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Abstract: L-ornithine L-aspartate (LOLA) is administered as a therapeutic and/or preventive strategy
against hepatic encephalopathy either intravenously or orally in patients with liver cirrhosis. Here, we
analyzed how LOLA influences the microbiome and metabolome of patients with liver cirrhosis. We
retrospectively analyzed the stool microbiome, stool, urine and serum metabolome as well as markers
for gut permeability, inflammation and muscle metabolism of 15 cirrhosis patients treated orally
with LOLA for at least one month and 15 propensity-score-matched cirrhosis patients without LOLA.
Results were validated by comparing the LOLA-treated patients to a second set of controls. Patients
with and without LOLA were comparable in age, sex, etiology and severity of cirrhosis as well as PPI
and laxative use. In the microbiome, Flavonifractor and Oscillospira were more abundant in patients
treated with LOLA compared to the control group, while alpha and beta diversity were comparable
between groups. Differences in stool and serum metabolomes reflected the pathophysiology of hepatic
encephalopathy and confirmed LOLA intake. In the urine metabolome, ethanol to acetic acid ratio
was lower in patients treated with LOLA compared to controls. LOLA-treated patients also showed
lower serum levels of insulin-like growth factor (IGF) 1 than patients without LOLA. No differences
in gut permeability or inflammation markers were found. A higher abundance of Flavonifractor and
Oscillospira in LOLA-treated patients could indicate LOLA as a potential microbiome modulating
strategy in patients with liver disease. The lower levels of IGF1 in patients treated with LOLA suggest
a possible link between the pathophysiology of hepatic encephalopathy and muscle health.

Keywords: microbiome; metabolome; L-ornithine-L-aspartate; cirrhosis; hepatic encephalopathy

1. Introduction

Chronic liver diseases and liver cirrhosis are on the rise in Europe [1]. Hepatic en-
cephalopathy (HE) is one of the most debilitating complications of cirrhosis and is associ-
ated with increased morbidity and mortality [2]. Although the pathogenesis is still incom-
pletely understood, currently, it is assumed that protein and urea breakdown by colonic
bacteria leads to ammonia release, and due to the reduced capacity of the liver to detoxify,
ammonia accumulates and is shunted into the systemic circulation [3,4]. Ammonia accumu-
lates in the brain and has neurotoxic effects, especially on astrocytes [5,6]. Available treat-
ment modalities to lower ammonia include L-ornithine-L-aspartate (LOLA), nonabsorbable
disaccharides (lactulose) and nonabsorbable antibiotics (rifaximin) [7]. The amino acids
L-ornithine and L-aspartate in LOLA dissociate readily and are consecutively absorbed.
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L-ornithine serves as an intermediary in the urea cycle in periportal hepatocytes in
the liver and as an activator of carbamoyl phosphate synthetase, and both amino acids
also lower ammonia levels by transamination to glutamate via glutamine synthetase in
perivenous hepatocytes as well as by skeletal muscle and the brain [8]. Besides these
direct effects, additional functions such as hepatoprotective effects or effects on restoring
skeletal muscle proteostasis have been proposed but are not fully explained to date [9].
Since oral LOLA comes into contact with the human gut microbiome and the intestinal
barrier, effects on the gut microbiome and intestinal permeability may play a role in the
clinical effects of LOLA. The gut microbiome is not only involved in ammonia generation
and thereby in the pathogenesis of HE, but it is today also understood as a key driver of
complications of cirrhosis [10]. The gut microbiome is severely altered in liver cirrhosis in
general, with a reduction in bacterial diversity and an increase in potential pathogens [11].
Factors influencing the microbiome in cirrhosis are etiology and severity of liver disease,
drug intake, nutritional status, and inflammation [12]. In general, many human-targeted
drugs can alter the composition of the gut microbiome [13]. For LOLA thus far, no data are
available on its association with gut microbiome composition and metabolomic changes in
cirrhosis. Therefore, we aimed to investigate whether LOLA intake in patients with liver
cirrhosis is associated with taxonomic and functional changes of the gut microbiome and
the urinary, and/or serum and/or fecal metabolome.

2. Materials and Methods

From an ongoing cohort study (NCT03080129, 29-280 ex 16/17), 15 patients with
cirrhosis with oral LOLA intake for at least 1 month and 15 control cirrhotic patients were
selected with nearest-neighbor propensity score matching. Propensity score matching
was based on cirrhosis severity (Child-Pugh score and MELD-score), using the R package
“MatchIt” [14,15]. To avoid overfitting and false positive results, results were validated by
comparing the patients receiving LOLA to a second control group. This control group was
selected by extending the regression model for nearest neighbor propensity score matching
to include etiology of cirrhosis and proton pump inhibitor use in addition to disease severity.
Due to this alteration, 9 out of 15 control patients (60%) were replaced. Sarcopenia is a
potential confounder in the analysis too. To approximate its influence, LOLA patients
were propensity score matched to a third control group of patients not receiving LOLA
based on their sarcopenia status (non-sarcopenic, pre-sarcopenic, sarcopenic). To minimize
confounding by potentially unbalanced parameters in regard to liver disease, this group
comparison was only performed for sarcopenia related biomarkers with Mann–Whitney
U tests.

Then, 16S rDNA sequencing data (for details regarding the method, see Supplementary
Methods) of these 30 patients were preprocessed with the QIIME 2 pipeline on a local
Galaxy instance (https://galaxy.medunigraz.at, accessed on 21 September 2021) [16] and
analyzed on the web-based platform “Calypso” V8.84 (https://cgenome.net, accessed on 25
September 2021) [17]. Taxonomic analysis was performed with a Bayesian classifier based
on the SILVA V132 database. Low abundance filtering was applied to remove features
that were present in only one sample or had less than 10 copies in total; cyanobacteria and
chloroplasts were removed as likely contaminants. For alpha diversity approximations, a
rarefied feature table with 8427 reads per sample was used to calculate richness, evenness,
Chao-1 index and Shannon index. For beta diversity analysis and taxon comparisons, a full
(not rarefied) feature table was subjected to Hellinger transformation (i.e., total sum scaling
and square root transformation). Principal coordinate analysis (PCoA) with subsequent
analysis of similarities (ANOSIM) based on Bray–Curtis dissimilarity as well as redundancy
analysis (RDA) and non-parametric multidimensional scaling (NMDS) was used to identify
similarities of microbiome structures between groups. LDA effect size (LEfSe) and analysis
of compositions of microbiomes (ANCOM) identified differentially abundant taxa between
the groups.

