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Studies during the last two decades have provided new insights into the molecular mechanism of Alzheimer’s disease (AD). One of
the milestone findings in AD research was the demonstration that neurofibrillary degeneration characterized by tau pathology is
central to the pathogenesis of AD and other tauopathies and that abnormal hyperphosphorylation of tau is pivotal to neurofibril-
lary degeneration. This article reviews the recent research advances in tau pathology and the underlying dysregulation of the pro-
tein phosphorylation/dephosphorylation system. An updated model of the mechanism of neurofibrillary degeneration is also pre-
sented, and a promising therapeutic target to treat AD by correcting dysregulation of protein phosphorylation/dephosphorylation
is discussed.
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INTRODUCTION

Although Alzheimer’s disease (AD) and its main brain histo-
pathology, that is, senile plaques and neurofibrillary tangles
(NFTs), were described a century ago, significant research ad-
vances in the disease began only a few decades ago. The dis-
coveries of the major protein components of senile plaques
as amyloid β-peptide [1, 2] and of NFTs as abnormally hy-
perphosphorylated tau [3, 4] in the 1980s initiated a new era
of AD research. Since then, much research has focused on
the molecular mechanisms of initiation and formation of the
senile plaques and NFTs and their roles in the pathogene-
sis of AD. Evidence accumulated in the last two decades in-
dicates that malprocessing of both tau and β-amyloid pre-
cursor protein, which produces β-peptide, is pivotal, if not
central, to the molecular mechanism of AD. The severity of
dementia symptoms in AD strongly correlates to the num-
ber of NFTs, but not of senile plaques, in AD brains [5–9],
suggesting that tau pathology might be associated with the
disease mechanism more directly. Abnormal hyperphospho-
rylation of tau and its deposits in the brain is also seen in
several other neurodegenerative diseases that are collectively
named tauopathies (for review, see [10, 11]). The discovery
of tau mutations that cause hereditary frontotemporal de-
mentia and Parkinsonism linked to chromosome 17 (FTDP-
17) [12–14] further indicates that tau abnormality alone is
sufficient to produce dementia. Therefore, for developing

rational therapeutic treatment of AD, it is essential to under-
stand the molecular mechanism by which tau abnormalities
lead to neurofibrillary degeneration.

Because tau aggregated in the brain of AD and all other
tauopathies is always abnormally hyperphosphorylated, nu-
merous studies have focused on the roles of the abnor-
mal hyperphosphorylation and the mechanism leading to
tau hyperphosphorylation. Recent studies demonstrate that
it is the abnormal hyperphosphorylation that makes tau
lose its normal function to stimulate microtubule assem-
bly, gain toxic activity, and aggregate into NFTs [15–23]. In
addition to tau, several other brain proteins such as neu-
rofilaments, microtubule-associated protein (MAP) 1 B, β-
tubulin, and β-catenin are also found to be hyperphospho-
rylated [24–27], suggesting that the protein phosphoryla-
tion/dephosphorylation system might be dysregulated in AD
brain. This article attempts to review the recent advances in
this respect. Because abnormally hyperphosphorylated tau is
pivotal to AD and has been extensively studied, this review
focuses on tau hyperphosphorylation. Prevention and rever-
sal of abnormal hyperphosphorylation of tau as a potential
promising therapeutic strategy is also discussed.

TAU PROTEIN

Tau was first discovered by Weingarten et al [28] as a mi-
crotubule-associated protein that stimulates microtubule
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assembly. There was not much research interest in tau pro-
tein until a decade later, when it was found to make up the
paired helical filaments (PHFs) that form NFTs in AD brain
[3, 4, 29]. Human tau gene was found on the long arm of
chromosome 17 (position 17q21) and was found to contain
16 exons [30]. This single tau gene encodes six tau isoforms
in adult human brain as a result of alternative splicing of its
mRNA [31]. The six isoforms of tau differ from each other by
the presence or absence of one or two inserts (29 or 58 amino
acids) in the N-terminal part and by the presence of either
three or four repeats in the C-terminal half. The N-terminal
inserts are highly acidic. The repeats in the C-terminal half of
tau are the domains that bind to microtubules [32–34]. The
region upstream of the microtubule-binding domains con-
tains many proline residues and, hence, is called the proline-
rich region.

