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A B S T R A C T

Attention-deficit/hyperactivity disorder (ADHD) is a highly prevalent and heterogeneous neurodevelopmental
disorder, which is diagnosed using subjective symptom reports. Machine learning classifiers have been utilized
to assist in the development of neuroimaging-based biomarkers for objective diagnosis of ADHD. However,
existing basic model-based studies in ADHD report suboptimal classification performances and inconclusive
results, mainly due to the limited flexibility for each type of basic classifier to appropriately handle multi-
dimensional source features with varying properties. This study applied ensemble learning techniques (ELTs), a
meta-algorithm that combine several basic machine learning models into one predictive model in order to de-
crease variance, bias, or improve predictions, in multimodal neuroimaging data collected from 72 young adults,
including 36 probands (18 remitters and 18 persisters of childhood ADHD) and 36 group-matched controls. All
currently available optimization strategies for ELTs (i.e., voting, bagging, boosting and stacking techniques)
were tested in a pool of semifinal classification results generated by seven basic classifiers. The high-dimensional
neuroimaging features for classification included regional cortical gray matter (GM) thickness and surface area,
GM volume of subcortical structures, volume and fractional anisotropy of major white matter fiber tracts, pair-
wise regional connectivity and global/nodal topological properties of the functional brain network for cue-
evoked attention process. As a result, the bagging-based ELT with the base model of support vector machine
achieved the best results, with significant improvement of the area under the receiver of operating characteristic
curve (0.89 for ADHD vs. controls and 0.9 for ADHD persisters vs. remitters). Features of nodal efficiency in right
inferior frontal gyrus, right middle frontal (MFG)-inferior parietal (IPL) functional connectivity, and right
amygdala volume significantly contributed to accurate discrimination between ADHD probands and controls;
higher nodal efficiency of right MFG greatly contributed to inattentive and hyperactive/impulsive symptom
remission, while higher right MFG-IPL functional connectivity strongly linked to symptom persistence in adults
with childhood ADHD. Considering their improved robustness than the commonly implemented basic classifiers,
findings suggest that ELTs may have the potential to identify more reliable neurobiological markers for neu-
rodevelopmental disorders.

1. Introduction

Attention-deficit/hyperactivity disorder (ADHD) is a highly pre-
valent heterogeneous neurodevelopmental disorder. Diagnostic stan-
dards for ADHD are clinical symptom-based, and rely primarily on
subjective reports collected from multiple sources, which often cause
biases and inconsistencies of the diagnoses.

Multimodal neuroimaging techniques have been widely im-
plemented to investigate the neural substrates of ADHD. A number of

structural MRI and Diffusion Tensor Imaging (DTI) studies have sug-
gested that gray- and/or white-matter (GM/WM) structural under-
development in frontal lobe, thalamus, and striatum significantly con-
tribute to the emergence of ADHD during childhood (Ellison-
Wright et al., 2008; Xia et al., 2012). Furthermore, functional aberra-
tions in the fronto-thalamo/fronto-striatal circuitries have also been
frequently reported to link with symptom onset in children with ADHD.
For instance, altered task-driven or spontaneous neural activity in
prefrontal cortex, thalamus, and striatum, and their functional
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connectivity, have been found to be significantly associated with in-
creased inattentive and/or hyperactive-impulsive symptoms in children
with ADHD (Bush et al., 2005; Cubillo et al., 2012; Durston, 2003;
Li et al., 2012; Rubia et al., 1999; Yang et al., 2011). Increasingly,
neuroimaging studies have found that more optimal structural/func-
tional development in fronto-subcortical pathways may contribute to
symptom reduction and remission of ADHD in adulthood. For instance,
a longitudinal study found that persistently decreased GM thickness in
dorsolateral prefrontal, middle frontal, and inferior parietal regions,
and reduced WM fractional anisotropy (FA) in left uncinate and inferior
frontal-occipital fasciculi were associated with a greater number of
ADHD symptoms persisting into adulthood (Shaw et al., 2013, 2015).
Proal et al. (2011) reported that adults with persistent ADHD had
thinner cortical thickness relative to the remitted ADHD in prefrontal
region. In addition, greater prefronto–thalamo functional connectivity
during a cue-evoked attention task (Clerkin et al., 2013), and greater
within-frontal functional connectivity during resting-state
(Francx et al., 2015), have been observed in adult ADHD remitters re-
lative to the persisters. However, neuroimaging findings are widely
inconsistent, partially due to the sample biases, differences of the im-
plemented imaging and analytic techniques, and the limitations of the
traditional parametrical models for group comparisons. Indeed, tradi-
tional statistical methods (e.g. t-tests, analysis of variance (ANOVA),
correlation, etc.) estimate group differences only within a voxel or re-
gion of interest (ROI) at a time without having the capacity to explore
how ROIs interact in linear and/or non-linear ways, as they quickly
become overburdened when attempting to combine predictors and their
interactions from high dimensional imaging data sets (Sun et al., 2009).