https://galaxy.medunigraz.at
https://cgenome.net
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Nuclear magnetic resonance (NMR) metabolomic profiling was performed for urine,
serum and stool samples using a well-established pipeline (for details regarding the method,
see Supplementary Methods) [18,19]. Metabolites were extracted using methanol, NMR
spectra were recorded and processed in Matlab to obtain aligned and normalized datasets.
Valid datasets were obtained from 29 patients (14 LOLA, 15 noLOLA), 27 patients (13 LOLA,
14 noLOLA) and 27 patients (13 LOLA, 14 noLOLA). The human metabolome database
(HMDB) was used for metabolite annotation. Obtained concentrations were then normal-
ized to the sum of all concentrations in a sample, square root transformed, mean centered
and divided by the standard deviation of the respective feature for statistical analysis.
Principal component analysis (PCA) was performed to visually assess the similarity of
metabolome profiles between groups. To further discriminate groups, biomarker identi-
fication was performed based on area under the receiver operator characteristics curve
(AUROC). For biomarker identification, the 20 ratios of metabolites with the lowest p value
in group comparison tests were included in the list of analytes. Analysis was performed in
the web-based version of MetaboAnalyst 5.0 (https://www.metaboanalyst.ca, accessed on
28 September 2021) [20].

Targeted metabolomics were compared between groups, whereby routine and exper-
imental parameters were selected to complement the NMR results. Parameters include
routine biomarkers for liver function/injury and related information: alanine amino-
transferase (ALT), aspartate aminotransferase (AST), alkaline phosphatase (AP), gamma-
glutamyltransferase (GGT), albumin, bilirubin, prothrombin time international normalized
ratio (PZINR), C-reactive protein and total protein biomarkers for inflammation and gut
permeability: fecal calprotectin, fecal zonulin, diamine oxidase (DAO), LPS binding protein
and sCD14 indicators for sarcopenia: fibroblast growth factor (FGF) 21, irisin, myostatin
and insulin-like growth factor (IGF)—1 biomarkers for neutrophil function: resting burst,
priming and ROS production after E. coli stimulation, all given as percentage of positive
cells and geometric mean of fluorescence intensity (GMFI) [20].

Biomarkers for liver function and injury as well as C-reactive protein were taken from
the routine biochemistry report of the patients, fecal zonulin and fecal calprotectin were
measured externally by Biovis’ Diagnostik MVZ GmbH (Limburg–Offenheim, Germany);
neutrophil function was assessed by flow cytometry in heparinized whole blood using
Phagoburst kits (Celonic, Basel, Switzerland) in house (for details, see Supplementary
Methods), the remaining biomarkers were assessed in house by ELISA (diamine oxidase
and myostatin: Immundiagnostik, Bensheim, Germany; insulin-like growth factor-1 and
fibroblast growth factor-21: Biotechne, Minneapolis, MN, USA; Irisin: Biovendor, Brno,
Czeck Republic; LPS binding protein: Hycult Biotech, Uden, The Netherlands; sCD14: R&D
systems, Minneapolis, MN, USA). All tests were performed according to manufacturers’
instructions. In addition, muscle function and muscle mass assessments (chair rise test,
gait speed, midarm muscle circumference, hand grip strength and body mass index) were
included in the analysis.

All analyses and visualizations, if not otherwise stated in the Method section, were per-
formed with R (version 4.0.3) in R studio (version 1.4.1103) using the packages “tidyverse”,
“readxl”, “writexl”, and “ggpubr” [14,21–24].

3. Results
3.1. Patient Characteristics

Of the 156 patients with a valid sarcopenia diagnosis and microbiome profile, 98 were
diagnosed with cirrhosis. Of these 98, 95 had a microbiome profile with at least 8000 reads
per sample, and 15 had a documented oral LOLA-therapy at the timepoint of sampling
(for at least one month, range: 1–29 months). Out of the remaining 80 eligible patients
without LOLA therapy, 15 patients were selected as a control group with nearest-neighbor
propensity score matching, as shown in Figure 1. The two resulting groups (LOLA and
noLOLA) were comparable in etiology of cirrhosis (p = 0.7), Child-Pugh score (p < 0.99),
MELD-score (p = 0.5), age (p = 0.9), sex (p = 0.7), proton pump inhibitor use (p > 0.99) and

https://www.metaboanalyst.ca
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lactulose use (p = 0.7). Non-absorbable antibiotics (rifaximin) were used by four patients
in the LOLA group, but none in the control group (p = 0.1). For patient characteristics of
matched groups, see Table 1.

Figure 1. Flow diagram for patient selection. Analyzed groups are given in colored boxes.

Table 1. Characteristics of LOLA-receiving patients and controls matched for liver disease severity.

Parameter LOLA (n = 15) noLOLA (n = 15) p Value

Age 63 (6.5) 61 (15.1) 0.9

Sex (m/f) 13/2 (87/13%) 11/4 (73/27%) 0.7

Etiology
(Alc/Non-alc) 10/5 (67/33%) 9/6 (60/40%) 0.7

Child-Pugh score 7 (1.5) * 7 (1.5) * >0.99

MELD score 12.8 (3.3) 11.9 (2.7) 0.5

PPI use/non-use 7/8 (47/53%) 6/9 (40/60%) >0.99

Lactulose
use/non-use 5/10 (33/67%) 3/12 (20/80%) 0.7

Non-absorbable
antibiotics

use/non-use
4/11 (36/64%) 0/15 (0/100%) 0.1

Sarcopenia diagnosis
(no/pre-/sarcopenia) 3/3/9 (20/20/60%) 6/3/6 (40/20/40%) 0.4

Values are given as mean (standard deviation) or count (%), unless otherwise stated; * values are given as median
(interquartile range); LOLA: patients with LOLA intake; noLOLA: patients without LOLA intake; Alc: alcoholic
cirrhosis; MELD: model of end stage liver disease; PPI: proton pump inhibitor.