The best-known biological functions of tau are to stimu-
late microtubule assembly and to stabilize microtubule struc-
ture. Tau binds to microtubules via its microtubule-binding
domains located at the C-terminal half of the molecule [32–
34]. The N-terminal part projects from the microtubule sur-
face, where it may interact with other cytoskeletal elements
and the plasma membrane [35, 36]. Each of the six tau iso-
forms possibly has its particular physiological roles and dif-
ferential biological activities, because they are differentially
expressed during development and have different activities
to stimulate microtubule assembly [37, 38]. Only the short-
est isoform of tau is expressed in fetal brain, whereas all six
isoforms are seen in adult brain [39, 40]. In addition to stim-
ulating microtubule assembly, several studies have suggested
that tau may have other physiological functions. It appears
to interfere with binding of kinesin and kinesin-like mo-
tors to microtubules, leading to a preferential inhibition of
plus-end-directed axonal transport [41]. Overexpression of
tau inhibits kinesin-dependent trafficking of vesicles, mito-
chondria, and endoplasmic reticulum [42]. This may explain
the symptoms of amyotrophic lateral sclerosis with neurofil-
ament accumulation in motor neurons of several transgenic
models of tau overexpression [43–46]. Tau has been found
to interact with mitochondria [47], plasma membrane [36],
and nucleic acids [48, 49], suggesting that it may act as a me-
diator between microtubules and these organelles. Tau also
appears to interact with src-family nonreceptor tyrosine ki-
nases such as fyn [50, 51] and phospholipase C-γ [52, 53] via
its proline-rich region. These data suggest that tau may also
play a role in the signal transduction pathways involving src-
family tyrosine kinases and phospholipase C-γ. However, the
physiological significance of these interactions remains to be
elucidated.

As early as 1977, tau was found to be a phosphopro-
tein [54]. In 1984, it was demonstrated that phosphorylation
of tau negatively regulates its activity in promoting micro-
tubule assembly [55]. Because tau is abnormally hyperphos-
phorylated in AD and other tauopathies, tau phosphoryla-
tion has been studied extensively. Normal brain tau contains
2 or 3 moles of phosphates per mole of tau [56–58]. Studies
on human brain biopsy tissue indicated that several serine
and threonine residues of tau are normally phosphorylated

at substoichiometrical levels [59, 60]. A normal level of phos-
phorylation appears to be required for tau’s optimal func-
tion, whereas the hyperphosphorylated tau loses its biologi-
cal activity [15, 16, 61–69].

ABNORMAL HYPERPHOSPHORYLATION OF
TAU IN AD BRAIN

The discovery that tau aggregated in AD brain is abnor-
mally hyperphosphorylated has stimulated many studies on
the extent and sites of tau hyperphosphorylation and their
role in the pathogenesis of AD. The phosphorylation level of
tau isolated from autopsied AD brains is 3- to 4-fold higher
than that from normal human brains [56–58]. In addition,
the hyperphosphorylated tau is accumulated in both brains
[70, 71] and cerebral spinal fluid [72–80] of individuals with
AD. All six isoforms of tau are aggregated into PHFs in the
abnormally hyperphosphorylated forms in AD brains [3, 4,
31, 81]. To date, at least 37 serine and threonine residues
have been found to be phosphorylated in PHF-tau (for re-
view, see [82]). These residues include Thr39, Ser46, Thr69,
Thr123, Ser137, Thr153, Thr175, Thr181, Ser198, Ser199,
Ser202, Thr205, Ser208, Ser210, Thr212, Ser214, Thr217,
Thr231, Ser235, Ser237, Ser238, Ser241, Ser262, Ser285,
Ser305, Ser324, Ser352, Ser356, Ser396, Ser400, Thr403,
Ser404, Ser409, Ser412, Ser413, Ser416, and Ser422. Many
of these residues are also phosphorylated in normal hu-
man brains without NFTs at smaller extents, but they are
rapidly dephosphorylated during postmortem delay and tis-
sue processing [59, 60]. However, the phosphate groups at
these sites are not readily dephosphorylated during the post-
mortem period and tissue processing of AD brain, proba-
bly because of the deficient protein phosphatase activities
[83–89]. Some of the phosphorylation sites seen in PHF-
tau are not phosphorylated at all in normal brains. These
sites include Thr212/Ser214, Thr231/Ser235 [90], and Ser422
[91, 92].