Compared to traditional parametrical models, multivariate machine
learning techniques are able to leverage high dimensional information
simultaneously to understand how variables jointly distinguish between
groups (Greenstein et al., 2012). Support vector machine (SVM) is the
most frequently applied machine learning classifier in neuroimaging
data from children with ADHD, which has been aided by recursive
feature elimination (RFE), temporal averaging, principle component
analysis (PCA), fast Fourier transform (FFT), independent component
analysis (ICA), 10-fold cross-validation (CV), hold-out, and leave-one-
out cross-validation (LOOCV) techniques, to distinguish children with
ADHD from normal controls (Brown et al., 2012; Chang et al., 2012;
Cheng et al., 2012; Colby et al., 2012; Du et al., 2016; Fair et al., 2012;
Iannaccone et al., 2015; Johnston et al., 2014; Sen et al., 2018;
Yasumura et al., 2017). The commonly reported most important fea-
tures (according to importance score) that contribute to successful
group discrimination included functional connectivity of bilateral tha-
lamus, functional connectivity, surface area, cortical curvature and/or
voxel intensity in frontal lobe, cingulate gyrus, temporal lobe, etc.
(Brown et al., 2012; Colby et al., 2012; Iannaccone et al., 2015). SVM
has also been applied to structural MRI and DTI data collected from
adults with ADHD and controls, which reported between-group differ-
ences in widespread GM and WM regions in cortices, thalamus, and
cerebellum (Chaim-Avancini et al., 2017). Neural network-based tech-
niques, including deep belief network, fully connected cascade artificial
neural network, convolutional neural network, extreme learning ma-
chine, and hierarchical extreme learning machine, have also been ap-
plied to structural MRI and resting-state functional MRI (fMRI) data in
children with ADHD and controls (Deshpande et al., 2015; Kuang and
He, 2014; Peng et al., 2013; Qureshi et al., 2016; 2017; Zou et al.,
2017). The most important group discrimination predictors identified
by these neural network studies included functional connectivity within
cerebellum, surface area, cortical thickness and/or folding indices of
frontal lobe, temporal lobe, occipital lobe and insula (Deshpande et al.,
2015; Peng et al., 2013; Qureshi et al., 2017). In addition, principle
component-based Fisher discriminative analysis (PC-FDA) (Zhu et al.,
2008), Gaussian process classifiers (GPC) (Hart et al., 2014; Lim et al.,
2013), and multiple kernel learning (Dai et al., 2012; Ghiassian et al.,
2016) have also been used in functional and structural MRI data to

discriminate children with ADHD from controls. Supplementary Table 1
provides more details of existing machine learning studies in ADHD.
These existing studies have either utilized features representing re-
gional/voxel brain properties collected from only single imaging
modality, or the combination of two modalities (mostly structural MRI
and resting-state fMRI) (Brown et al., 2012; Fair et al., 2012; Hart et al.,
2014; Iannaccone et al., 2015; Johnston et al., 2014), or reported poor
accuracy (Dai et al., 2012; Sen et al., 2018; Zou et al., 2017). Some
studies did not conduct the necessary step of estimating the most im-
portant features that contribute to accurate classifications (Chang et al.,
2012; Dai et al., 2012; Kuang and He, 2014; Qureshi et al., 2016;
Sen et al., 2018; Tenev et al., 2014; Zou et al., 2017). Systems-level
functional and structural features, such as global and regional topolo-
gical properties from functional brain networks during cognitive pro-
cesses and WM tract properties have not been considered. In addition,
relations between the suggested predictors from imaging features and
clinical/behavioral symptoms in samples of ADHD patients, which can
provide important clinical context, have not been studied.

Ensemble learning techniques (ELTs), which integrate results from
multiple basic classifiers by using voting (Lam and Suen, 1997;
Ruta and Gabrys, 2005), bagging (Breiman, 1996), stacking
(Wolpert, 1992), or boosting (Johnston et al., 2014; Schapire, 1990a;
Yoav Freund and Schapire, 1997) strategies, have been recently de-
veloped in the big data science field, to deal with complicated feature
variations, biases, and optimized prediction performances (Deng and
Platt, 2014; Wang et al., 2011). ELTs have been applied in three recent
studies to discriminate patients with ADHD from controls (Eloyan et al.,
2012; Tenev et al., 2014; Zhang-James et al., 2019). Eloyan et al.,
(2012) applied a voting-based ELT, along with hold-out technique for
CV, in structural MRI and resting-state fMRI data from children with
ADHD and controls, and reported an important group discrimination
predictor of dorsomedial-dorsolateral functional connectivity in the
motor network. Voting-based ELT has also been applied in electro-
encephalogram (EEG) data collected from adults with ADHD and con-
trols, without reporting the most important discrimination predicators
(Tenev et al., 2014). Very recently, Zhang-James et al. (2019) applied
ELTs in structural MRI data from patients with ADHD (both adults and
children) and controls, and suggested that GM volume of bilateral
caudate and thalamus and orbitofrontal surface area significantly con-
tribute to successful group discrimination. However, clarifications
about optimization strategies was lacking and low accuracy of dis-
criminations (<0.65) was reported.

The current study applied ELTs to structural MRI, DTI, and task-
based fMRI data collected from a sample of adults with childhood
ADHD who were clinically followed from ages 7–11 years and never-
ADHD controls who have been followed since adolescence. All currently
available optimization strategies (i.e., voting, bagging, boosting and
stacking techniques) were tested in a pool of semifinal classification
results generated by seven basic classifiers (including K-Nearest
Neighbors (KNN), SVM, logistic regression (LR), Naïve Bayes (NB),
linear discriminant analysis (LDA), random forest (RF), and multilayer
perceptron (MLP)). A nested CV including an inner LOOCV and an outer
5-fold CV were applied with grid search to tune the hyperparameters
and minimize the overfitting. The high-dimensional neuroimaging
features for classification included regional cortical GM thickness and
surface area, GM volume of subcortical structures estimated from
structural MRI data, volume and FA of major WM fiber tracts derived
from DTI data, the pair-wise regional connectivity and global/nodal
topological properties (i.e., global-, local-, and nodal-efficiency, etc.) of
the cue-evoked attention processing network computed from task-based
fMRI data. Based on findings from existing studies (Clerkin et al., 2013;
Francx et al., 2015; Luo et al., 2018; Proal et al., 2011; Shaw et al.,
2013, 2015), we hypothesized that structural and functional alterations
in frontal, parietal, and subcortical areas and their interactions would
significantly contribute to accurate discrimination of ADHD probands
(adults diagnosed with ADHD in childhood) from controls; while
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abnormal fronto-parietal hyper-communications in right hemisphere
would play an important role in inattentive and hyperactive/impulsive
symptom persistence in adults with childhood ADHD. Finally, we hy-
pothesized that classification performance parameters (accuracy, area
under the curve (AUC) of the receiver operating characteristics (ROC),
etc.) derived from ELT-based procedures would be superior to those of
basic model-based procedures.

