established by showing that a statistically 
significant p-value is attained. In this sense, machine 
learning represents a different culture [36], where the 
validity of the predictor can only be claimed when its 
prediction is better than random on a test set independent 
of the employed training set.

As detailed in the Methods section, two non-
overlapping data sets are generated per drug. For clarity, 
we will briefly summarize the datasets here. First, the 
training set containing the cell lines tested at the time of 
the first data release along with their IC50s for the drug 
and 71 binary features corresponding to the presence or 
absence of the considered gene alterations. Second, the 
test set contains the new cell lines tested for that drug and 
released after data in the training set. Training and test sets 
are hence non-overlapping by construction. We used the 
median logIC50 in μM units of all cell lines in the training 
set to define the sensitivity threshold for both the training 
set and the test set, which is required to assign the class 
labels (sensitive, resistant) to each drug-cell pair.

For each drug, we then generated its confusion 
matrix, which displays four distinct performance metrics: 
the numbers of true positives (TP), true negatives (TN), 
false positives (FP) or false negatives (FN). An example 
is shown in Figure 1, where these four categories are 
calculated for the association between the drug AZD7762 

and its most significant single-gene marker (MYCN, 
p-value = 0.002). Note its high precision, but low recall 
(also known as sensitivity). Indeed, this single-gene 
classifier achieves a high precision (PR=0.75) on the 
training set (left-hand side) because only 25% of the cell 
lines that are predicted to be sensitive are actually resistant 
(false positives). By contrast, it obtains a very low recall 
(RC=0.05) as the vast majority of sensitive cell lines are 
wild-type (WT) with respect to MYCN and hence are 
incorrectly predicted to be resistant (i.e. false negatives). 
Performance on the test set is shown on the right and 
in this case is similar to that in the training set, which 
demonstrates the robustness of this particular single-gene 
marker. Based on the confusion matrix, we subsequently 
summarized the discrimination offered by a classifier with 
the Matthews Correlation Coefficient (MCC), Precision 
(PR), Recall (RC) and F-score (F1). These performance 
metrics are fully detailed in the Methods section.

To allow a direct comparison with the best single-
gene marker of each drug, we built a Random Forest (RF) 
classification model [37] for each drug using the same 
training data set as the corresponding single-gene marker. 
We selected RF as this machine-learning technique has 
been shown to be suitable for high-dimensional problems 
involving genomic data [38] and also works well on 
GDSC data [12], although we make no claim about the 
optimality of this choice. Each RF model was built with 
1000 trees, with its mtry control parameter being selected 
by 10-fold cross-validation as specified in the Methods 
section. The RF classifier of each drug is evaluated on 
the corresponding test set. To remind the reader about 
this stringent evaluation of models, we will sometimes 
highlight that a given performance metric was calculated 
on the independent test set by explicitly stating so (e.g. 
referring to “test set precision” instead of just “precision”). 
The next sections present a comparative assessment of 
both single-gene and multi-gene markers.

Precision varies strongly depending on whether a 
single-gene or multi-gene marker is used

Figure 2 compares the test set precision of single-
gene MANOVA markers versus multi-gene RF across 
the 127 drugs. In this context, precision is the proportion 
of cell lines predicted to be sensitive that are actually 
sensitive (for single-gene markers, precision translates to 
the response rate in cell lines with the actionable mutation). 
A great variability is observed depending on which type of 
classifier is used as a marker for a given drug: 65 drugs 
are predicted with higher precision by a single gene 
alteration, whereas 62 drugs have higher precision when 
predicted by combining multiple gene alterations via RF 
(Supplementary Table 1). This is often true for MANOVA 
markers based on a relatively rare mutation, as often no 
test cell line harbours such gene mutation, in which case 
test set precision is zero. We further distinguished between 
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cytotoxic and targeted drugs. Targeted drugs hit a target 
or targets that are particularly important for tumoral cells, 
whereas cytotoxic drugs affect basic cellular machinery 
and thus typically elicit a broader effect reaching both 
tumoral and non-tumoral cells alike [39]. No evident trend 
was found in the precision of the classifier depending on 
whether this was constructed for a targeted or cytotoxic 
drug (Figure 2).