Because all of the previously identified phosphorylation
sites of normal tau and PHF-tau are at either serine or thre-
onine residues, it was thought that tau was phosphorylated
only at serine and threonine residues. However, recent stud-
ies suggest that tau in developing brain and in AD brain
is also phosphorylated at tyrosine residues. The src-family
nonreceptor tyrosine kinase fyn can bind to and phospho-
rylate tau in vitro and in transfected cells [50, 51, 93]. The
phosphorylation site of tau was mapped as Tyr18. Tyrosine
phosphorylated tau at this position is also seen immuno-
histochemically in the brain of transgenic mice that express
mutated human tauP301L [51]. Williamson et al [94] demon-
strated that in primary human and rat brain cortical cultures
tau is phosphorylated at Tyr 29 upon treatment with Aβ. The
tyrosine phosphorylation of tau appears rapid and transient.
Interestingly, antibodies specific to tyrosine phosphorylated
tau labeled purified PHF-tau, but not normal tau, suggest-
ing that PHF-tau is phosphorylated at the tyrosine residues
[93, 94]. In addition, Tyr394 was also found to be phospho-
rylated in PHF-tau and in tau from fetal brains, and the phos-
phorylation at this site is catalyzed by another nonreceptor
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tyrosine kinase c-Abl [95]. It is not clear if the phosphory-
lation at any of the above tyrosine residues is stoichiometri-
cally significant. Therefore, whether the tyrosine phosphory-
lation of tau has any pathophysiological relevance remains to
be elucidated.

Numerous studies have demonstrated the important role
of abnormal hyperphosphorylation of tau in its aggrega-
tion into NFTs and in Alzheimer’s neurofibrillary degener-
ation. In cultured cells, hyperphosphorylation of tau after
treatment with phosphatase inhibitors impairs its activity
to bind to microtubules and induces filamentous aggrega-
tion of tau [21]. Pseudohyperphosphorylated tau that sim-
ulates abnormally hyperphosphorylated tau by mutation of
serine or threonine residues into glutamate at selected AD-
related sites exerts a cytotoxic effect, whereas wild-type tau
is neutral [22]. In contrast, neurons from tau-knockout mice
are resistant to Aβ-induced neurotoxicity [96]. Overexpres-
sion of human tau in combination with phosphorylation by
Drosophila GSK-3β homologue Shaggy, but not tau overex-
pression alone, exacerbates tau-induced neurodegeneration
and results in the formation of NFT-like filamentous tau ag-
gregates [23]. This study shows a causal relationship between
tau hyperphosphorylation and neurofibrillary degeneration
in vivo. A study in Disabled-1 (an adapter protein) knockout
mice further demonstrates that tau hyperphosphorylation
causes early death of the animals [97]. Most importantly, tau
in inclusions of all tauopathies in human and animal mod-
els is always hyperphosphorylated (for reviews, see [11, 98]).
Abnormal hyperphosphorylation of tau appears to precede
its aggregation into NFTs in AD brain [57, 99–101]. Taken
together, these studies suggest that the abnormal hyperphos-
phorylation of tau is crucial to neurofibrillary degeneration
in AD and other tauopathies.