2. Materials and methods

2.1. Participants

Seventy-two young adults [mean (SD) age 24.4 (2.1) years] who
provided good quality data from multimodal neuroimaging and clinical
assessments, participated in this study. There were 36 ADHD probands
diagnosed with ADHD combined-type (ADHD-C) in childhood and 36
group-matched comparison subjects with no history of ADHD. Among
the 36 ADHD probands, 18 were classified as ADHD remitters, who
were endorsed no more than 3 inattentive or 3 hyperactive/impulsive
symptoms in adulthood and had no more than 5 symptoms in total. The
other 18 probands were classified as ADHD persisters, endorsing at least
five inattentive and/or hyperactive/impulsive symptoms in their
adulthood and at least 3 symptoms in each domain.

Those with ADHD were recruited when they were 7–11 years-old
and subsequently clinically followed. Childhood diagnoses were based
on teacher ratings using the IOWA Conners’ Teachers Rating Scale
(Loney and Milich, 1982) and parent interview using the Diagnostic
Interview Schedule for Children version 2 (DISK-2) (Shaffer et al.,
1989). Exclusion criteria in childhood were chronic medical illness;
neurological disorder; diagnosis of schizophrenia, autism spectrum
disorder, or chronic tic disorder; Full Scale IQ < 70; and not speaking
English. The never-ADHD comparison group was recruited in adoles-
cence, as part of an adolescent follow-up of the ADHD sample, and
history of ADHD was ruled out using the ADHD module of the DISK-2,
the IOWA Conners, and the Schedule for Affective Disorders and Schi-
zophrenia for School-Age Children (K-SADS) (Kaufman et al., 1997),
which was administered to both the parent and adolescent. Adult psy-
chiatric status was assessed using the Structured Clinical Interview for
DSM-IV Axis I Disorders (First et al., 2002), supplemented by a semi-
structured interview for ADHD that was adapted from the K-SADS and
the Conners’ Adult ADHD Diagnostic Interview for DSM-IV
(Epstein et al., 2006). Raw scores of inattentive and hyperactive/im-
pulsive symptoms from the Conner's Adult Self-Rating Scale were nor-
malized into T scores based on DSM-IV standard, and were used as
dimensional measures for inattentive and hyperactive/impulsive be-
haviors. Exclusion criteria in adulthood were psychotropic medication
that could not be discontinued and conditions that would preclude MRI
(e.g., metal in body, pregnancy, too obese to fit in scanner). Clinical and
demographic information are listed in Table 1.

The study received Institutional Review Board approval at the
participating institutions. Participants provided signed informed con-
sent and were reimbursed for their time and travel expenses.

2.2. Multimodal neuroimaging data acquisition protocol

Multimodal neuroimaging data of each participant were collected
using the same 3.0T Siemens Allegra (Siemens, Erlangen, Germany)
whole body MRI scanner. High resolution 3-dimensional T1-weighted
structural MRI data was acquired using magnetization prepared rapid
gradient echo pulse sequence with TR=2050 ms, TE=4.38 ms, inver-
sion time (TI)=1.1 s, flip angle=8°, field of view (FOV)
=256 mm × 256 mm × 256 mm, voxel
size=0.94 mm × 0.94 mm × 1 mm. DTI data were collected using an
echo planar imaging (EPI) pulse sequence with a b-value = 1250 s/
mm2 along 12 independent non-collinear orientations, as well as one
reference volume without diffusion-weighting b = 0 s/mm2

(TR=5200 ms, TE=80 ms, flip angle=90°, FOV=128 mm × 128 mm,
voxel size=1.875 mm × 1.875 mm × 4 mm, matrix=128 × 96,
number of slices=63). FMRI data were acquired using a gradient-echo
EPI sequence with TR=2500 ms, TE=27 ms, flip angle=82°, ma-
trix=64 × 64, slice thickness=4 mm, 40 slices, in-plane resolu-
tion=3.75 mm2. Images were acquired with slices positioned parallel
to the anterior commissure-posterior commissure line. The total dura-
tion of fMRI data acquisition was 20 min, which contained 4 runs of a
cued attention task (CAT) with stimuli counter-balanced.

2.3. The cued attention task (CAT) for fMRI

The CAT was developed and described in detail in (Clerkin et al.,
2013, 2009; Luo et al., 2018). Briefly, it began and ended with a 30-
second fixation period. The task contained a series of 120 letters, in-
cluding 24 targets (“X”), 12 cues (“A”), and 84 non-cue letters (“B”
through “H”). For the 24 targets, half of them were preceded by a cue,
and the other half were preceded by a non-cue letter. Participants were
told that a cue (“A”) was always followed by the target letter (“X”), but
not all targets were preceded by a cue letter. The letters were presented
individually for 200 ms with a pseudorandom inter-stimulus interval
which ranged from 1550 to 2050 ms (mean=1800 ms/run). Partici-
pants were instructed to respond to each target as rapidly as possible
using their right index finger. Before entering the scanner, detailed
instructions and practice trials of the task were provided to each par-
ticipant to ensure satisfactory performance.

2.4. Multimodal imaging data processing for feature extractions

For each subject, the T1-weighted data was reconstructed into a 3-
dimensional cortical model for thickness and area estimations using
FreeSurfer v.5.3.0 (https://surfer.nmr.mgh.harvard.edu). Each volume
was first registered to the Talairach atlas. Intensity variations caused by
magnetic field in homogeneities were corrected and non-brain tissue
was removed. A cutting plane was used to separate the left and right
hemispheres and to remove the cerebellum and brainstem. Two mess
surfaces (mess of grids created using surface tessellation technique)
were generated between GM and WM (WM surface), as well as between
GM and cerebrospinal fluid (pial surface). The distance between the two
closest vertices of the WM and pial surfaces represented the cortical
thickness at that specific location. Cortical subregions were parcellated
based on the Desikan atlas. A total of 202 structural MRI features, in-
cluding regional cortical GM thickness, surface area, and GM volume of
subcortical structures were extracted from each subject.