External validations highlight the limitations of 
single-gene markers

Next we analyse two examples of drugs for which 
the test set precision obtained by the multi-gene marker is 
similar or higher than that of the single-gene markers. This 
analysis uncovered two severe issues with single-gene 
markers. The first issue is that the single-gene marker is 

Figure 1: Measuring the performance of the most significant single-gene marker for the drug AZD7762. Using all the 
cell lines originally tested with this drug (the training set), MYCN-mutated cell lines were found to have increased sensitivity to AZD7762 
(P=0.002)6. The median logIC50 in μM units of all cell lines in this training set (left) defines the sensitivity threshold (horizontal red line) 
for both training and test sets. Thus, this single-gene classifier predicts that cell lines harbouring the genetic aberration (mutated MYCN 
with boxplot named MYCN for short), tend to be more sensitive to AZD7762 (logIC50 below threshold) than cell lines that are wild-type 
(WT) with respect to the MYCN gene (boxplot marked as WT for short). This classifier achieves a high precision (PR=0.75) on the training 
set because only 25% of the cell lines that are predicted to be sensitive are actually resistant (false positives; FP). However, it obtains a very 
low recall (RC=0.05) as the vast majority of sensitive cell lines are WT with respect to MYCN and hence are incorrectly predicted to be 
resistant (i.e. false negatives; FN). A second scatter plot with two boxplots (right) shows the classification performance of the AZD7762-
MYCN marker on the test set. It is similar to the performance obtained on the training set, which evidences the robustness of this particular 
marker.
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often not found in the test tumours. For example, the drug 
AZD8055 targets both the mTORC1 and mTORC2 kinase 
complexes in the mTOR signaling cascade (Reactome: 
R-HSA-165159) and had as most significant single-gene 
marker TET2. This AZD8055-TET2 relationship was 
characterized by a p-value of 3·10-5. However, test set cell 
lines do not include any TET2 mutations, voiding the use 
of this marker entirely (Figure 3). By contrast, the multi-
gene RF was capable of predictive sensitive cell lines 
in the test set with precision and recall rates exceeding 
70% (Figure 3). Figure 2 can be revisited to place both 
precision values for AZD8055 in the context of those for 
the rest of drugs (all performance results are available in 
Supplementary Table 1). As such, single-gene markers 
suffer from being unable to predict at least a portion of 
the sensitive population. It is therefore mandatory that 

additional genes are considered to assist the preferred 
single-gene marker to accommodate for this lost part of 
the sensitive population. Consequently, significance of 
p-values cannot be the sole requirement when identifying 
biomarkers. We found that this problem is particularly 
acute in cases where the MANOVA marker is based on 
a relatively rare mutation. For example, the actionable 
mutation was not present in any of the test set cell lines 
for 20.5% of the best single-gene markers (26 of the 127 
drugs) and therefore these held no predictive value for the 
test set (zero precision). The identities of these 26 drugs 
are available in Supplementary Table 1 along with all the 
results for both types of markers on each data set.

The second issue is that the single-gene marker can 
have very low recall. For instance, AZD7762 is a drug that 
primarily targets CHEK1 and CHEK2 in the G2/M DNA 

Figure 2: Test set precision of MANOVA single-gene markers versus RF multi-gene markers across 127 drugs. 62 drugs 
obtain better precision with the RF classifiers combining the 71 gene alterations, while 65 of the single-gene markers have higher precision. 
Cytotoxic drugs are red-coloured and targeted drugs are blue-coloured following the annotation of the original GDSC study.
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damage checkpoint pathway (Reactome: R-HSA-69473), 
which is essential for the inactivation of the Cyclin B:cdk1 
complex when triggered by DNA damage. The best single-
gene response marker for AZD7762 is MYCN, which is 
significantly associated with this drug (P= 0.002 on the 
training set). The two boxplots in Figure 4 represent the 
test set performance of both the MANOVA and the RF for 
a targeted drug (AZD7762). As can be seen in Figure 4, 
78% of MYCN-mutant cell lines are predicted as sensitive 
to this drug according to the single-gene model, whereas 
this response rate is 72% when combining the 71 gene 
alterations. Although a similar precision was reported, the 
RF model was found to have a strongly improved recall 
(0.61) compared to that of the single-gene marker (0.05).