For the sensitivity analysis, we iterated the control group matching with a regression
model that included disease severity, cirrhosis etiology and proton pump inhibitor use.
Sixty percent of patients from the initial control cohort (only matched for liver disease
severity) were replaced during this process. In addition, this control group was well
comparable to the LOLA group in regard to age (p = 0.5), sex (p = 0.4), etiology (p > 0.99),
Child-Pugh score (p = 0.3), MELD score (p = 0.9), PPI use (p > 0.99) and lactulose use
(p > 0.99). None of the patients in the control group were taking non-absorbable antibiotics.
Patient characteristics are compared in Table 2.
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Table 2. Patient characteristics of LOLA-receiving patients and controls matched for liver disease
severity, etiology and PPI use.

LOLA (n = 15) noLOLA (n = 15) p Value

Age (years) 63 (6.5) 62 (7.7) 0.5

Gender (m/f) 13/2 (87/13%) 10/5 (67/33%) 0.4

Etiology
(Alc/Non-alc) 10/5 (67/33%) 10/5 (67/33%) >0.99

Child-Pugh score 7 (1.5) * 7 (2.5) * 0.3

MELD score 12.8 (3.3) 12.7 (4.3) 0.9

PPI use/non-use 7/8 (47/53%) 7/8 (47/53%) >0.99

Lactulose
use/non-use 5/10 (33/67%) 4/11 (36/64%) >0.99

Non-absorbable
antibiotics

use/non-use
4/11 (36/64%) 0/15 (0/100%) 0.1

Sarcopenia diagnosis
(no/pre-/sarcopenia) 3/3/9 (20/20/60%) 7/3/5 (47/20/33%) 0.3

Values are given as mean (standard deviation) or count (%), unless otherwise stated; * values are given as median
(interquartile range); LOLA: patients with LOLA intake; noLOLA: patients without LOLA intake; Alc: alcoholic
cirrhosis; MELD: model of end stage liver disease; PPI: proton pump inhibitor.

3.2. Association of LOLA Intake with Microbiome Composition

The analysis of the microbiome compositions showed no significant differences in
alpha diversity (Chao1: p = 0.4, Evenness: p = 0.2; Richness: p = 0.8, Shannon: p = 0.2) or beta
diversity (ANOSIM: R = −0.045, p = 0.9; RDA: Variance = 27.46, F = 0.98, p = 0.6, NMDS:
stress = 0.235), and ANCOM could not identify any significant differences between the
groups. LEfSe analysis identified six genera to be differentially abundant between groups:
Flavonifractor and Oscillospira was associated with LOLA therapy, Ruminococcaceae_UCG003,
Butyricimonas, Desulfovibrio and an uncultured, not further identified bacterium were
associated with controls without LOLA therapy (see also Figure 2). This result was also
observed when patients with intake of lactulose or PPI or rifaximin were excluded from
the analysis (see Supplementary Figure S1).

Similar results were obtained in the sensitivity analysis using the control group
matched for liver disease severity, etiology and PPI use. Alpha-diversity (Chao1: p = 0.7,
Evenness: p = 0.9; Richness: p = 0.6, Shannon: p = 0.8) and beta-diversity (ANOSIM:
R = −0.006, p = 0.5; RDA: Variance = 28.29, F = 1.04, p = 0.2, NMDS: stress = 0.224) did
not show significant differences between patients with and without LOLA use, consistent
with the previous analysis. LEfSe identified five differentially abundant genera; Parabacte-
riodes, Flavonifractor and Oscillospira were more abundant in patients treated with LOLA,
Subdoligranulum and Anaerostipes were more abundant in patients not taking LOLA (see
also Supplementary Figure S2). ANCOM could identify the genus Flavonifractor to be
differentially abundant between groups.

The genera Flavonifractor and Oscillospira re-emerged in the sensitivity analysis us-
ing the control group matched for liver disease severity, etiology and PPI use, and the
differences in Flavonifractor abundance could be reproduced by ANCOM. Both taxa are
more abundant in patients treated with LOLA compared to patients not taking LOLA.
Flavonifractor was 4.9-fold and 10.6-fold higher and Oscillospira was 14.6-fold and 3.4-fold
higher in patients with LOLA intake compared to patients without in the initial analysis
and in the sensitivity analysis using the control group matched for liver disease severity,
etiology and PPI use, respectively, as shown in Supplementary Figures S1B,C and S2B,C.
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Figure 2. (A) Genera associated with LOLA therapy (orange bars—LOLA) or controls (green bars—
noLOLA) determined by LDA effect size (LEfSe). (B,C) Relative abundances of genera Flavonifractor
and Oscillospira in patient with and without LOLA intake.

3.3. Metabolomic Analysis of Urine, Stool and Serum Samples

To identify metabolites discriminating patients treated with LOLA from patients not
taking LOLA, we used PCA and ROC analysis of metabolite panels obtained for urine, stool
and serum samples using NMR spectroscopy. Whereas PCA showed no clear separation of
the groups (PCA plots are given in Supplementary Figure S3), ROC analysis was able to
identify metabolite (ratios)-discriminating patients treated with LOLA from patients not
taking LOLA.

3.3.1. Urine Metabolome

Urine metabolomics data of 29 patients were available (14 LOLA, 15 noLOLA). In
total, 41 metabolites and the 20 most distinctive metabolite ratios were analyzed. Of these,
14 biomarkers showed a c value above 0.7 in the AUROC analysis and significant differ-
ences between groups (uncorrected t test). Because of the considerable risk of overfitting,
the analysis was repeated in the sensitivity analysis dataset using the control group matched
for liver disease severity, etiology and PPI use to select the more robust biomarkers. This
dataset consisted of 27 patients (14 LOLA, 13 noLOLA). Biomarker analysis identified
13 potential biomarkers to distinguish between patients with and without LOLA use. The
overlap in potential biomarkers between the initial analysis and the sensitivity analysis
included only one biomarker: ethanol to acetic acid ratio was higher in the noLOLA group.
Neither ethanol nor acetic acid showed considerable predictive power as a standalone
biomarker. Details are given in Table 3. All urine samples contained at least minimal
concentrations of ethanol, although more than half of the patients reported not to drink
alcohol at all. Patient-reported alcohol consumption did not correlate with urine ethanol
concentrations (rs = −0.057; p = 0.8) nor with urine ethanol to acetic acid ratio (rs = −0.051;
p = 0.9). Moreover, urine ethanol concentrations were also not correlated with serum
ethanol concentrations (rs = −0.035; p = 0.9). Patient-reported alcohol consumption was
comparable between groups.
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Table 3. Predictive power of urine ethanol to acetic acid ratio and its components for patients with
and without LOLA intake in both the initial analysis (groups matched for liver disease severity) and
the sensitivity analysis (groups matched for liver disease severity, etiology and PPI use).