The DTI data was corrected for eddy current-induced distortions due
to the changing gradient field directions. Head motion was corrected
with non-diffusion-weighted reference image (b0 image) using an af-
fine, 12 degrees of freedom registration. Then the FA value and prin-
ciple diffusion direction at each brain voxel were calculated. WM
probabilistic tractography between each pair of 18 ROIs (bilateral
thalami, putamen and caudate nuclei from striatum, hippocampus, and
frontal, parietal, occipital, temporal, and insular cortices based on the
Harvard-Oxford Cortical Atlases and Julich Histological Atlas) were
constructed using the FSL/BEDPOSTX tool. The multi-fiber probabilistic
connectivity-based method was applied to determine the number of
pathways between the seed and each of the target clusters, with the
default setting of parameters for the Markov Chain Monte Carlo esti-
mation of the probabilistic tractrography. At the end, a total of 120 DTI-
based features, including the volume and FA of cortico-cortical and
subcortico-cortical WM fiber tracts were extracted for each subject.

The fMRI data from each participant was preprocessed using
Statistical Parametric Mapping version 8 (SPM8, Wellcome Trust center
for Neuroimaging, London, United Kingdom; http://www.fil.ion.ucl.ac.
uk/spm/) implemented on a MATLAB platform. The preprocessing
procedures included slice timing correction, realignment, co-registra-
tion, segmentation, normalization, and spatial smoothing. The first-
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level analyses were conducted using general linear model (GLM) to
generate the activation map responding to the cues. The group average
activation maps for ADHD probands and controls were generated, re-
spectively. A total of 52 cortical and subcortical seed regions, which
was parceled according to the structural and functional connectivity-
based Brainnetome atlas, were determined based on the results of the
combination of the functional activation maps of the groups of ADHD
probands and controls (Fan et al., 2016). To construct the cue-evoked
attention processing network, the single-trial beta value series from the
48 cue-related events in the four runs were extracted. Among all the
voxels in each of the 52 node ROIs, the average beta value series was
calculated and used to create a 52 × 52 pair-wise Pearson correlation
matrix. Then the graph theoretic techniques (GTTs) were carried out.
More details of the fMRI data processing can be found in (Luo et al.,
2018). A total of 200 fMRI features, including the global- and local-
efficiency of the entire network, the nodal efficiency, degree, and be-
tweenness-centrality measures of the 52 nodes, as well as their pair-
wise functional connectivities, were generated for each subject.

2.5. Modeling of ensemble learning architecture (ELT)

Modeling of the ELTs for classifications between ADHD probands
and controls, as well as between ADHD persisters and remitters re-
spectively, is described in Fig. 1. Specifically, Part A of Fig. 1 presents
feature selection and preparation flow. In order to decrease the risk of
overfitting, two-sample t-tests were applied and a total of 20 neuroi-
maging features that showed the largest between group differences
were first selected from the 522 multimodal neuroimaging features
derived from structural MRI, DTI, and fMRI data. Then each value of
the 20 selected features was normalized by using a z-score transfor-
mation in the feature-specific space. The normalized 20 top-ranked
neuroimaging features were then entered to the training and validation
procedures (Part B of Fig. 1), which consisted of a nested CV (there
were two CV loops, including an outer 5-fold CV loop to split the data
into training set and validation set, and an inner loop to tune the hy-
perparameters for 7 basic models and 4 ELTs-based models using grid
search in combination with LOOCV). More specifically, the 20 neuroi-
maging features were split into a total of 5 stratified folds such that
each fold consisted of balanced 20% of the entire data. The five-fold CV
was performed by using these 5 stratified folds, where each trial

dedicated four folds for training data and the remaining one for vali-
dation. Then for each iteration in 5-fold CV, the corresponding training
set was sent into the LOOCV processing. In each iteration, one subject
was extracted from the training set to act as a validation data, and the
remaining subjects were trained to construct the models. According to
the classification performance of the validation data, the hyperpara-
meters for each model were tuned and the optimal hyperparameters
setup were selected using grid search. More details of the hyperpara-
meters are described in Table 2. We utilized the LOOCV to tune the
hyperparameters of 7 basic models, including KNN, SVM, LR, NB, LDA,
RF, and MLP. Based on the hyperparameters of basic models, we ap-
plied LOOCV to tune the hyperparameters of 4 ELTs-based models,
including max Voting, Bagging, AdaBoost, Stacking. As shown in Part C
of Fig. 1, during iterations of 5-fold CV outer loop, the performance of
each basic and ELTs-based models with the optimal hyperparameters
derived from LOOCV inner loop iterations was evaluated. The group
average of classification performance of each classifier derived from
each iteration of 5-fold CV was generated. The 7 basic and 4 ELTs-based
models according to the group average value of AUC of the ROC from
iterations of 5-fold CV outer loop. The basic and ELTs-based models
with the highest average AUC were selected as optimal classifiers.
Based on the types of ELT-based models we evaluated and selected, the
importance score corresponding each feature was then calculated using
the ELT-based model and the corresponding basic models.

We also applied unsupervised learning (i.e. the hierarchical clus-
tering) in our dataset. The hyperparameters, including the metric used
to compute the linkage (affinity), the linkage criterion used to de-
termine which distance between sets of observation (linkage) were also
tuned by using grid search. Then the model with best classification
performance (i.e. accuracy) was selected. All the procedures were
conducted by in-house codes developed in Python 3.7.

2.6. Regression models

Following the classification procedures, we constructed the regres-
sion models to identify the relations between the neuroimaging features
and the clinical inattentive and hyperactive/impulsive symptom T-
scores. Based on the ELT-based classification results, the top three
neuroimaging features were selected based on the weight of each fea-
ture in the optimal discriminators between ADHD and normal controls,

Table 1
Demographic and clinical characteristics in groups of controls and ADHD probands (and further in the sub-groups of remitters and persisters of the ADHD probands).