Multi-gene markers generally achieve much 
higher recall than single-gene markers

Figure 3 and 4 show that the test set recall of 
AZD8055 and AZD7762 is much higher for multi-gene 
markers than for single-gene markers. Figure 5 (left) plots 
test set recall for all the drugs to examine whether this is 
a general trend. This is indeed a strong trend, with 118 
out of 127 drugs having a higher proportion of correctly 
predicted sensitive cell lines using the multi-gene markers.

We also calculated the F1-values for each compound 
and classifier. F1 is defined as the equally-weighted 
harmonic mean of precision and recall. Therefore, high 
F1 values highlight markers achieving both high precision 

Figure 3: Best MANOVA single-gene marker versus RF multi-gene marker for AZD8055. Although the correlation is clear 
on the training set, the TET2 marker turned out to be of no use for the test set, as none of the test cell lines harbour mutations in the TET2 
gene (no boxplot on the left). By contrast, the multi-gene marker is highly precise in identifying sensitive cell lines (PR=0.73) and does 
so with a high recall (RC=0.76). Note that the boxplot named “pred sens” shows the sensitivities of test set cell lines predicted sensitive, 
whereas the boxplot labeled “pred res” displays those for the test set cell lines predicted resistant.
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and high recall in the test set. The results of this analysis 
are shown in Figure 5 (right). Again, most drugs exhibit 
much higher F1-values using multi-gene markers than 
single-gene markers. Interestingly, this was not the 
case for nine drugs (MG-132, AZD-0530, Z-LLNle-
CHO, Dasatinib, A-770041, BMS-536924, Bortezomib, 
Thapsigargin and Nutlin-3a). All of these drugs had either 
TP53 or CDKN2A as their most significant marker. Both 
TP53 and CDKN2A are highly reoccurring mutations 
and thus the higher recall of the MANOVA can at least 
be partially attributed to the prevalence of said mutations.

We further investigated two drugs with high test 
set F1 by the multi-gene marker (F1=0.53 for 17-AAG 

and F1=0.63 for Methotrexate). Figure 6 (left) presents 
the test set performance of both the best single-gene 
marker (the mutational status of the ERBB2 gene) 
and the multi-gene marker for 17-AAG, also known as 
Tanespimycin, a HSP90 inhibitor. The recall offered by 
the multi-gene marker is much higher than that of the best 
single-gene marker for this drug (RC=0.54 vs RC=0.01), 
while providing similar precision (PR=0.51 vs PR=0.50). 
Similarly, Figure 6 (right) displays the corresponding 
results for Methotrexate, a cytotoxic drug primarily 
targeting DHFR in the G1/S phase transition of the cell 
cycle (DHFR plays an important role in the activation 
of E2F1-regulated genes during this phase). No cell line 

Figure 4: Best MANOVA single-gene marker versus RF multi-gene marker for AZD7762. This targeted drug has similar 
precision for the single-gene MYCN mutation marker compared to the multi-gene marker (PR=0.78 vs PR=0.72). However, the recall is 
vastly different between classifier types (MANOVA RC=0.05; RF RC=0.61). Taken together, these results indicate that the multi-gene 
classifier predicts cell line sensitivity to AZD7762 substantially better than its best single-gene marker. Note the following abbreviations: 
“pred sens” (predicted sensitive) and “pred res” (predicted resistant).



Oncotarget97032www.impactjournals.com/oncotarget

Figure 5: Test set recall and F-scores of single-gene versus multi-gene markers across the 127 drugs. (left) Multi-gene 
markers achieve a higher recall than single-gene markers in 118 of the 127 drugs. (right) Similarly, multi-gene markers achieve higher 
F-scores in 118 of the 127 drugs. All cytotoxic drugs (red-coloured) have better recall and F-scores when predicted with multi-gene markers.