The largest isoform of human brain tau (441 amino
acids) contains 80 serine and threonine residues and five ty-
rosine residues [31]. Phosphorylation at nearly half of these
residues has been reported in PHF-tau (see [82] for re-
view). Many studies have demonstrated that phosphoryla-
tion of tau at different sites has different impacts on its bi-
ological function and on its pathogenic role. For instance,
a quantitative in vitro study demonstrated that phospho-
rylation of tau at Ser262, Thr231, and Ser235 inhibits its
binding to microtubules by ∼35%, ∼25%, and 10%, re-
spectively [102]. In cultured cells, phosphorylation of tau
at Ser214 and Ser262 decreases its binding to microtubules
and appears to inhibit its assembly to filaments [103]. In
vitro kinetic studies of the binding between hyperphospho-
rylated tau and normal tau suggest that phosphorylation
of tau at Ser199/Ser202/Thr205, Thr212, Thr231/Ser235,
Ser262/Ser356, and Ser422 are among the critical phospho-
rylation sites that convert tau to a toxic molecule to sequester
normal MAPs from microtubules [19]. Further phosphory-
lation at Thr231, Ser396, and Ser422 promotes self-assembly
of tau into filaments. Similarly, tau mutated at Ser396 and
Ser404 (changing Ser into Glu) to mimic phosphoserine is
more fibrillogenic than wild-type tau [104], and a tau con-
struct in which Ser422 is mutated to Glu shows a signifi-
cantly increased propensity to aggregate [105]. Consistent

with these observations is that mutation of Ser422 to Ala pre-
vents Aβ-induced tau aggregation [106]. These results sug-
gest that phosphorylation of Ser422 may play a key role in
tau filament formation in vivo.

An important question is, by what mechanism is the
tau abnormality involved in the pathological cascades that
lead to neurodegeneration in AD and other tauopathies.
Does a hyperphosphorylation-induced defect in its activity
to stimulate microtubule-assembly contribute to cell dys-
function? Is it the formation of insoluble tau aggregates that
is pathogenic? Although tau loses its activity to stimulate mi-
crotubules, lack of overt phenotype of tau knockout trans-
genic mice [107] suggests that it is very unlikely that tau ab-
normality contributes to neurodegeneration via loss of nor-
mal function due to its hyperphosphorylation. By a series of
studies, we have found that both the abnormally hyperphos-
phorylated tau isolated from AD brain and in vitro hyper-
phosphorylation tau gain a toxic activity to sequester nor-
mal tau and other MAPs, such as MAP1 and MAP2, and
cause microtubule disassembly [16, 18, 66, 108]. Upon de-
phosphorylation, they lose this toxic activity. Polymeriza-
tion of the hyperphosphorylated tau into PHFs also abolishes
this toxic activity (Alonso A et al, unpublished observation).
Hence, we speculate that the abnormal hyperphosphoryla-
tion of tau causes neurodegeneration by gain of toxic activity
rather than by loss of normal activity that can be compen-
sated for by other MAPs and that formation of PHFs/NFTs
from the hyperphosphorylated tau in neurons is a defense
mechanism by which neurons aim to reduce the toxic activ-
ity of the abnormally hyperphosphorylated tau. This spec-
ulation is supported by recent in vivo studies. Conditional
overexpression of GSK-3β in the transgenic mouse brains in-
duces tau hyperphosphorylation and neurodegeneration, but
no tau aggregation [109]. In contrast, there are NFTs but no
memory loss in several lines of tau transgenic mice (for re-
view, see [110]). This phenomenon is probably common to
other diseases characterized by abnormal protein aggregates
such as Huntington disease and cardiomyopathy, in which
the abnormal, nonfibrillar protein oligomers, rather than the
aggregates themselves, appear to be pathogenic [111, 112].

IMBALANCE OF PHOSPHORYLATION/
DEPHOSPHORYLATION IN AD BRAIN

To understand the mechanism leading to abnormal hyper-
phosphorylation of tau in AD, protein kinases and phos-
phatases that regulate tau phosphorylation level must be
identified first. In the last two decades, numerous studies
aimed to the identification of tau kinases and phosphatases
have been carried out. It was found that in vitro, dozens
of phosphoseryl/phosphothroenyl protein kinases and most
of the major protein phosphatases could act on tau protein
at various phosphorylation sites (for reviews in detail, see
[82, 113, 114]). Tau appears to be a universal substrate for
protein kinases and phosphatases in vitro. This may not be
surprising, because nearly 20% of the amino acid residues of
tau molecule are serines and threonines, and nearly 50% of
these residues are phosphorylated to certain degrees in AD
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brain (see [82] for review). However, it is unlikely that all
these enzymes that act on tau in vitro catalyze tau phospho-
rylation/dephosphorylation in vivo. Immunohistochemical
studies also have shown a colocalization of more than a dozen
protein kinases and several protein phosphatases with NFTs
of AD brain. As we now know that NFTs are very “sticky”
structures that can be stained immunohistochemically by an-
tibodies to numerous antigens, immunohistochemical colo-
calization with NFTs can only support other data that indi-
cate a role of the specific protein or enzyme in the formation
of NFTs, but itself cannot indicate such a role.

