
Synthetic Biology, 2021, 6(1), 1–9

DOI: https://doi.org/10.1093/synbio/ysab026
Advance access publication date: 11 October 2021

Research Article

Design and assembly of DNA molecules using
multi-objective optimization

Angelo Gaeta1, Valentin Zulkower2, and Giovanni Stracquadanio1,*

1School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3BF, UK
2Edinburgh Genome Foundry, School of Biological Sciences, The University of Edinburgh, Edinburgh EH9 3BF, UK
*Corresponding author: E-mail: giovanni.stracquadanio@ed.ac.uk

Abstract

Rapid engineering of biological systems is currently hindered by limited integration of manufacturing constraints into the design
process, ultimately reducing the yield of many synthetic biology workflows. Here we tackle DNA engineering as a multi-objective
optimization problem aiming at finding the best tradeoff between design requirements and manufacturing constraints. We developed
a new open-source algorithm for DNA engineering, called Multi-Objective Optimisation algorithm for DNA Design and Assembly, avail-
able as a Python and Anaconda package, as well as a Docker image. Experimental results show that our method provides near-optimal
constructs and scales linearly with design complexity, effectively paving the way to rational engineering of DNA molecules from genes
to genomes.

Key words: biodesign; optimization; combinatorial assembly; computer-aided design; multi-objective optimization

1. Introduction
Recent advances in synthetic biology and DNA synthesis tech-
nologies are enabling significant scientific and biotechnological
breakthroughs, including the engineering of pathways for drug
production [1], the construction of minimal bacterial cells [2] and
the assembly of synthetic eukaryotic chromosomes [3].

Pivotal to these achievements has been the adoption of an iter-
ative engineering workflow, known as the Design-Built-Test-Learn
cycle (DBTL). The DBTL workflow starts with a design step where
biological components, such as genes or promoters, are selected
to be assembled into a construct to obtain a specific phenotype;
usually, the output of this process is a sequence of DNA to be
synthesized. The designed sequence is then built and cloned into
a host organism, and then tested to assess whether the design
requirements are met, e.g. gene expression levels and protein
abundance. The testing phase then informs the learning step,
which in turn aims at improving the design of the initial construct
using the phenotypic information acquired.

Interestingly, the inherent waterfall structure of the DBTL
workflow introduces dependencies between steps, making engi-
neering biological systems still a complex task. This is especially
true for the design and build steps; in particular, the design
space is strongly constrained by the DNA synthesis process, since
phosphoramidite synthesis poses limits on molecule length and
content. These limitations are usually overcome by splitting the
designed sequences into shorter fragments, which can be then
put together through molecular assembly techniques [4, 5], at the

cost of increasing complexity both for the design andmanufactur-

ing steps. Ultimately, recoding the design to meet manufacturing

constraints often leads to molecules with substantially different
content and properties, effectively breaking the DBTL workflow.

Software have been developed to assist biological engineers in

implementing the DBTL cycle, in particular for the design step,
with tools such as Double Dutch [6], Cello [7], j5 [8], Raven [9],

BOOST [10] and BioPartsBuilder [11]. Nevertheless, current soft-

ware simply automates the process of designing and adapting the
sequence for synthesis, often leading to suboptimal designs and
lacking quantitative measures to evaluate design quality.

Here we build on our experience in mathematical program-
ming methods for electronic design automation [12, 13] to solve
the conundrum of designing DNA for manufacturability. Simi-
lar to how electronic circuits design is informed by physical and
silicon manufacturing requirements, we formulated the design
and build steps as amulti-objective optimization problem, aiming
at finding the best trade-off between design and manufacturing
requirements. Thus, rather than a single construct, biological
engineers will be presented with a set of manufacturable designs
to choose from for downstreamwork. We also introduce analytical
measures to assess design quality and algorithmic performances,
which are sorely lacking in the biological design automation field.