Figure 6: Examples of drugs having multi-gene markers with high test set recall and F-scores. (Left) Mutated ERBB2 
was the most significant single-gene marker for 17-AAG sensitivity (P=0.008) on the training set (the label “res” next to the gene indicate 
that ERBB2-mutant cell lines tend to be resistant to the drug). On the test set, this marker obtained a precision of 0.5 with practically no 
recall (RC=0.01). By contrast, the corresponding multi-gene marker has a similar level of precision with much higher recall (RC=0.54). 
Consequently, F-scores are also substantially higher for the multi-gene marker (F1=0.53 vs F1=0.03 of the single-gene marker). (Right) 
BCR_ABL translocation is the most significant single-gene marker for Methotrexate (P=0.0002). However, this gene fusion was not 
detected in any of the 234 test cell lines for this drug. For this drug, the multi-gene marker achieves a much higher test set precision and 
recall, which highlights that this approach is particularly useful when the single-gene marker is based on relatively rare gene mutations. In 
this case, F-scores are also substantially higher for the multi-gene marker (F1=0.63 vs F1=0 of the single-gene marker). Note the following 
abbreviations: “pred sens” (predicted sensitive) and “pred res” (predicted resistant).
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in the test set of Methotrexate harboured the genetic 
aberration used as response marker (BCR_ABL in this 
case). There are generally few tumours harbouring a given 
actionable mutation. In practice, this means that only a 
very small fraction of cancer patients can currently benefit 
from precision oncology [40] (i.e. single-gene markers 
generally providing very low recall).

The importance of using independent test sets in 
biomarker discovery

Training and testing on the very same data set 
leads to overly positive prediction results, as the model 
assimilates not only the signal but also the noise in the 
data. Such models are said to suffer from overfitting [41]. 
Therefore, we present a rigorous analysis on truly mutually 
independent training and test sets. We calculated the MCC 
on various data sets to investigate which markers provide 
better performance than randomly expected (MCC=0) 
[42]. As specified in the Methods section, RF is trained 
with each possible value of its control parameter mtry. This 
leads to a family of 71 RF models per drug and that with 
the best cross-validated MCC is selected to predict drug 
response in the test set. The results are shown in Figure 
7, which illustrates three ways to assess the predictive 
performance offered by both MANOVA’s single-gene and 
RF’s multi-gene markers across the 127 drugs. The plot 
on the left evaluates the MCC of both types of markers 
on training data, whereas that on the right visualise their 
MCC performance on test data. In addition, the middle 
plot shows the MCCs of single-gene markers on the test 

set against the MCCs of multi-gene markers on the test 
folds arising from the cross-validation employed for RF 
model selection.

By comparing the MCC values of the drugs on 
training set cell lines (left plot) against that on test set 
cell lines (rightmost plot), we can clearly see a shift in 
performance. Both single-gene and multi-gene markers 
overfit the training data, although the degree of overfitting 
is on average much higher in the multi-gene marker 
models. Note that overfitting can be quantified as the 
difference between the average MCC of the RF model on 
the training set (0.64) and its MCC on the independent 
test set (0.05).

A subtler form of overfitting occurs when using the 
cross-validated MCC from the multi-gene model (middle 
plot). Again, we can see that the MCC range is shifted 
towards the right compared to the MCC positions of the 
RF markers in the test set (right plot), with the average 
MCC being 0.15 (middle) and 0.05 (right) respectively. 
This discrepancy can be attributed to at least two reasons. 
First, both model selection and performance estimation 
have been carried out using the same data folds, which 
is known to overestimate performance [29, 43]. The most 
realistic performance estimation is by an independent test 
set (right plot in Figure 7), as these data were not used 
neither for training nor for model selection. Second, time-
dependent batch effects may also have played a role to 
further strengthen this difference [32].

Despite being more overfitted, RF multi-gene 
markers are still able to perform slightly better than the 
MANOVA single-gene markers (average MCCRF= 0.05 

Figure 7: Global performance assessment of single-gene markers versus multi-gene markers across the 127 drugs. 
(Left) Performance assessment based on the training data would be strongly biased towards multi-gene markers due to overfitting (99.2% 
of drugs are better predicted by multi-gene markers). (Middle) The performance of single-gene markers on the test set is compared to the 
10-fold cross-validated performance of multi-gene markers using training data. The same cross-validation is also used for model selection 
(here, identifying the optimal RF’s mtry value) and hence this performance assessment is expected to be biased towards multi-gene markers 
(85.0% of drugs are better predicted by multi-gene markers). (Right) All the comparable data released after the initial GDSC release was 
used as a time-stamped test set, which is the most realistic form of retrospective performance assessment. 55.1% of the drugs are now better 
predicted by their multi-gene marker. Furthermore, 109 drugs are better predicted than random (MCC>0) with multi-gene markers, 66 of 
these by their multi-gene marker and the remaining 43 by their best single-gene marker. The large difference between these results and that 
of cross-validated results (55.1% vs 85%) shows that using the same cross-validation for both model selection and its assessment results in 
an overoptimistic view of predictive performance.
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compared to average MCCMANOVA= 0.04) on the test set 
data. This apparent contradiction is explained by the 
fact that different machine-learning algorithms exhibit 
different levels of robustness to overfitting, as it has been 
the case here. We have observed the same behaviour when 
applying RF to similar problems [44, 45]. Moreover, we 
provided an intuitive example of an analytical model 
robust to overfitting (see section 2 of the supplementary 
information of this paper [45]). When comparing the 
median MCCs instead of average MCCs, RF scores 0.72 
on the training set and 0.04 on the test set (for MANOVA, 
the median value on the test set is just 0.02). These test 
set MCC values are very low, which shows how hard it 
generally is to predict cell sensitivity to drugs. On the 
positive side, Figure 7 (right) shows that we can already 
predict cell line sensitivity to some drugs with substantial 
accuracy.