Initial Analysis Sensitivity Analysis

Biomarker LOLA noLOLA AUROC
(95%CI) LOLA noLOLA AUROC

(95%CI)

Ethanol to
acetic acid

ratio
−0.59 (0.85) 0.30 (0.51) 0.83 (0.61–0.95) −0.46 (0.78) 0.07 (0.64) 0.76 (0.54–0.92)

Ethanol −0.11 (0.60) 0.00 (0.63) 0.60 (0.37–0.80) −0.02 (0.54) −0.16 (0.84) 0.53 (0.31–0.78)

Acetic acid 0.42 (0.91) −0.27 (0.79) 0.68 (0.46–0.87) 0.42 (0.87) −0.24 (0.8) 0.69 (0.78–0.88)

Values are given as mean (standard deviation) or AUROC c value (95%CI); LOLA: patients with LOLA intake;
noLOLA: patients without LOLA intake; AUROC: area under the receiver operator curve; 95%CI: 95% confidence
interval; biomarkers with significant predictive power are printed in bold.

3.3.2. Stool Metabolome

Valid stool metabolomics data were available in 27 of the 30 patients (13 LOLA,
14 noLOLA). In total, 48 metabolites and the 20 most distinctive metabolite ratios were
analyzed. Biomarker identification showed 19 potential biomarkers in the initial analysis
matched for liver disease severity and 12 in the sensitivity analysis matched for liver disease
severity, etiology and PPI use, 3 of which could be validated in both datasets: propylene
glycol to isopropyl alcohol ratio, propylene glycol to valeric acid ratio, and valeric acid
to glycerol ratio. Neither propylene glycol, isopropyl alcohol, valeric acid nor glycerol
showed significant predictive potential as standalone biomarkers. Of note, although valeric
acid to glycerol ratio showed significant group differences and c values above 0.7 in both
cohorts, the predictive power assessed by AUROC did not reach statistical significance in
the sensitivity analysis. Details are given in Table 4.

Table 4. Predictive power of stool metabolite ratios that distinguish between patients with and
without LOLA intake in both the initial analysis (matched for liver disease severity) and the sensitivity
analysis (matched for liver disease severity, etiology and PPI use).

Initial Analysis Sensitivity Analysis

Biomarker/Ratio LOLA noLOLA AUROC (95%CI) LOLA noLOLA AUROC (95%CI)

Propylene
glycerol to
isopropyl

alcohol

0.54 (0.77) −0.62 (0.93) 0.84 (0.65–0.96) 0.46 (0.77) −0.67 (1.00) 0.78 (0.56–0.93)

Propylene
glycerol to
valeric acid

0.59 (1.01) −0.40 (0.86) 0.74 (0.52–0.89) 0.57 (0.91) −0.28 (0.85) 0.76 (0.53–0.90)

Valeric acid to
glycerol −0.23 (1.00) 0.41 (0.78) 0.73 (0.51–0.90) −0.19 (0.98) 0.12 (0.63) 0.72 (0.49–0.89)

Propylene
glycerol 0.30 (1.30) −0.08 (0.70) 0.65 (0.42–0.82) 0.31 (0.98) −0.25 (1.02) 0.65 (0.40–0.84)

Isopropyl alcohol −0.21 (1.04) 0.44 (0.83) 0.69 (0.47–0.87) −0.06 (0.88) 0.24 (1.22) 0.62 (0.38–0.82)

Valeric acid −0.27 (1.28) 0.32 (0.74) 0.36 (0.19–0.58) −0.13 (0.87) −0.03 (1.21) 0.67 (0.47–0.88)

Glycerol 0.07 (1.09) −0.24 (0.85) 0.62 (0.42–0.82) 0.08 (0.97) −0.15 (1.02) 0.61 (0.39–0.81)

Values are given as mean (standard deviation) or AUROC c value (95%CI); LOLA: patients with LOLA intake;
noLOLA: patients without LOLA intake; AUROC: area under the receiver operator characteristics curve; 95%CI:
95% confidence interval; biomarkers with significant predictive power are printed in bold.
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3.3.3. Serum Metabolome

Serum metabolome datasets with 42 compounds of 27 patients were available. Biomarker
identification selected several biomarkers that indicated hepatic encephalopathy and LOLA
adherence. Biomarkers that showed significant predictive power in the initial analysis and
the sensitivity analysis are listed in Table 5. As expected, the presence of ornithine in the
serum of LOLA patients dominates the biomarker selection and thereby validates drug
adherence and absorption of oral LOLA.

Table 5. Predictive power of serum metabolite ratios that distinguish between patients with and
without LOLA intake in both the initial analysis (groups matched for liver disease severity) and the
sensitivity analysis (groups matched for liver disease severity, etiology and PPI use).

Initial Analysis Sensitivity Analysis

Biomarkers/Ratios LOLA noLOLA AUROC
(95%CI) LOLA noLOLA AUROC

(95%CI)

Ornithine 0.53 (1.06) –0.42 (0.85) 0.76 (0.57–0.93) 0.54 (1.04) –0.38 (0.87) 0.78 (0.59–0.93)

Isoleucine −0.54 (1.23) 0.37 (0.59) 0.79 (0.57–0.93) –0.51 (0.98) 0.46 (0.88) 0.76 (0.54–0.92)

Leucine –0.37 (1.24) 0.36 (0.57) 0.74 (0.52–0.92) –0.35 (1.07) 0.54 (0.7) 0.73 (0.50–0.90)

Isoleucine to
ornithine –0.7 (0.9) 0.52 (0.77) 0.88 (0.70–0.97) –0.8 (0.94) 0.62 (0.62) 0.91 (0.77–1.00)

Acetone to
ornithine –0.58 (0.97) 0.51 (0.83) 0.83 (0.63–0.95) –0.52 (0.99) 0.37 (0.76) 0.75 (0.54–0.92)

Lysine to
ornithine –0.53 (1.04) 0.46 (0.71) 0.82 (0.63–0.96) –0.54 (1.10) 0.53 (0.72) 0.82 (0.64–0.98)