We developed a new optimization algorithm to solve this com-
plex multi-objective problem, which is implemented as part of an
open-source Python software called Multi-Objective Optimisation
algorithm for DNA Design and Assembly (MOODA). The software

Submitted: 15 February 2021; Received (in revised form): 7 July 2021; Accepted: 24 August 2021
© The Author(s) 2021. Published by Oxford University Press.
This is an Open Access article distributed under the terms of the Creative Commons Attribution License (https://creativecommons.org/licenses/by/4.0/), which
permits unrestricted reuse, distribution, and reproduction in any medium, provided the original work is properly cited.

https://orcid.org/0000-0002-5627-4823
https://orcid.org/0000-0001-9819-3645
mailto:giovanni.stracquadanio@ed.ac.uk
https://creativecommons.org/licenses/by/4.0/

2 Synthetic Biology, 2021, Vol. 6, No. 1

is released on PyPi, Anaconda, and as a Docker image, whereas
the source code, documentation and examples are available on
GitHub (https://github.com/stracquadaniolab/mooda).

We tested MOODA on an extensive synthetic DNA constructs
dataset to assess the quality of the proposed designs and its com-
putational efficiency. Experimental results show that MOODA can
effectively identify near-optimal designs regardless of sequence
complexity and its running time scales linearly with the number
of objectives and the sequence length.

2. Materials and methods
Here we introduce a multi-objective formulation of the DNA
design and assembly problem. We assume that the input is
a DNA sequence, where coding regions have been annotated.
We then propose an optimization algorithm to identify trade-off
solutions for an arbitrary number of design and manufacturing
requirements.

2.1 A multi-objective formulation of the DNA
design and manufacturing problem
Let x be a sequence over the DNA alphabet Σ = {A,T,C,G} and
F= (f1, f2, · · · , fk), with fk : Σ→ R and k being the number of design
and manufacturing requirements, which we also call objectives.
We assume that requirements can be evaluated computationally
by a function, which returns a fitness measure for the sequence.
Without loss of generality and to avoid ambiguities, we assume
that all objectives must be minimized.

We can define a multi-objective optimization problem as
follows:

min
x∈Σ

F(x) = (f1(x), f2(x), · · · , fk(x)) (1)

where for k=1 the problem reduces to a standard single-objective
optimization problem; however, for k>1, it is usually not possible
to find x such that all objectives are simultaneously minimized
and, instead, we look for trade-off solutions. Let x1,x2 be two
sequences over the DNA alphabet, x1 dominates x2, denoted as
x1 ≺ x2, if:

∃i ∈ {1, · · · , k} fi(x1)< fi(x2) ∧ ∀j ∈ {1, · · · , k} fj(x1)≤ fj(x2) (2)

In mathematical terms, the set of trade-off solutions, or Pareto
optimal set, is made of all the non-dominated solutions for F,
which is the set of sequences that cannot improve an objective
without worsening at least another one. The image of the non-
dominated solutions with respect to themapping F is called Pareto
front; geometrically, the Pareto front is bounded by an ideal point,
which is the vector defined by all the minima, and the nadir point,
which is the vector defined by all the maxima, thus representing
the theoretical worst possible solution. In general, we cannot find
the true Pareto optimal set unless boundary conditions are met,
but approximations are usually sufficient in practice [14].

A plethora of methods have been proposed in literature to
solve multi-objective problems, both deterministic [15, 16] and
stochastic [17–20]. While deterministic methods provide strong
proofs of convergence and optimality, they are usually difficult to
apply to non-numerical problems. Conversely, stochastic meth-
ods, such as genetic algorithms or evolutionary strategies, are
domain agnostic and work well in practice, although lacking
theoretical guarantees on convergence and optimality.

2.2 A Multi-Objective Optimisation algorithm for
DNA Design and Assembly
Here we describe a new stochastic optimization algorithm, called
Multi-Objective Optimisation algorithm for DNA Design and
Assembly (MOODA). The basic unit of operation is the solution
data structure z= (s,b), where s is a DNA sequence and b is the list
of DNA fragments (or blocks) required to assemble arbitrary long
sequences. Blocks are represented as sequence intervals to take
advantage of interval algebra for downstream operations. Hereby
we refer to z as the solution for a problem F involving k design and
manufacturing objectives.