Further studies in cultured cells, in situ, and especially in
vivo suggest that a few protein kinases and phosphatases may
be involved in regulation of tau phosphorylation in the brain.
The kinases that most likely play a role in phosphorylation of
tau in the brain include glycogen synthase kanase-3β (GSK-
3β), cyclin-dependent kinase 5 (cdk5), cAMP-dependent
protein kinase (PKA), stress-activated protein kinases, and
calcium/calmodulin-dependent kinase II (CaMK-II). John-
son and Stoothoff [115] have critically discussed this issue.
The sites of tau phosphorylation by these kinases, except
stress-activity protein kinases, have been summarized in our
recent review [82]. Among protein phosphatases, PP2A has
been shown to be the major tau phosphatase in the brain
[69, 116–120]. In a recent study, we compared the catalytic
kinetics of tau dephosphorylation by various major brain
protein phosphatases and determined the relative contribu-
tions of these phosphatases to the regulation of tau phos-
phorylation quantitatively. We found that PP2A accounts for
∼70% of the total tau phosphatase activity, whereas PP1,
PP2B, and PP5 each accounts for only ∼10% of the total tau
phosphatase activity [88]. Because PP2B activity is upregu-
lated rather than downregulated in AD brain, it is unlikely
that it regulates tau phosphorylation in vivo [121].

Accumulated evidence indicates that tau phosphoryla-
tion is regulated by several protein kinases and that more
than one kinase might be involved in abnormal hyperphos-
phorylation of tau in AD brain. Interestingly, GSK-3β phos-
phorylates tau at both prime sites (ie, tau needs to be primed
by phosphorylation with other kinases at other sites) and un-
primed sites [122–126]. In a cotransfection study, Cho and
Johnson [125] found that a GSK-3β mutant (GSK-3β-R96A)
that only phosphorylates unprimed sites has no negative im-
pact on tau’s ability to bind to microtubules, in contrast to
wild-type GSK-3β, which significantly impairs tau’s ability
to bind to microtubules. Further studies demonstrate that
primed phosphorylation of tau at Thr231 by GSK-3β plays
a critical role in decreasing tau’s ability to both bind to and
stabilize microtubules [126]. In rat brains, activation of PKA
not only induces primed phosphorylation of tau by GSK-3β,
but also impairs the spatial memory of rats [124, 127]. GSK-
3β appears to be regulated by both phosphoinositol-3 kinase
and protein kinase C pathways [128–131].

An obvious approach to understanding how tau becomes
abnormally hyperphosphorylated in AD is to study whether
tau kinase(s) or tau phosphatase(s) are dysregulated in AD
brain. Several studies have focused on whether the activi-
ties and expression of these enzymes are altered in AD brain.

Among protein kinases, cdk5 was reported to be upregulated
in AD brain by one laboratory [132], but this result was chal-
lenged by others [133–136]. On the other hand, both the ac-
tivity and the expression of PP2A as well as the activities of
PP1 and PP5 are decreased in the selected areas of AD brain
[83–89]. Consistent with this finding, several other neuronal
proteins such as neurofilaments, MAP1B, β-tubulin, and β-
catenin are also hyperphosphorylated in AD brain [24–27].
Hence, it appears that downregulation of the phosphatases,
especially of PP2A, might underlie the abnormal hyperphos-
phorylation of tau and other proteins in AD brain. Studies
of metabolically active rat brain slices and transgenic mice
suggest that the downregulation of PP2A may produce hy-
perphosphorylation of tau, not only by the deficient dephos-
phorylation of tau, but also through the activation of sev-
eral PP2A-regulated protein kinases, including PKA [137],
CaMK-II [138], MAP kinases, and stress-activated protein
kinases [139–141]. Nevertheless, inhibition of PP2A activity
in animal brain could only induce hyperphosphorylation of
tau at some of the hyperphosphorylation sites seen in PHF-
tau, but does not result in NFTs. Attempts to produce mas-
sive tangles of PHFs in animal models merely via alteration
of tau phosphatase and/or kinase activities have not yet been
successful. These observations suggest that the downregula-
tion of tau phosphatases in AD brain may be only partially
responsible for the abnormal hyperphosphorylation of tau.