A comparison of single-gene and multi-gene 
markers compared to what would be randomly expected 
is shown in Table 1. Although the difference in average 
MCC values between single- and multi-gene markers is 
very small, RF predicts 91 drugs with MCC values greater 
than 0. For the single-gene markers, this is only true for 
65 drugs. 18 drugs (14.2% of the 127 analysed drugs) 
could not be sufficiently predicted with either marker. An 
additional set of 18 drugs offers some level of prediction 
with MANOVA (MCC>0), while RF does not manage to 
perform better than random. Conversely, 44 drugs have 
positive MCC values with RF, where MANOVA performs 
worse or equally to random. A total of 47 drugs have 
positive MCC values for both marker types. In general, of 
the 109 drugs that could be predicted better than random, 
66 of these preferred the multi-gene markers, while in 
the remaining 43 drugs the univariate marker performed 
better. A full overview of each group can be found in 
Supplementary Table 2.

We also investigated two factors that may influence 
the performance of the RF: test set class imbalance and 
training set data size. First of all, we found a statistically 
significant negative correlation (R, two-tailed Spearman 
rank-correlation test, P=9.5·10-5) between the performance 
of multi-gene classifier (MCC on the test set) and the test 
set class imbalance (quantified as the difference between 

the number of sensitive and resistant samples in a test set). 
Furthermore, test set performance of the RF model (MCC) 
was also linked to the size of such set (P=0.01, two-tailed 
Spearman rank-correlation test in R). This indicates that 
there is much room for improvement for multi-gene 
classifiers with growing data availability.

About two thirds of the cytotoxic drugs are 
better predicted by multi-gene markers

Cytotoxic drugs often targets essential pathways, 
e.g. DNA replication or cellular metabolism processes, 
which severely impact rapidly proliferating cells 
such as tumour cells [46]. The cellular response to 
these compounds is drastically different from targeted 
approaches at the transcriptomics level. Here we further 
investigated if differences could already be found at the 
genomic level. As we can see from the plot (Figure 5), all 
of the 14 cytotoxic drugs have better recall and F-score 
than their corresponding single-gene markers. When we 
consider the MCC value on the independent test set, such 
as shown in Figure 6 (right), nine of the 14 cytotoxic drugs 
(64%) had better MCC values with multi-gene makers 
than with single-gene markers, while 5 had better MCC 
values with the MANOVA analysis. Despite only counting 
with 14 cytotoxic drugs, these findings do appear different 
from those reported by [31] at the transcriptomics level, 
where 12 of them were better predicted by a multi-gene 
marker.

DISCUSSION

This study presents, to the best of our knowledge, the 
first systematic comparison of single-gene markers versus 
multi-gene machine-learning models of tumour sensitivity 
to drugs on independent test sets for genomic properties. 
Although a relevant analysis was included in a very 
recent study [8], this has several important limitations. 
First, LOBICO logic classifiers are inherently limited to 
up to four binary features [8], whereas machine-learning 
classifiers can employ any number and type of features. 
Second, there is the issue of biased model assessment due 
to also using the same cross-validation for model selection 

Table 1: Breakdown of the 127 drugs according to the sign of the test set MCC depending on the employed type of 
marker.