The algorithm takes as input aDNA sequence s, which is cloned
n times to build an initial pool P of n solutions; the initial sequence
is randomly split into fragments of approximately the same size,
each one of size lmin ≤ l≤ lmax, with lmin and lmax being the min-
imum and maximum DNA fragment that can be synthesized.
Then, at each iteration t, each solution in P is cloned, randomly
edited and evaluated with respect to the objective functions F.
From the resulting pool of 2n solutions, n are selected for the next
iteration. The algorithm stopswhen themaximumnumber of iter-
ations Tmax is reached. An overview of the algorithm is presented
in Alg. 1.

Hereby we describe the edit and selection procedures, which
are the key components of our method.

Sequence editing and assembly operators. The edit operators
are local search procedures, which take in a solution as input
and return a new, possibly better design. We defined procedures
to edit both DNA sequences and blocks; sequence edits are lim-
ited to coding regions because we can safely introduce silent
mutations to match requirements, whereas block edits are lim-
ited by the minimum and maximum DNA fragment size that
is possible to synthesize. We defined four edit procedures that
cover most common scenarios; however, MOODA can be easily
extended with custom functions to introduce different types of
changes.

GC optimization operator. The GC content of a DNA fragment is
often a major hurdle to its synthesis; usually, synthesis providers
have stringent admissible ranges on GC content and sequences
have to be recoded to meet this requirement. Nonetheless, the GC
content is often associated with specific phenotypes [21], thus any
GC optimization procedure should edit a DNA sequence in such
a way that the encoded biological function is not affected. This
requirement restricts the application of GC content optimization
only to coding regions, since GC can be optimized by using
synonymous codons, which guarantee that the final protein prod-
uct is not altered.

Algorithm 1 Multi-Objective Optimisation algorithm for DNA Design and
Assembly

1. procedure MOODA(s,n,F,Tmax)
2. P← Initialise(s,n)
3. Evaluate(F,P)
4. t← 0
5. while t≤ Tmax do
6. R← Clone(P)
7. R← Edit(R)
8. Evaluate(F,R)
9. P← Select(P,R)

10. t← t+ 1
11. end while
12. end procedure

https://github.com/stracquadaniolab/mooda

A. Gaeta et al. 3

Algorithm 2 GC content operator

1. procedure GC content(σGC, TGC, CDS)
2. CDSr← RandomSelect(CDS)
3. CDSe← Copy(CDSr)
4. while |GC(CDSe)−GC(CDSr)| ≤ σGC do
5. C← RandomSelectCodons(CDSe)
6. A← Translate(C)
7. L← GetCodonsForAminoacid(A)
8. if TGC ≥GC(CDSe) then
9. CDSe← UseLowGCCodon(L)

10. else if TGC < GC(CDSe) then
11. CDSe← UseHighGCCodon(L)
12. end if
13. end while
14. return CDSe
15. end procedure

Here we define a GC optimization operator, which recodes a ran-
dom coding sequence (CDS) by probabilistically using codons that
bring its GC content closer to a user-defined target TGC (see Alg. 2).
The GC procedure acts only on one coding region at the time and
allows improvement of at most σGC percent respect to the origi-
nal sequence; here, we adopted this strategy to increase design
diversity and avoid biases and divergent sequences.

Codon optimization operator. Transplanting genes and path-
ways between organisms often require changing their primary
sequence at the codon level to ensure expression. Moreover, cod-
ing regions are often recoded to increase gene expression, as a
way to maximize the production of a particular protein [22]. How-
ever, the relationship between codon usage and gene transcription
is poorly understood [23]. Our codon optimization operator prob-
abilistically recodes a fraction σc of the codons of a given gene,
by silently replacing the current codons with the most frequent
one, in accordance with an input codon usage table TCF. As for
the GC optimization operator, to increase the diversity of the
pool of designs generated by our method, we do not apply codon
optimization to all CDSs at the same time, but only to one at
random.

Block split operator. Current technologies do not allow synthe-
sis of arbitrary long DNA molecules, thus requiring a construct
to be split into shorter fragments and then reassembled using
DNA assembly techniques. [24]. However, excessive fragmen-
tation can be both expensive and increase the turnaround of
the assembly process. The block split operator divides a DNA
sequence into shorter fragments, whose length is between lmin and
lmax nucleotides; by design, the operator enforces homogeneity in
block length by splitting sequences into blocks of discrete length,
which is controlled by a parameter σb.