Controls (N = 36) ADHD (N = 36) Remitted (N = 18) Persistent (N = 18)
Mean (SD) Mean (SD) p Mean (SD) Mean (SD) p

Age 24.3 (2.3) 24.66 (2.0) 0.48 24.79 (2.2) 24.52 (2.0) 0.7
Full-scale IQ 103.83(15.4) 97.96 (14.1) 0.1 99.22 (14.9) 96.71 (13.6) 0.6
Conners’ Adult ADHD Rating Scale (T score)
Inattentive 45.75 (8.8) 56.5 (13.2) <0.001 49.83 (10.9) 63.17 (12.0) 0.001
Hyperactive/impulsive 42.97 (6.2) 53.64 (12.9) <0.001 46.17 (9.0) 61.11 (12.0) <0.001
ADHD Total 43.89 (8.2) 56.5 (14.7) <0.001 42.61 (7.5) 54.33 (8.8) <0.001
ADHD semistructured interview (number of symptoms) 0.79 (1.6) 6.17 (5.2) <0.001 2.64 (2.0) 10.24 (3.6) <0.01

N (%) N (%) p N (%) N (%) p
Male 31 (86.1) 30 (83.3) 0.74 16 (88.9) 14 (77.8) 0.37
Right-handed 32 (88.9) 32 (88.9) 1 15 (83.3) 16 (88.9) 0.63
Race 0.17 0.59
Caucasian 15 (41.7) 21 (58.3) 9 (50.0) 12 (66.7)
African American 13 (36.1) 7 (19.4) 4 (22.2) 3 (16.7)
More than one race 6 (16.7) 8 (22.2) 5 (27.8) 3 (16.7)
Asian 2 (5.6) 0 (0.0) 0 (0.0) 0 (0.0)
Ethnicity 0.09 0.74
Hispanic/Latino 10 (27.8) 17 (47.2) 8 (44.4) 9 (50.0)
Task performance measures Mean (SD) Mean (SD) p Mean (SD) Mean (SD) p
Reaction time average 395.8 (53.1) 422.8 (74.3) 0.08 431.1 (67.0) 439.1 (107.8) 0.79
Reaction time std 129.6 (24.8) 137.2 (29.9) 0.25 136.2 (27.6) 138.2 (32.8) 0.84
Anticipation error 1.86 (2.1) 1.74 (1.6) 0.78 1.69 (1.6) 1.78 (1.7) 0.88
Commission error 0.33 (0.8) 0.85 (1.4) 0.07 0.75 (1.6) 0.94 (1.3) 0.7
Omission error 4.97 (5.8) 8 (10.8) 0.15 4.38 (4.0) 11.22 (13.8) 0.06
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as well as between ADHD persisters and remitters. Then, we applied
Ordinary Least Squares (OLS) (Hutcheson, 1999), Ridge regression
(Hoerl and Kennard, 1970), least absolute shrinkage and selection op-
erator (LASSO) regression (Santosa and Symes, 1986; Tibshirani, 1996),
Elastic Net regression (Zou and Hastie, 2005) to construct the predic-
tion models for inattentive and hyperactive/impulsive T-scores, re-
spectively. The same nested CV utilized in previous steps were also
conducted in regression model construction. The hyperparameters in-
cluded the regularization strength (alpha), solver to use in the com-
putational routines (solver) for Ridge regression, the constant that
multiplies the L1 term (alpha) for LASSO regression, the constant that
multiplies the penalty terms (alpha), the Elastic Net mixing parameter
(l1_ratio) for Elastic Net regression. During the iteration of 5-fold CV
outer loop, the performance of each regression model with the optimal
hyperparameters derived from LOOCV inner loop iterations was eval-
uated. The group average of regression performance, including the
Pearson correlation coefficient and mean squared error (MSE) between
predicted and observed values, of each regression model derived from
each iteration of 5-fold CV were calculated. Again, all the regression

analyses were conducted by in-house codes developed in Python 3.7.

2.7. Evaluation measures

The performance of each classification procedure classifier was
measured in terms of classification accuracy, sensitivity, and specificity.
The accuracy of a machine learning classification algorithm is to
measure how often the algorithm classifies a data point correctly. It is
defined as:

=
+

+ + +
Accuracy TP TN

TP TN FP FN

where TP is true positive, TN is true negative, FP is false positive, and
FN is false negative.

Sensitivity describes the proportion of actual positive cases that are
correctly identified as positive. It implies that there will be another
proportion of actual positive cases, which would get predicted in-
correctly as negative. The sensitivity is defined as:

Fig. 1. The ensemble learning flowchart. (sMRI: structural MRI; DTI: diffusion tensor imaging; fMRI: functional MRI; CV: cross-validation; LOOCV: leave-one-out
cross-validation; AUC: the area under the receiver operating characteristic curve; ELTs: ensemble learning techniques).

Table 2
The hyperparameters of 7 basic models and 4 ELTs-based models. (ELTs: ensemble learning techniques; KNN: k-nearest neighbors; SVM: support vector machine; LR:
logistic regression; RF: random forest; LDA: linear discriminant analysis; MLP: multilayer perceptron).

Classifiers Hyperparameters

KNN n_neighbors: [1, 3, 5, 7, 9]; algorithm: [‘auto’, ‘ball_tree’, ‘kd_tree’, ‘brute’]; p: [1, 2, 3]
SVM C: [0.001, 0.01, 0.1, 1, 10, 100, 1000]; gamma: [‘auto’, ‘scale’]; kernel: [‘linear’, ‘rbf’, ‘poly’, sigmoid]
LR solver: [‘newton-cg’, ‘lbfgs’, ‘sag’, ‘saga’]; multi_class: [‘ovr’, ‘multinomial’, ‘auto’]
RF n_estimators: list(range(3, 60, 5)); criterion: [‘gini’, ‘entropy’]; min_samples_leaf: [3, 5, 10]; max_depth: [3, 4, 5, 6]; min_samples_split: [3, 5, 10]; bootstrap: [True,