MCC.test MANOVA>0 MANOVA < 0

RF > 0 47 44

RF <0 18 18

The MCC values on the test set are compared to what would be randomly expected (MCC= 0). Overall, RF predicts a 
higher proportion of drugs with MCC>0 (91 drugs from summing over the first row) than MANOVA (65 drugs from 
summing over the first column). However, 18 of the 127 drugs are not predicted by either marker better than random 
classification (14.2%).
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[29]. As our results with GDSC data confirmed (Figure 
7), this practice leads to overly optimistic portraits of 
the actual performance of a classifier. Note that all the 
multi-gene markers reported in this paper were selected 
using data not used for their generalisation performance 
assessment.

Predictive biomarkers of drug sensitivity are 
increasingly important tools in drug development and 
clinical research [47, 48]. During the investigation of 
methods for cancer diagnosis and treatment, a vast amount 
of cancer genomics data is typically generated [49] and 
thus there is an urgent need to truly understand what 
biomarkers are and how to exploit the genomics features 
optimally [50]. Given that drug polypharmacology 
[51] is a strong and common event (recent estimations 
have unveiled that drugs have on average more than 11 
molecular targets [52]), more than one gene alteration 
should often be influencing tumour sensitivity to a given 
drug. Here we have found that over half of the analysed 
drugs are better predicted by machine-learning models 
combining multiple somatic mutations than by classic 
univariate markers. Such in vitro multi-gene markers can 
now be further investigated in vivo.

Our results strongly suggest that multi-gene 
markers should routinely be considered in the analysis 
of pharmacogenomic data. We would thus like to invite 
researchers to apply this methodology to related biomarker 
discovery problems. For example, projects adopting more 
accurate disease models (e.g. primary tumours [53, 54], 
patient-derived xenografts [55] or patients [10, 56]), 
those exploring alternative molecular profiling data (e.g. 
secretive proteomics [57], epigenomics [58] or single-cell 
genomics [59]) or those involving drug combinations [60] 
could benefit greatly from implementing a similar analysis 
to further understand the characteristics of the generated 
markers. With this purpose, we are releasing our code 
along with step-by-step usage instructions (these files can 
be downloaded from http://ballester.marseille.inserm.fr/
PRoncology-code.zip).

As rigorously reviewed in [40], the application 
of molecularly targeted cancer therapies remains 
marred by high failure rates and only a fraction of the 
responsive patients are correctly predicted to respond to 
these therapies. In this paper, we have highlighted some 
of the reasons why this is often the case, including the 
poor recall of univariate markers despite their sometimes 
high precision (Figure 4). By contrast, we found out 
that most of the 127 analysed drugs had multi-gene 
classifiers providing higher recall (Figure 5). These results 
underscore the importance of predictors that are not only 
able to provide high precision, but also high recall. High 
precision implies a low number of false positives and thus 
the model will avoid selecting cell lines that are actually 
resistant to the drug. High recall indicates a low number 
of false negatives, which means that a high proportion of 
cell lines sensitive to the drug are identified. As genomic 

markers continue to grow more popular in clinical 
settings, more attention needs to be paid to the recall of 
the predictive models that are used to identify responsive 
tumours as a part of a precision and recall oncology 
approach enabled by machine-learning modelling.

MATERIALS AND METHODS

GDSC data

From the Genomics of Drug Sensitivity in Cancer 
(GDSC) [61] (ftp://ftp.sanger.ac.uk/pub4/cancerrxgene/
releases/), we downloaded the following files from the 
first data release: gdsc_manova_input_w1.csv and gdsc_
manova_output_w1.csv. In gdsc_manova_input_w1.csv, 
there are 130 unique drugs as camptothecin was tested 
twice, drug IDs 195 and 1003, and we only kept the drug 
ID 1003 instance because drug ID 195 was not included in 
subsequent releases. Thus, effectively a panel of 130 drugs 
was tested against 638 cancer cell lines, leading to 47748 
IC50 values (57.6% of all possible drug-cell pairs).

We also obtained the data from the last release of 
GDSC that uses the same experimental techniques to 
generate the pharmacogenomic data and selected genes 
as in the first release (gdsc_manova_input_w5.csv). This 
version contains 140 drug IDs, but only 139 unique drugs 
as AZD6482 was tested twice, drug IDs 156 and 1066 
(drug ID 1066 was not present in the first release and thus 
we only kept drug ID 156). Hence 139 drugs were tested 
on 708 cell lines comprising 79,401 IC50 values (80.68% 
of all possible drug-cell pairs).