Leucine to
ornithine –0.55 (1.16) 0.46 (0.61) 0.84 (0.67–0.90) –0.58 (1.16) 0.56 (0.64) 0.87 (0.70–0.98)

Ethanol to
ornithine –0.54 (0.95) 0.49 (0.87) 0.81 (0.61–0.95) –0.52 (1.03) 0.46 (0.84) 0.80 (0.60–0.95)

Ornithine to
threonine 0.55 (1.05) –0.52 (0.77) 0.83 (0.66–0.96) 0.64 (0.93) –0.49 (0.72) 0.90 (0.75–0.98)

Aspartic acid
to ornithine –0.62 (1.1) 0.46 (0.71) 0.82 (0.62–0.97) –0.6 (1.07) 0.38 (0.60) 0.79 (0.58–0.93)

Ornithine to
serine 0.56 (1.08) –0.5 (0.74) 0.82 (0.61–0.95) 0.59 (0.95) –0.34 (0.63) 0.86 (0.65–0.97)

Valine to
ornithine –0.57 (1.14) 0.41 (0.66) 0.78 (0.60–0.93) –0.62 (1.19) 0.52 (0.59) 0.85 (0.66–0.99)

Arginine to
ornithine –0.49 (1.07) 0.41 (0.73) 0.78 (0.57–0.92) –0.52 (1.06) 0.37 (0.63) 0.82 (0.64–0.97)

Acetone –0.27 (0.75) 0.37 (1.05) 0.70 (0.46–0.88) 0.05 (0.74) 0.01 (1.00) 0.54 (0.31–0.75)

Lysine –0.18 (0.63) 0.25 (0.90) 0.72 (0.48–0.90) –0.07 (0.53) 0.38 (0.90) 0.72 (0.50–0.89)

Ethanol –0.05 (0.85) 0.27 (0.88) 0.61 (0.41–0.81) 0.21 (0.74) 0.13 (1.04) 0.50 (0.29–0.74)

Threonine –0.07 (1.11) 0.22 (0.92) 0.63 (0.36–0.83) –0.30 (0.92) 0.28 (0.85) 0.74 (0.51–0.89)

Aspartic acid –0.29 (0.80) 0.17 (1.19) 0.56 (0.34–0.76) –0.25 (0.76) 0.09 (1.21) 0.55 (0.34–0.75)

Serine 0.03 (1.12) 0.12 (0.83) 0.46 (0.23–0.68) –0.17 (0.90) –0.07 (0.86) 0.62 (0.41–0.82)

Valine –0.44 (1.23) 0.26 (0.62) 0.70 (0.49–0.90) –0.40 (1.05) 0.43 (0.92) 0.73 (0.52–0.90)

Arginine –0.11 (1.02) 0.15 (0.42) 0.56 (0.34–0.78) –0.15 (0.86) 0.10 (0.88) 0.67 (0.42–0.86)

Values are given as mean (standard deviation) or AUROC c value (95%CI); LOLA: patients with LOLA intake;
noLOLA: patients without LOLA intake; AUROC: area under the receiver operator characteristics curve; 95%CI:
95% confidence interval; biomarkers with significant predictive power are printed in bold.
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3.4. Serum- and Fecal-Targeted Metabolomics and Clinical Characteristics

Liver parameters ALT, AST, AP, GGT, albumin as well as total protein, bilirubin, and
PZINR, were well balanced between the groups. Patients with LOLA intake showed
significantly lower fecal zonulin levels, decreased insulin-like growth factor and slower
gait speed compared to patients without LOLA intake. All other tested biomarkers did not
show significant differences. Details are given in Table 6.

Table 6. Liver disease parameters, gut inflammation and permeability markers, indicators of sarcope-
nia and neutrophil function in the initial analysis (groups matched for liver disease severity). Values
are given in mean (standard deviation). Significant differences are marked in bold print.

Parameter LOLA (n = 15) noLOLA (n = 15) p Value

Alanine aminotransferase (U/L) 38.8 (22.8) 39.5 (15.6) 0.6

Aspartate aminotransferase (U/L) 67.7 (41.9) 66.2 (35) 0.9

Alkaline phosphatase (U/L) 137.7 (59.2) 125.7 (68.8) 0.3

Gamma-glutamyltransferase (U/L) 134.5 (92.8) 121.9 (105.3) 0.6

Albumin (g/dL) 3.2 (0.5) 3.3 (0.5) 0.4

Bilirubin (mg/dL) 2.3 (1.8) 2.4 (1.9) >0.99

Prothrombin time international normalized ratio 1.4 (0.2) 1.3 (0.2) 0.2

Total protein (g/dL) 6.8 (0.9) 7 (0.9) 0.3

Fecal calprotectin (ng/mL) 101.4 (103.9) 80.3 (64.6) 0.7

Fecal zonulin (ng/mL) 161.2 (219.9) 205.2 (203.5) 0.036

Diamine oxidase (U/mL) 24 (11.9) 23.3 (15.3) 0.6

LPS binding protein (µg/mL) 16.7 (7) 20.4 (9.8) 0.4

C-reactive protein (mg/L) 10.3 (13.6) 8.1 (15.2) 0.4

soluble Cluster of Differentiation 14 (µg/mL) 1.8 (0.4) 2 (0.8) 0.7

Fibroblast growth factor (ng/mL) 0.3 (0.6) 0.3 (0.2) 0.3

Irisin (µg/mL) 2 (1.5) 1.9 (1) 0.8

Myostatin (ng/mL) 44 (34.1) 38.6 (15.2) 0.8

Insulin-like growth factor 1 (ng/mL) 48.3 (28.1) 75.5 (38.4) 0.029

Chair rise test (s) 25 (15.9) 16.7 (3.8) 0.1

Gait speed (m/s) 0.8 (0.3) 1.1 (0.3) 0.049

Midarm muscle circumference (mm) 256.6 (63.7) 260.4 (48.1) 0.7

Hand grip strength (kg) 30.6 (10.6) 28.8 (5.8) 0.5

Body mass index (kg/m2) 27.5 (6) 28.5 (5.8) 0.6

Resting burst of neutrophils (% of neutrophils) 2.4 (0.9) 2.6 (1.9) 0.7

Resting burst of neutrophils (GMFI) 174 (102.9) 239.8 (223.3) 0.4

Neutrophil priming (% of neutrophils) 3.2 (1.4) 2.7 (1.2) 0.5

Neutrophil priming (GMFI) 148.7 (58.7) 194.8 (99.1) 0.1

ROS production after E. coli stimulation (% of
neutrophils) 96.7 (5.2) 96.8 (4.5) 0.6