False]
LDA solver: [‘svd’, ‘lsqr’, ‘eigen’]
MLP activation: [‘identity’, ‘logistic’, ‘tanh’, ‘relu’]; solver: [‘lbfgs’, ‘sgd’, ‘adam’]; hidden_layer_sizes: np.arange(1, 72, 10); max_iter: [4000]
ELT-Voting estimators; voting: [‘hard’, ‘soft’]
ELT-Bagging base_estimator; n_estimators: list(range(10, 150, 10)); max_samples=[0.2, 0.3, 0.4, 0.5]; max_features=[0.5, 0.6, 0.7, 0.8, 0.9, 1.0]
ELT-Boosting base_estimator; n_estimators: list(range(10, 150, 10)); learning_rate: list(range(0.01, 1, 0.01))
ELT-Stacking classifiers; meta_classifiers
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=
+

Sensitivity Recall TP
TP FN

( )

Specificity is a measure of the proportion of actual negatives, which
got predicted as the negative. It implies that there will be another
proportion of actual negative, which got predicted as positive and could
be termed as false positives. It is defined as:

=
+

Specificity TN
TN FP

In addition, a ROC curve was plotted to illustrate the diagnostic
ability of a binary classifier system as its discrimination threshold is
varied. In the classification case, we calculated the confusion matrix for
each iteration cycle of the classifier and calculated the AUC of ROC.
AUC provides an aggregate measure of performance across all possible
classification thresholds. One way of interpreting AUC is as the prob-
ability that the model ranks a random positive example more highly
than a random negative example. The AUC of ROC is defined as:

= ×
×

+
AUC Precision Recall

Precision Recall
2

Among the equation of AUC, Precision and Recall are defined, re-
spectively, as:

=
+

Precision TP
TP FP

=
+

Recall TP
TP FN

For the regression model, the Pearson correlation coefficient and
MSE between predicted values and actual values were calculated. The
Pearson correlation coefficient is a measure of the linear correlation
between two variables. It is defined as:

=ρ cov X Y
σ σ
( , )

X Y
X Y

,

where cov is the covariance, σX is the standard deviation of X, σY is the
standard deviation of Y.

The MSE of an estimator measures the average squared difference
between the estimated values and the actual value, which is defined as:

∑= −
=

MSE
n

Y Y1 ( ^)
i

n

i i
1

2

Where Yi and Ŷi represent the actual and predicted value.

3. Results

3.1. Demographic, clinical and behavioral measures

The demographic, clinical information and behavioral performance
of all groups are summarized in Table 1. There were no significant
demographic between-group differences. Moreover, all participants
achieved a > 85% rate for response accuracy when performing the
fMRI task. Task performance measures, including reaction time, re-
sponse accuracy rate, omission error rate, commission error rate did not
show between-group differences (p > 0.05).

3.2. Classification model performance

The Table 3 (Part I) summarizes the ADHD probands vs. controls
classification performances of the basic models and ELTs. Additional
details of ADHD probands vs. controls classification performance of
ELTs are shown in Supplementary Table 2 (Part I). The classifier of SVM
performed the best among the seven basic models regarding the AUC,
accuracy, and specificity (AUC=0.87, accuracy=0.816, specifi-
city=0.942). Furthermore, the bagging-based ELT with SVM as the
basic model performed the best among all ensemble models

(AUC = 0.89). Table 3 (Part II) summarizes ADHD persisters vs. re-
mitters classification performances of the basic models and ELTs, and
again demonstrated that SVM performed the best among all the basic
models regarding the AUC and accuracy (AUC=0.85, accuracy=0.7),
while the bagging-based ELT with SVM as the basic model performed
the best among all ensemble models (AUC = 0.9). Supplementary
Table 2 (Part II) provided more details of ADHD persisters vs. remitters
classification performance of ELTs.

3.3. ROC curves of classification models

The ROC curve for each classification procedure, including the un-
supervised hierarchical clustering is plotted in Fig. 2. Results showed
that classification performance parameters of the ELTs-based proce-
dures were greatly improved compared to those of the basic model-
based procedures. In addition, relative to the performance improve-
ment between ensemble learning and basic models of the classification
between ADHD and normal controls, the performance improvement of
classification between ADHD persisters and remitter is greater.

4. Importance score of the classification model

The importance score of top three features for the classifications
between ADHD probands and normal controls, and between ADHD
persisters and remitters are shown in Table 4. More specifically, the
nodal efficiency of right inferior frontal gyrus (IFG), the functional
connectivity between right middle frontal gyrus (MFG) and right in-
ferior parietal lobule (IPL), the volume of right amygdala served as the
top three important features in the classification model between ADHD
and normal controls. The nodal efficiency of right MFG, functional
connectivity between right MFG and right IPL, and betweenness-cen-
trality of left putamen played the three most important characteristics
in the classification between ADHD persisters and remitters.

Table 3
The results of 7 basic and 4 ELTs-based classifications between the groups of
ADHD and normal controls (Part I) as well as between the groups of ADHD
persisters and ADHD remitters (Part II). (ELT: ensemble learning technique;
KNN: k-nearest neighbors; SVM: support vector machine; LR: logistic regres-
sion; RF: random forest; LDA: linear discriminant analysis; MLP: multilayer
perceptron; AUC: the area under the receiver operating characteristic curve;
ADHD: attention deficit/hyperactivity disorder; NC: normal controls; ADHD-R:
ADHD remitters; ADHD-P: ADHD persisters).