Downloaded “IC50” values are more precisely the 
natural logarithm of IC50 in μM units (i.e. negative values 
represent drug responses more potent than 1μM). We 
converted each of these values into their logarithm base 
10 in μM units, which we denote as logIC50 (e.g. logIC50=1 
corresponds to IC50=10μM), as in this way differences 
between two drug response values are directly given as 
orders of magnitude in the molar scale.

gdsc_manova_input_w1.csv also contains genetic 
mutation data for 68 cancer genes, which were selected 
as the most frequently mutated cancer genes [6], 
characterising each of the 638 cell lines. For each gene-
cell pair, a ‘x::y’ description was provided by the GDSC, 
where ‘x’ identifies a coding variant and ‘y’ indicates copy 
number information from SNP6.0 data. As in Garnett 
et al. [6], a gene for which a mutation is not detected 
is considered to be wild-type (wt). A gene mutation is 
annotated if: a) a protein sequence variant is detected 
(x ≠{wt, na}) or b) a deletion/amplification is detected. 
The latter corresponds to a copy number alteration 
(CNA) different from the WT value of y=0<CNA<8. 
Furthermore, three translocations were considered (BCR_
ABL, MLL_AFF1 and EWS_FLI1), bringing the total to 
71 genomic features. For each of the gene fusions, cell 
lines are identified as fusion not-detected or the identified 
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fusion is given (i.e. wt or mutated with respect to the gene 
fusion, respectively). The microsatellite instability (msi) 
status of each cell line was also determined. Further details 
can be found in the original publication [6].

Time-stamped data partition to generate non-
overlapping training and test sets

Both data releases have 127 drugs in common. Three 
drugs were only included in the first release (A-769662, 
Metformin and BI-D1870), whereas the subsequent release 
contained 12 new drugs (TGX221, OSU-03012, LAQ824, 
GSK-1904529A, CCT007093, EHT 1864, BMS-708163, 
PF-4708671, JNJ-26854165, TW 37, CCT018159 and 
AG-014699).

Regarding features, cell lines from both releases 
have been profiled for 71 common gene alterations in 
cancer. In addition to the three translocations and the 
msi status, the mutational statuses of 67 genes have been 
determined (i.e. those for the 68 selected genes in the first 
release except for the WT1 gene, which was not included 
in the latest release).

For each drug, there are two non-overlapping data 
sets. The training set contains the cell lines tested at the 
time of the first release (the smallest, mean and largest 
numbers of cell lines across drugs are 274, 366 and 506, 
respectively) along with their IC50s for the drug and 71 
binary features corresponding to the presence or absence 
of the considered gene alterations. The test set contains the 
new cell lines tested for that drug and released after data in 
the training set (the smallest, mean and largest numbers of 
cell lines across drugs are 55, 203 and 358, respectively). 
Thus, a total of 254 data sets (one training set and one test 
set per drug) were generated based on the GDSC input 
data and analysed in this study.

Measuring predictive performance of a classifier 
on a given data set

After preprocessing, pharmacogenomic data for the 
ith drug is represented as

i i
k k
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k n
logIC

i
= ( ){ }

=

=
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Where x  is a vector composed of 71 genomic features 
and the ith drug has been tested on ni cell lines. This can 
represent a cross-validation fold, training set or test set of 
any of the considered drugs.

A tumour sensitivity threshold for a given drug 
is required to establish which cell lines are sensitive or 
resistant to the drug. Sensitive cell lines are by definition 
those responsive to relatively small drug concentrations 
(i.e. cell lines obtaining low IC50s, or equivalently low 
logIC50s), whereas resistant cell lines are those that barely 
respond to such drug concentrations. As there are two 

classes, it makes sense to assign the 50% most sensitive 
cell lines to the sensitive class and the remaining 50% 
most resistant cell lines to the resistant class, as we would 
do when binarising any other continuous variable (e.g. 
measured size of an object to be classified as large or 
small). To implement this class assignment, the threshold 
for a given drug is defined as the median of all the logIC50 
values (i.e. one logIC50 per training set cell line). Thus, 
positive data instances are cell lines sensitive to the drug 
(sensitive cell lines), which are those with logIC50 lower 
than the threshold (i.e. below the threshold). Likewise, 
negative data instances are cell lines resistant to the drug 
(resistant cell lines), which are those above the threshold.