ROS production after E. coli stimulation (GMFI) 1034.2 (547.1) 753.7 (340.1) 0.1

LOLA: patients with LOLA intake; noLOLA: patients without LOLA intake; LPS: lipopolysaccharide; GMFI:
geometric mean of fluorescence intensity.
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In the sensitivity analysis, none of the above-described differences could be repro-
duced. Only the reduced IGF-1 levels showed a similar but not statistically significant
difference between groups. Details are given in Supplementary Table S1. The decreased
IGF-1 levels might be associated with the higher rate of sarcopenic patients in the LOLA
group. Although the difference was not statistically significant, there was a slight overrep-
resentation of sarcopenic patients in the LOLA group. Of the fifteen patients in the group,
nine were sarcopenic, three pre-sarcopenia and three non-sarcopenic. In the control group,
however, only six patients were sarcopenic, three pre-sarcopenic and six non-sarcopenic.
We therefore matched a third control dataset to the LOLA patients based on sarcopenia
diagnosis only for this analysis (irrespective of liver disease) that still showed significantly
higher levels of IGF-1 compared to the LOLA group (93.1 ± 51.1 versus 48.3 ± 28.1 ng/mL,
p = 0.01), indicating the close connection of hepatic encephalopathy to muscle metabolism
in cirrhosis.

4. Discussion

Our retrospective analysis of 15 patients with oral LOLA intake for at least one
month and propensity-score-matched controls showed that patients with LOLA intake
show a higher abundance of the genera Flavonifractor and Oscillospira in the intestinal
microbiome, a reduced ratio of ethanol to acetic acid in urine, an increased ratio of propylene
glycol to isopropyl alcohol in stool, increased ratio of propylene glycol to valeric acid in
stool, decreased ratio of valeric acid to glycerol in stool, increased levels of ornithine and
decreased levels of leucine and isoleucine as well as lower levels of IGF-1 in serum.

Flavonifractor and Oscillospira are rather closely related bacterial taxa in the human
intestinal microbiome. According to the Silva database, both genera are classified as
Firmicutes (phylum), Clostridia (Class), Oscillospirales (order), Oscillospiraceae (family).
Flavonifractor that can be induced by green tea consumption and can exert anti-inflammatory
properties in murine DSS colitis models [25]. In humans, the role of the genus Flavonifractor
is still undetermined. Its abundance was previously associated with the consumption of
Mediterranean diet [26], which is generally regarded as beneficial for human health. In
non-alcoholic liver disease, Flavonifractor consistently showed low abundance compared to
healthy controls [27]. In addition, according to the GMrepo database, Flavonifractor is more
abundant in healthy volunteers than in cirrhosis, non-alcoholic fatty liver disease, obe-
sity/adiposity, and diabetes mellitus (topic-related selection) [28]. Conversely, Flavonifractor
has been associated with the microbiome of colorectal cancer patients in India [29]. Os-
cillospira has previously been associated with low BMI, constipation, longer sleep time,
higher HDL levels, lower uric acid and triglyceride levels [30,31]. In a previous study,
we showed that lower HDL levels are predictive for the development of complications in
patients with compensated cirrhosis and predictive for survival in cirrhotic patients with
acute decompensation [32,33]. Taken together, the alterations in the microbiome of LOLA
patients could generally be regarded as beneficial for patients with liver disease. However,
due to the retrospective design and the low sample size, confounding factors cannot be
ruled out, e.g., although not statistically significant, patients in the LOLA group more often
also received rifaximin.

In the urine metabolome, patients in the LOLA group showed lower ethanol to acetic
acid ratio. The ethanol to acetic acid ratio might be an indicator for the ethanol elimination
process. When alcohol is consumed, it is converted to acetaldehyde—a toxic intermediate—
and then quickly reduced to acetate. A reduced ratio of ethanol to acetic acid might indicate
a more advanced state in the ethanol elimination process, either because of an earlier
consumption time or accelerated conversion. Both patient groups reported similar amounts
of alcohol intake and did not show any difference in serum or urine alcohol levels. An
earlier starting point would therefore necessitate a higher level of intoxication in the LOLA
group, which was not reported by the patients. However, in patients with present or past
alcohol use disorder, alcohol consumption is notoriously hard to approximate, since some
patients tend to embellish their consumption [34]. Appropriately powered and designed
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studies are necessary to properly explain the reduced ethanol to acetic acid ratio in the
urine metabolome of LOLA patients and to further explore the possible effects of LOLA
on the ethanol elimination rate in cirrhotic patients. In the stool microbiome, the most
prominent biomarker was the propylene glycol to isopropyl alcohol ratio. Propylene glycol
is naturally occurring in mushrooms and sesame seed but is also ubiquitously used in the
cosmetic, food and drug industries. Isopropyl alcohol is a common substance in various
nutritious items, including apples and onions, which are a crucial part of the local cuisine
of the patients´ catchment area. The relevance in health and disease is undetermined
at the moment. An increase in this ratio in LOLA patients might indicate an increase in
therapeutics and decrease in fresh food consumption. However, this exploratory study is
not designed to answer this question. Valeric acid is a bacterial metabolite, among others
produced by Flavonifractor plautii as a product of flavonoid degradation [35]. This short
chain fatty acid can also be produced by odd-chain elongation of ethanol and propionate
or by hydrolysis of valerate esters used as fruity tasting food additives [36]. We observed
low levels of valeric acid to glycerol ratio in the stool metabolome of LOLA patients,
which is consistent with previous observations of low valerate levels in patients with
recurring hepatic encephalopathy and might therefore reflect the disease rather than a
therapy-related change in the metabolome [37]. Similarly, serum marker reflect a typical
decrease in branched chained amino acids in patients with hepatic encephalopathy [38].
The lack of isoleucine probably would have been even more pronounced if the patients were
not treated with LOLA, since LOLA supposedly increases isoleucine levels in serum [39].
Moreover, the increased levels of ornithine confirm therapy adherence of the patients and
adequate reabsorption of oral LOLA in these patients [40].