Classifiers Specificity Sensitivity Accuracy AUC

Part I: ADHD vs. NC
KNN 0.72 0.66 0.689 0.69
SVM 0.942 0.69 0.816 0.87
LR 0.756 0.742 0.75 0.85
NB 0.778 0.718 0.748 0.86
RF 0.866 0.75 0.705 0.82
LDA 0.734 0.774 0.754 0.78
MLP 0.782 0.746 0.764 0.84
ELT-Voting 0.808 0.718 0.763 0.87
ELT-Bagging 0.734 0.798 0.766 0.89
ELT-Boosting 0.67 0.77 0.721 0.88
ELT-Stacking 0.756 0.742 0.75 0.82
Part II: ADHD-P vs. ADHD-R
KNN 0.4 0.934 0.667 0.72
SVM 0.65 0.75 0.7 0.85
LR 0.6 0.682 0.642 0.85
NB 0.734 0.65 0.692 0.77
RF 0.734 0.6 0.667 0.76
LDA 0.568 0.518 0.542 0.63
MLP 0.634 0.75 0.692 0.84
ELT-Voting 0.8 0.65 0.725 0.82
ELT-Bagging 0.75 0.582 0.67 0.90
ELT-Boosting 0.75 0.682 0.717 0.86
ELT-Stacking 0.884 0.684 0.783 0.82
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4.1. Regression model and importance score

The regression results (Table 5) indicated that Elastic Net regression
performed the best for the prediction of both inattentive and hyper-
active/impulsive T-scores. Table 6 shows the importance scores of the
top three features of Elastic Net regression for inattentive and

hyperactive/impulsive symptom T-scores. Specifically, the top three
features for the prediction of inattentive T-score were the nodal effi-
ciency of right IFG, the functional connectivity between MFG and IPL in
right hemisphere, the volume of right amygdala. The top three features
for the prediction of hyperactive/impulsive T-score included the nodal
efficiency in right IFG, the functional connectivity between right MFG
and right IPL, the nodal efficiency of right MFG.

(OLS: ordinary least square; LASSO: least absolute shrinkage and
selection operator; T-Inattentive: inattentive T-score; T-Hyperactive/

Fig. 2. The AUC of each classification procedure for discrimination between ADHD probands and normal controls (A), and between ADHD persisters and remitters
(B). (KNN: k-nearest neighbors; SVM: support vector machine; LR: logistic regression; RF: random forest; LDA: linear discriminant analysis; MLP: multilayer per-
ceptron; HC: hierarchical clustering; ROC: the receiver operating characteristic curve; AUC: the area under the ROC curve).

Table 4
The importance scores of top three features of classifications between ADHD
probands and normal controls, as well as between ADHD persisters and ADHD
remitters. (FC: functional connectivity; NC: normal controls; ADHD: attention
deficit/hyperactivity disorder; ADHD-P: ADHD persisters; ADHD-R: ADHD re-
mitters).

Feature Importance Score

ADHD vs. NC
Nodal efficiency of right Inferior Frontal gyrus 0.134
FC between right Middle Frontal gyrus and right Inferior

Parietal lobule
0.111

Volume of right amygdala 0.1
ADHD-P vs. ADHD-R
Nodal efficiency of right Middle Frontal gyrus 1.028
FC between right Middle Frontal gyrus and right Inferior

Parietal lobule
0.852

Betweenness-centrality of left putamen 0.677

Table 5
Pearson correlation coefficient and mean squared error performance of re-
gression models.

Regression Pearson Correlation Coefficient MSE

T-Inattentive
OLS r = 0.4603; p < 0.001 126.3
LASSO r = 0.4592; p < 0.001 124.6
Ridge r = 0.4605; p < 0.001 126.1
Elastic Net r = 0.4689; p < 0.001 121.1
T-Hyperactive/Impulsive
OLS r = 0.3329; p = 0.0043 126.5
LASSO r = 0.3395; p = 0.0035 123.3
Ridge r = 0.3334; p = 0.0042 126.3
Elastic Net r = 0.3488; p = 0.0027 119.8
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Impulsive: Hyperactive/Impulsive T-score; MSE: mean squared error)

5. Discussion

To the best of our knowledge, this is the first study to apply ELT to
multimodal neuroimaging features generated from structural MRI, DTI,
and task-based fMRI data collected from a sample of adults with
childhood ADHD and controls, who have been clinically followed up
since childhood. We found that the nodal efficiency in right IFG,
functional connectivity between MFG and IPL in right hemisphere, and
right amygdala volume were the most important features for dis-
crimination between the ADHD probands and controls, while the nodal
efficiency of right MFG, functional connectivity between right MFG and
right IPL, and betweenness-centrality of left putamen played the most
important roles for discrimination between the ADHD persisters and
remitters. Moreover, the classification performance parameters of ELT-
based procedures were superior to those of the basic classifiers.

5.1. Neurobiological markers for discriminations

5.1.1. Classification between ADHD probands and controls
Our current study observed the important roles of nodal efficiency

in right IFG and functional connectivity between right MFG and right
IPL for discrimination between ADHD probands and normal controls.
The abnormalities of these regions have been supported by a variety of
existing neuroimaging and machine learning studies. Specifically, both
task-based and resting-state fMRI studies have consistently reported the
decreased functional activation in right IFG (Cao et al., 2006;
Konrad et al., 2006; Rubia et al., 2019, 1999; Silk et al., 2005;
Smith et al., 2006) and reduced functional connectivity between right
MFG and right IPL (Lin et al., 2015; Vance et al., 2007) in children with
ADHD as compared with normal controls. In addition, multivariate
machine learning and ELT-based studies have commonly reported that
functional activation and connectivity in frontal and parietal areas are
associated with improved classification between children with ADHD
and normal controls (Brown et al., 2012; Colby et al., 2012;
Deshpande et al., 2015; dos Santos Siqueira et al., 2014; Fair et al.,
2012; Iannaccone et al., 2015; Qureshi et al., 2017). They have sup-
ported the hypothesis that functional abnormalities in frontal and
parietal areas, which are critical components of the attention network
in human brain, especially stimulus-driven top-down control, are as-
sociated with the symptom emergence of childhood ADHD (Posner and
Rothbart, 2009). Additionally, we found that the volume of right
amygdala played a vital role in discrimination of ADHD probands and
controls. The findings of amygdala anatomical abnormities in children
with ADHD were supported by many previous studies. Amygdala plays
as a critically important role in emotion regulation (Banks et al., 2007;
Davidson et al., 2000; Domes et al., 2010) and thus structural anomalies
associated amygdala have been widely observed in children (Van Dessel
et al., 2019) and adults with ADHD (Tajima-Pozo et al., 2018), which
suggests that the aberrant structure of amygdala may be associated with
less control of impulsivity and delay aversion (Van Dessel et al., 2018).