Once the threshold is calculated, the set of all the 
cell lines tested with a given drug can be partitioned into 
four categories as defined in Figure 1, which are quantified 
as the numbers of true positives (TP), true negatives 
(TN), false positives (FP) or false negatives (FN). From 
this contingency table, the discrimination offered by a 
classifier can be summarised by the Matthews Correlation 
Coefficient (MCC) [62].

MCC =
−

+( ) + + +

TP TN FP FN
TP FN FN TN TN FP FP TP

• •

• • •( ) ( ) ( )

By the above definition of positives and negatives, MCC 
takes absolute values from 0 (gene mutation has absolutely 
no discriminative power) to 1 (gene mutation perfectly 
predicts whether cell lines are sensitive or resistant to the 
drug).

Important descriptors of the performance of 
biomarkers that we have used throughout the paper, are 
precision and recall. Precision (PR) and Recall (RC) are 
two classical metrics for measuring the performance of a 
binary classifier [63].

PR TP
TP FP

                   RC TP
TP FN

=
+

=
+

Precision can be defined as the ratio of the true positives 
to the total number of observations that are reported as 
positive. Per definition, the precision is 0 if no sensitive 
cell line is correctly classified as being so. If no false 
positives are made (cell line incorrectly classified as 
sensitive), the precision will reach a value of 1. Recall, 
also known as sensitivity in binary classification, measures 
the fraction of successfully predicted sensitive cell lines 
compared to all cell lines that actually are sensitive but not 
necessarily found by the model. Similar to the precision, it 
reaches values from 0 (no sensitive cell line was correctly 
classified as sensitive) to 1 (no sensitive cell line was 
incorrectly classified as resistant).

Based on precision and recall, an alternative 
measure to the MCC can be derived to gain an idea of 
the global measure of classification performance. The 
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F-score (F1) is the equally-weighted harmonic mean of 
PR and RC.

F PR RC
PR RC

1 2=
+
•

The optimal value of F1 is one indicating that both 
precision and recall are maximal (thus both have a value 
of one), whereas its worst F1 performance is at F1=0 with 
at least one of precision and recall being zero (when both 
PR and RC are zero, F1 is zero by convention).

Single-gene markers built from the training data 
set

The downloaded gdsc_manova_output_w1.csv contains 
all the drug-gene associations with their corresponding 
p-values by the MANOVA test with false discovery rate 
of 20% with Benjamini-Hochberg correction. As such, 
the provided adjusted significance threshold by GDSC is 
0.00840749, which we adopted. Since we only consider 
the 127 shared drugs and 71 common gene alterations, 
8330 drug-gene associations with p-values remain. 
386 of these are statistically significant after multiple 
hypothesis correction as calculated by Garnett et al. [6]. 
Each statistically significant drug-gene association was 
considered to be a single-gene marker of in vitro drug 
response [6]. In other words, we used these single-gene 
markers along with their p-values instead of carrying out 
this analysis again.

For each drug, the best single-gene marker for the 
drug was identified as the drug-gene association with the 
lowest p-value, as is standard procedure in biomarker 
discovery. This is effectively a binary classifier with a single 
independent variable that is built using training data alone 
and fixed at this model selection stage. In 14 of the 127 
drugs, using the GDSC threshold, the lowest p-value among 
mutations was not statistically significant. However, we 
still used these 14 markers as otherwise multi-gene markers 
would immediately perform better than the single-gene 
approach in these drugs. Therefore, we are running a best-
case scenario for single-gene markers.

Once the best single-gene marker is selected for 
the drug, this model is evaluated on the corresponding 
previously unseen test set, which is fully independent from 
the training data. From a machine-learning perspective, 
the test set simulates the availability of future data. In 
26 drugs, the test set cell lines did not harbour the best 
mutation and thus no prediction could be made using the 
single-gene markers. In these cases, MCC and precision 
are assigned zero values.

Multi-gene markers built from the training data 
set

For each of the 127 drugs, we built a Random Forest 
(RF) classification model [37] using the same training data 

sets as their best single-gene markers. Each RF model was 
built with 1000 trees and we defined the best value for the 
mtry control parameter for a given drug, as the value that 
had the lowest cross-validation root-mean-square error. All 
procedures were implemented in R scripts and executed 
using Microsoft R Open (MRO) version 3.2.5.

Pathway information

All pathway information was obtained from 
Reactome [64], using database version V59.
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