IGF-1 was consistently lower in patients with LOLA, although we corrected for liver
disease and sarcopenia in two separate matched cohort. In this pilot study, we could not
discern the reason for this decrease nor could we find probable mechanistic indicators.
It is likely that the pathophysiological changes in patients with hepatic encephalopathy,
especially the high levels of ammonia, negatively influence muscle metabolism as it was pre-
viously shown in pufferfish and suggested in cirrhosis and hepatic encephalopathy [41,42].

In conclusion, patients with LOLA therapy for at least one month showed a potentially
beneficial increase in Flavonifractor and Oscillospira in their microbiome compared to patients
without LOLA therapy. Changes in the stool and serum metabolome mainly reflected
pathophysiological changes of hepatic encephalopathy and identified possible therapeutic
targets, such as valeric acid that is reduced in patients with hepatic encephalopathy but
whose microbial production might be elevated by LOLA-associated changes in Flavonifractor
abundance. Lastly, low levels of IGF-1 demonstrated a link between hepatic encephalopathy
and muscle metabolism, a potential new avenue for LOLA use in liver cirrhotic patients.

Supplementary Materials: The following supporting information can be downloaded at: https:
//www.mdpi.com/article/10.3390/nu14040748/s1, Supplementary Methods and Results. Supple-
mentary Figure S1: Relative abundance of Oscillospira and Flavonifractor in patients with and without
LOLA use and no concomitant lactulose use (A-B), no concomitant PPI use (C-D) and no concomitant
rifaximin use (E-F). Supplementary Figure S2: Sensitivity analysis A) Genera associated with LOLA
therapy (orange bars—LOLA) or controls (green bars—noLOLA) determined by LDA Effect Size
(LEfSe) in the sensitivity analysis. (B-C) Relative abundances of genera Flavonifractor and Oscillospira
in patient with and without LOLA intake. Supplementary Figure S3. (A+B) Similarity of urine
metabolome in patients with and without LOLA. Scores plot of principal component analysis based
on the urine metabolome in the initial analysis (A) and the sensitivity analysis (B). (C+D) Similar-
ity of stool metabolome in patients with and without LOLA. Scores plot of principal component
analysis based on the stool metabolome in the initial analysis (C) and the sensitivity analysis (D).
(E+F) Similarity of serum metabolome in patients with and without LOLA. Scores plot of principal
component analysis based on the serum metabolome in the initial analysis (E) and the sensitivity
analysis (F). Supplementary Table S1: Targeted metabolomics including liver disease parameters, gut
inflammation and permeability markers, indicators of sarcopenia and neutrophil function.
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Metabolomic Profiles of Mouse Tissues Reveal an Interplay between Aging and Energy Metabolism. Metabolites 2022, 12, 17.
[CrossRef]

20. Pang, Z.; Chong, J.; Zhou, G.; de Lima Morais, D.A.; Chang, L.; Barrette, M.; Gauthier, C.; Jacques, P.E.; Li, S.; Xia, J. MetaboAnalyst
5.0: Narrowing the gap between raw spectra and functional insights. Nucleic Acids Res. 2021, 49, W388–W396. [CrossRef]

21. Wickham, H.; Averick, M.; Bryan, J.; Chang, W.; McGowan, L.; François, R.; Grolemund, G.; Hayes, A.; Henry, L.; Hester, J.; et al.
Welcome to the tidyverse. J. Open Source Softw. 2019, 4, 1686. [CrossRef]

22. Wickham, H.; Bryan, J. Readxl: Read Excel Files. R Package Version 1.3.1. 2019. Available online: https://CRAN.R-project.org/
package=readxl (accessed on 21 June 2021).

23. Ooms, J. writexl: Export Data Frames to Excel ‘xlsx’ Format. R Package Version 1.3.1. 2020. Available online: https://CRAN.R-
project.org/package=writexl (accessed on 21 June 2021).

24. Alboukadel, K. ggpubr: ‘ggplot2’ Based Publication Ready Plots. R Package Version 0.4.0. 2020. Available online: https:
//CRAN.R-project.org/package=ggpubr (accessed on 21 June 2021).

25. Mikami, A.; Ogita, T.; Namai, F.; Shigemori, S.; Sato, T.; Shimosato, T. Oral Administration of Flavonifractor plautii, a Bacteria
Increased with Green Tea Consumption, Promotes Recovery From Acute Colitis in Mice via Suppression of IL-17. Front. Nutr.
2020, 7, 610946. [CrossRef]

26. Rosés, C.; Cuevas-Sierra, A.; Quintana, S.; Riezu-Boj, J.I.; Martínez, J.A.; Milagro, F.I.; Barceló, A. Gut Microbiota Bacterial Species
Associated with Mediterranean Diet-Related Food Groups in a Northern Spanish Population. Nutrients 2021, 13, 636. [CrossRef]
[PubMed]

27. Pan, X.; Wen, S.W.; Kaminga, A.C.; Liu, A. Gut metabolites and inflammation factors in non-alcoholic fatty liver disease: A
systematic review and meta-analysis. Sci. Rep. 2020, 10, 8848. [CrossRef] [PubMed]

28. Wu, S.; Sun, C.; Li, Y.; Wang, T.; Jia, L.; Lai, S.; Yang, Y.; Luo, P.; Dai, D.; Yang, Y.Q.; et al. GMrepo: A database of curated and
consistently annotated human gut metagenomes. Nucleic Acids Res. 2020, 48, D545–D553. [CrossRef]

29. Gupta, A.; Dhakan, D.B.; Maji, A.; Saxena, R.; Vishnu Prasoodanan, K.V.; Mahajan, S.; Pulikkan, J.; Kurian, J.; Gomez, A.M.;
Scaria, J.; et al. Association of Flavonifractor plautii, a Flavonoid-Degrading Bacterium, with the Gut Microbiome of Colorectal
Cancer Patients in India. mSystems 2019, 4, e00438-19. [CrossRef] [PubMed]

30. Chen, Y.R.; Zheng, H.M.; Zhang, G.X.; Chen, F.L.; Chen, L.D.; Yang, Z.C. High Oscillospira abundance indicates constipation and
low BMI in the Guangdong Gut Microbiome Project. Sci. Rep. 2020, 10, 9364. [CrossRef] [PubMed]