The causes leading to decreased PP2A activity in AD
brain are not well understood. Downregulation of PP2A
expression [85] and upregulation of PP2A endogenous in-
hibitor proteins IPP2A

1 and IPP2A
2 [142] in AD brain may

both contribute to the downregulation of PP2A activity. Be-
cause the activities of PP1 [83, 88] and PP5 [88, 89], which
contribute to regulation of tau phosphorylation to a much
smaller extent than PP2A [88], are also decreased in AD
brain, there might be a common factor that downregulates
the activities of the major brain protein phosphatases in AD
brain.

In addition to tau kinases and phosphatases, alter-
ations of tau itself, the substrate of these enzymes, may
also play an important role in its abnormal hyperphos-
phorylation and conversion into PHFs. Tau is also mod-
ified post-translationally by β-N-acetylglucosamine (Glc-
NAc) via a glycosidic bond at the hydroxyl groups of serine
and/or threonine residues, and this modification is called O-
GlcNAcylation [143–145]. Because O-GlcNAc could modify
the same serine or threonine residues of tau as phosphate
does and a reciprocal relationship between O-GlcNAcylation
and phosphorylation has been seen in many proteins (for re-
view, see [146]), O-GlcNAcylation could affect phosphoryla-
tion of tau. Recent studies in various systems found that tau
phosphorylation is indeed regulated by O-GlcNAcylation in-
versely [144, 145, 147]. Most interestingly, fasting of mice in-
duces downregulation of tau O-GlcNAcylation, which relies
on glucose metabolism to supply UDP-GlcNAc as a donor
for protein O-GlcNAcylation, and in turn leads to hyper-
phosphorylation of tau [145]. These findings led to the novel
hypothesis that impaired glucose uptake/metabolism in AD
brain, which was well established decades ago, contributes
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Abnormally hyperphosphorylated tau

Sequestration of normal
tau and other MAPs

Disassembly of MTs

Axoplasmic flow ↓

Retrograde degeneration
(loss of synapse)

Death of neurons

Dementia

Detached from MTs

Intraneuronal tau ↑

Late PHFs/NFTs

Truncation

Nitration

Polyamination

Glycation

Ubiquitination

Early PHFs/NFTs

Abnormal tau N-glycosylation

Tau O-GlcNAcylation ↓ Glucose uptake/metabolism ↓
Dysregulation of phosphorylation/dephosphorylation

Normal tau

Figure 1: Proposed mechanism of neurofibrillary degeneration. MAPs, microtubule-associated proteins; MTs, microtubules; PHFs, paired
helical filaments; NFTs, neurofibrillary tangles.

to the disease pathogenesis via downregulation of tau O-
GlcNAcylation and, consequently, upregulation of tau phos-
phorylation that leads to neurofibrillary degeneration [148].

Classical N-linked glycosylation is a modification of pro-
tein at asparagine residues by oligosaccharides, which nor-
mally modifies only membrane proteins and secreted pro-
teins. Tau in AD brain, but not in normal human brain, was
found to be modified by N-glycosylation [68, 149, 150], and
this aberrant tau modification appears to precede and facili-
tate abnormal hyperphosphorylation of tau [150–152]. This
modification has been reviewed in detail in a recent article
[82].

MECHANISM OF NEUROFIBRILLARY DEGENERATION

There is no doubt that the abnormality of tau plays a cen-
tral role in neurofibrillary degeneration in AD and other
tauopathies. A critical review of the literature accumulated
in the last two decades sheds light onto the probable mecha-
nism of neurofibrillary degeneration of AD (Figure 1).