5.1.2. Classification between ADHD persisters and remitters
Additionally, our findings point to the important roles of nodal ef-

ficiency in right MFG, functional connectivity between right MFG and
right IPL for discrimination between ADHD persisters and remitters,
and findings were supported by a variety of existing neuroimaging
studies. More specifically, reduced activation and functional con-
nectivity in IFG, MFG, and fronto-parietal regions were observed in
ADHD persisters when compared to ADHD remitters (Clerkin et al.,
2013; Mattfeld et al., 2014; Schulz et al., 2017). The functional acti-
vation and connectivity in frontal and parietal regions during cognitive
control were associated with the diverse adult outcomes of ADHD di-
agnosed in childhood, with symptom persistence linked to reduced
activation or symptom recovery associated with higher connectivity
within frontal areas (Clerkin et al., 2013; Francx et al., 2015;
Mattfeld et al., 2014; Schulz et al., 2017). Although several existing
multivariate machine learning and ELT-based studies have commonly
reported that the anatomical features in frontal and parietal areas are
associated with the classification performance between adults with
ADHD and group-matched normal controls (Chaim-Avancini et al.,
2017; Zhang-James et al., 2019), no machine learning study has been
conducted to identify the classification pattern for discrimination be-
tween ADHD persisters and remitters. We further observed that the
features of nodal efficiency in right IFG, functional connectivity be-
tween right MFG and right IPL, and right amygdala volume were as-
sociated with inattentive symptom severity T-score, while the nodal
efficiencies of right IFG and MFG and functional connectivity between
MFG and IPL in right hemisphere were associated with hyperactive/
impulsive symptom severity T-score. These findings suggest the sig-
nificant involvement of frontal and parietal lobes in right hemisphere
for both inattentive and hyperactive symptom persistence of childhood
ADHD (Francx et al., 2015).

5.2. Performance of classification and regression models

5.2.1. Ensemble learning (ELT)
Moreover, we found that the classification performance parameters

of ELT-based procedures were improved compared to those of basic
models. The ELTs have been developed in the big data science field to
adaptively combine multiple basic classifiers in order to strategically
deal with feature variance and bias, and optimize prediction perfor-
mances (Balakrishnan et al., 2012; Dror et al., 2011; Hansen and
Salamon, 1990; Schapire, 1990b). According to our classification re-
sults, bagging, sampling with replacement, would help to reduce the
chance overfitting complex models. In our study, bagging with the basic
model of SVC was applied to train our model and proved to be the best
classifier for both discriminations. In addition, we used AUC statistic for
model evaluation, instead on commonly used accuracy, which can be
influenced by case-control imbalance in data sets (Fawcett, 2006;
Hanley and McNeil, 1982). Our study showed a satisfactory perfor-
mance of AUC with 0.89 and 0.9 for the discrimination between groups
of ADHD and normal controls, and between the groups of ADHD
persisters and remitters, respectively. Although we had a relatively
small sample size, our findings suggest that ELT-based models

Table 6
The importance scores of top three features of Elastic Net regression for inattentive and hyperactive/impulsive symptom T-scores. (FC: functional connectivity).

Feature r p Importance Score

Inattentive
Nodal efficiency of right Inferior Frontal gyrus −0.399 0.001 3.471
FC between right Middle Frontal gyrus and right Inferior Parietal lobule 0.405 <0.001 2.126
Volume of right Amygdala −0.011 0.928 1.819
Hyperactive/Impulsive
Nodal efficiency of right Inferior Frontal gyrus −0.345 0.003 2.289
FC between right Middle Frontal gyrus and right Inferior Parietal lobule 0.361 0.002 2.134
Nodal efficiency of right Middle Frontal gyrus −0.333 0.004 1.997
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performed better than basic models.

5.2.2. Elastic Net regression
In addition, the Elastic Net-based regression model demonstrated

the best performance parameters when investigating the relations be-
tween the neuroimaging features and clinical symptom measures in the
ADHD probands. The reason Elastic Net regression had the best per-
formance was that it compromised the LASSO penalty (L1) and the
ridge penalty (L2) (Zou and Hastie, 2005). The LASSO (L1) penalty
function performs variable selection and dimension reduction by
shrinking coefficients (Tibshirani, 1996), while the ridge (L2) penalty
function shrinks the coefficients of correlated variables toward their
average (Hoerl and Kennard, 1970). Therefore, as for the study with
relatively small sample size, the combined method obviously performed
better than isolated ones, e.g. LASSO regression and ridge regression.

5.3. Limitations

Although the ELTs improved the model classification performance,
especially for the cases when the base models had weak classification
results, the current study has some limitations. First, our cohort con-
sisted of both male and female subjects, but many more males. It is still
unclear whether the discrimination models of ADHD differ between
males and females. The future work may focus on constructing the
classification models for both males and females. Second, the sample
size of this study is relatively small. It is noted that among the existing
studies in adults with ADHD, the variability of clinical characteristics
inside the group/subgroups of the current study is relatively small
(Engelhardt et al., 2019; Groom et al., 2015; Harrison et al., 2007;
Shaw et al., 2013; Solanto et al., 2010). Nevertheless, although our
study provided a considerable robust algorithm to reduce potential
overfitting issues that can happen in studies with small sample sizes,
future work in a much larger cohort is still expected to further test the
performance of the ELTs.

6. Conclusions

In summary, together with existing findings, results of this study
suggest that structural and functional alterations in frontal, parietal,
and amygdala areas and their functional interactions significantly
contribute to accurate discrimination of ADHD probands from controls;
while abnormal fronto-parietal functional communications in the right
hemisphere plays an important role in symptom persistence in adults
with childhood ADHD. Furthermore, the classification performance
parameters (accuracy, AUC of the ROC, etc.) of the ELT-based proce-
dures were improved than those of basic model-based procedures,
which suggests that ELTs may have the potential to identify more re-
liable neurobiological markers for neurodevelopmental disorders.
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