31. Konikoff, T.; Gophna, U. Oscillospira: A Central, Enigmatic Component of the Human Gut Microbiota. Trends Microbiol. 2016, 24,
523–524. [CrossRef] [PubMed]

32. Trieb, M.; Rainer, F.; Stadlbauer, V.; Douschan, P.; Horvath, A.; Binder, L.; Trakaki, A.; Knuplez, E.; Scharnagl, H.;
Stojakovic, T.; et al. HDL-related biomarkers are robust predictors of survival in patients with chronic liver failure. J.
Hepatol. 2020, 73, 113–120. [CrossRef]

33. Trieb, M.; Horvath, A.; Birner-Gruenberger, R.; Spindelboeck, W.; Stadlbauer, V.; Taschler, U.; Curcic, S.; Stauber, R.E.; Holzer, M.;
Pasterk, L.; et al. Liver disease alters high-density lipoprotein composition, metabolism and function. Biochim. Biophys. Acta 2016,
1861, 630–638. [CrossRef]

34. Hempel, J.M.; Greif-Higer, G.; Kaufmann, T.; Beutel, M.E. Detection of alcohol consumption in patients with alcoholic liver
cirrhosis during the evaluation process for liver transplantation. Liver Transpl. 2012, 18, 1310–1315. [CrossRef]

35. Braune, A.; Blaut, M. Bacterial species involved in the conversion of dietary flavonoids in the human gut. Gut Microbes 2016, 7,
216–234. [CrossRef]

36. Candry, P.; Ulcar, B.; Petrognani, C.; Rabaey, K.; Ganigué, R. Ethanol:propionate ratio drives product selectivity in odd-chain
elongation with Clostridium kluyveri and mixed communities. Bioresour. Technol. 2020, 313, 123651. [CrossRef] [PubMed]

37. Bloom, P.P.; Luévano, J.M., Jr.; Miller, K.J.; Chung, R.T. Deep stool microbiome analysis in cirrhosis reveals an association between
short-chain fatty acids and hepatic encephalopathy. Ann. Hepatol. 2021, 25, 100333. [CrossRef] [PubMed]

38. Holecek, M. Ammonia and amino acid profiles in liver cirrhosis: Effects of variables leading to hepatic encephalopathy. Nutrition
2015, 31, 14–20. [CrossRef] [PubMed]

39. Rose, C.; Michalak, A.; Rao, K.V.; Quack, G.; Kircheis, G.; Butterworth, R.F. L-ornithine-L-aspartate lowers plasma and cere-
brospinal fluid ammonia and prevents brain edema in rats with acute liver failure. Hepatology 1999, 30, 636–640. [CrossRef]

http://doi.org/10.1002/cpbi.100
http://www.ncbi.nlm.nih.gov/pubmed/32343490
http://doi.org/10.1093/bioinformatics/btw725
http://www.ncbi.nlm.nih.gov/pubmed/28025202
http://doi.org/10.1038/s41598-019-42937-w
http://doi.org/10.3390/metabo12010017
http://doi.org/10.1093/nar/gkab382
http://doi.org/10.21105/joss.01686
https://CRAN.R-project.org/package=readxl
https://CRAN.R-project.org/package=readxl
https://CRAN.R-project.org/package=writexl
https://CRAN.R-project.org/package=writexl
https://CRAN.R-project.org/package=ggpubr
https://CRAN.R-project.org/package=ggpubr
http://doi.org/10.3389/fnut.2020.610946
http://doi.org/10.3390/nu13020636
http://www.ncbi.nlm.nih.gov/pubmed/33669303
http://doi.org/10.1038/s41598-020-65051-8
http://www.ncbi.nlm.nih.gov/pubmed/32483129
http://doi.org/10.1093/nar/gkz764
http://doi.org/10.1128/mSystems.00438-19
http://www.ncbi.nlm.nih.gov/pubmed/31719139
http://doi.org/10.1038/s41598-020-66369-z
http://www.ncbi.nlm.nih.gov/pubmed/32518316
http://doi.org/10.1016/j.tim.2016.02.015
http://www.ncbi.nlm.nih.gov/pubmed/26996766
http://doi.org/10.1016/j.jhep.2020.01.026
http://doi.org/10.1016/j.bbalip.2016.04.013
http://doi.org/10.1002/lt.23468
http://doi.org/10.1080/19490976.2016.1158395
http://doi.org/10.1016/j.biortech.2020.123651
http://www.ncbi.nlm.nih.gov/pubmed/32540193
http://doi.org/10.1016/j.aohep.2021.100333
http://www.ncbi.nlm.nih.gov/pubmed/33621653
http://doi.org/10.1016/j.nut.2014.03.016
http://www.ncbi.nlm.nih.gov/pubmed/25220875
http://doi.org/10.1002/hep.510300311


Nutrients 2022, 14, 748 14 of 14

40. Kowalski, P.; Bieniecki, M. Pharmacokinetics and bioavailability study of L-ornithine-L-aspartate in healthy volunteers–a
comparative study of two oral formulations. J. Pharm. Biomed. Anal. 2006, 41, 1061–1064. [CrossRef]

41. Butterworth, R.F. L-Ornithine L-Aspartate for the Treatment of Sarcopenia in Chronic Liver Disease: The Taming of a Vicious
Cycle. Can. J. Gastroenterol. Hepatol. 2019, 2019, 8182195. [CrossRef]

42. Cheng, C.H.; Yang, F.F.; Liao, S.A.; Miao, Y.T.; Ye, C.X.; Wang, A.L. Effect of acute ammonia exposure on expression of GH/IGF
axis genes GHR1, GHR2 and IGF-1 in pufferfish (Takifugu obscurus). Fish. Physiol. Biochem. 2015, 41, 495–507. [CrossRef]

http://doi.org/10.1016/j.jpba.2006.01.049
http://doi.org/10.1155/2019/8182195
http://doi.org/10.1007/s10695-015-0025-1

	Introduction 
	Materials and Methods 
	Results 
	Patient Characteristics 
	Association of LOLA Intake with Microbiome Composition 
	Metabolomic Analysis of Urine, Stool and Serum Samples 
	Urine Metabolome 
	Stool Metabolome 
	Serum Metabolome 

	Serum- and Fecal-Targeted Metabolomics and Clinical Characteristics 

	Discussion 
	References