Tau is the major microtubule-associated protein of ma-
ture neurons where it stimulates microtubule assembly and
stabilizes microtubule structure. Tau is normally modified
by both phosphorylation and O-GlcNAcylation. The phos-
phorylation level of tau is regulated by tau kinases and tau
phosphatases, as well as by the alteration of tau itself. In
AD and probably also in other tauopathies, metabolic and
genetic abnormalities lead to dysregulation of signal trans-
duction pathways, which in turn causes an imbalance of the

phosphorylation/dephosphorylation system, that is, down-
regulation of PP2A in the brain. This imbalance results in in-
creased phosphorylation (ie, hyperphosphorylation) of tau.
The impaired brain glucose uptake/metabolism that pre-
cedes AD also facilitates hyperphosphorylation of tau via
downregulation of tau O-GlcNAcylation [148]. Aberrant N-
glycosylation of tau in AD brain also makes tau a more favor-
able substrate for major tau kinases and less favorable for tau
phosphatases [151, 152], thereby facilitating tau hyperphos-
phorylation.

The abnormally hyperphosphorylated tau resulting from
any of the above causes not only loses its biological activ-
ity to stimulate microtubule assembly, but also becomes a
toxic molecule, sequesters normal tau, MAP1, and MAP2,
and causes disassembly of microtubules. The breakdown of
the microtubule network in the affected neurons compro-
mises axonal transport and leads to retrograde degeneration,
which in turn results in neuronal death and dementia. On
the other hand, the abnormally hyperphosphorylated tau de-
tached from microtubules is not only easier to polymerize
into PHFs as a result of hyperphosphorylation, but it also
causes increased intraneuronal soluble tau concentration due
to sequestration of normal tau from microtubules, which
further facilitates tau aggregation into PHFs. The polymer-
ized abnormal tau is further modified by ubiquitination, gly-
cation, polyamination, nitration, and truncation (for review,
see [82]), and forms mature PHFs/NFTs. Unlike the unpoly-
merized hyperphosphorylated tau that is toxic, PHFs/NFTs
appears to be inert (Alonso A et al unpublished observa-
tion), but these lesions grow in size with disease progression
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and eventually might physically choke the affected neuron to
death.

THERAPEUTIC TARGET TO TREAT AD BY CORRECTING
DYSREGULATION OF PROTEIN PHOSPHORYLATION/
DEPHOSPHORYLATION

Because neurofibrillary degeneration plays a central role in
the pathogenesis of AD, one of the most attractive thera-
peutic targets of AD is to inhibit neurofibrillary degenera-
tion. As outlined in Figure 1, the most promising approaches
to achieve this goal are to inhibit the abnormal hyperphos-
phorylation of tau and to inhibit its sequestration of nor-
mal MAPs. The former approach is more effective since it
should both rescue the disruption of microtubule and axo-
plasmic flow and prevent further deposition of NFTs. Sev-
eral academic groups and pharmaceutical companies have
been investigating this approach by restoring PP2A activ-
ity or inhibiting tau kinase activity in the brain. Meman-
tine, a low-to-moderate-affinity antagonist of NMDA recep-
tor, which improves mental function and the quality of daily
life of individuals with moderate to severe AD [153, 154],
reverses the okadaic-acid-induced inhibition of PP2A activ-
ity and prevents tau hyperphosphorylation in hippocampal
slice cultures from adult rats [155]. The restoration of PP2A
activity to normal level by memantine also leads to restora-
tion of the expression of MAP2 in the neuropil and a rever-
sal of hyperphosphorylation and accumulation of neurofil-
aments. Wang’s group has demonstrated that treatment of
brain slices and rats with melatonin can restore PP2A activ-
ity that is inhibited by okadaic acid or calyculin A and reverse
hyperphosphorylation of tau and neurofilament proteins as
well as cytotoxicities [156–158]. Melatonin also prevents tau
hyperphosphorylation and aggregation induced by overac-
tivation of GSK-3 or PKA [131, 159]. These are examples
showing that inhibition of dysregulation of protein phospho-
rylation/dephosphorylation is a promising target to treat AD.
Further investigation of new compounds that can inhibit ab-
normal hyperphosphorylation of tau will likely provide new
treatments for AD.
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