Block join operator. The block join operator reduces the number
of blocks by joining two consecutive blocks, thus decreasing the
number of parts to assemble. The procedure selects two blocks at
random and join them into a new longer block; if the new block
exceeds the block maximum size, it is divided again into two new
blocks with a size that is a multiple of the step size parameter
σb and within the maximum and minimum block length, respec-
tively, lmax and lmin. As for all our operators, we enforce diversity
in our pool of designs by applying the join procedure only to a pair
of blocks at the time.

All our operators are designed to generate overlaps between
adjacent blocks compatible with Gibson assembly [24]; however,
new assembly methods can be easily defined in Python and inte-
grated with our package.

Selection of trade-off solutions. A crucial step of our method
is the selection procedure, where non-dominated solutions are
picked for the next iteration. To do that, all solutions are com-
pared to each other and assigned a rank based on the number
of solutions they are dominated by; in this case, non-dominated
solutions are those with the lowest rank. The domination criteria
give the same weight to every objective function, improving the
probability to find balanced trade-offs [25].

Once all solutions are ranked, they are ordered first based on
their rank and then based on a distance metric, called crowding
distance, defined as follows:

wfi (zj) = (fi(zj+1)− fi(zj−1))/(f
max
i − fmin

i) (3)

d(zj) =
k∑

n=1

wfi (zj) (4)

where d(zj) is the crowding distance related to the j solution and
wfi (zj) is the crowding distance with respect to the objective func-
tion f i, whereas fi(zj+1) and fi(zj−1) are the closest solutions to zj
with respect to f i. We also denote with fmax

i and fmin
i the maximum

and the minimum value found by the algorithm for the objective
function f i, respectively. The crowding distance is a measure of
how close two solutions are on the objective functions space and
enable the algorithm to select solutions in unexplored regions of
the Pareto Front. After the ranking, the top n solutions are selected
for the next iteration.

The selection step is themost critical step for two reasons; first,
since the non-dominated sorting procedure has complexityO(kn2)
and it is executed at each iteration, using large pool sizes will
dramatically increase the running time of the algorithm. Second,
since at most n solutions are selected at each iteration, other non-
dominated solutions can be discarded because of poor crowding
distance score, effectively causing loss of information.

Here we address these problems by storing all solutions in an
ad hoc data structure, called archive, whose size m>> n is set by
the user. When the archive is full, m non-dominated solutions are
retained, eventually discarding the others based on their crowding
distance value. By setting the pool size smaller than the archive
size, we are decreasing the running time of the sorting proce-
dure with only a negligible cost in terms of memory consumption;
moreover, by storing m>> n non-dominated solutions found dur-
ing the optimization process, we are effectively returning more
solutions at a fraction of the running time required for optimizing
a pool of size m.

Software implementation and availability.We implemented
MOODA in Python following object oriented programming best
practice. The software requires as input an annotated GenBank
file and a yaml configuration file, which specifies objective func-
tions, and design operators and the assembly method to use
to join DNA blocks. Our software can be easily customized by
implementing new design operators and objective functions. New
design operators should extend the base Operator class and
override the apply method, which implements a user-defined
procedure to manipulate a solution. Analogously, a new objec-
tive function should extend the base ObjectiveFunction class

4 Synthetic Biology, 2021, Vol. 6, No. 1

and override the eval method, which in turn will return a real
value associated with the fitness of the input solution. The source
code, documentation and a fully working example are available
at https://github.com/stracquadaniolab/mooda, while packages
are released on Anaconda and PyPi repositories and as a Docker
image.

2.3 Design and manufacturing objectives
We assessed the performance of our method by studying four
competing design and manufacturing requirements; these are
common to most DNA engineering tasks and have an easily inter-
pretable form useful to assess the performance of our method.

GC content objective function. The GC content of each designed
DNA fragment must be within the limits specified by a DNA syn-
thesis provider. Here we assume that an ideal GC value, TGC, is
provided in input. Thus, we can mathematically define the GC
content objective as follows:

f1(z) =
∑

b∈B(z)

|TGC −GC(b)| (5)

where z is a solution, and B(z) are the set of blocks defined in z.
The optimal value for f1 is 0, which is obtained when GC(b) = TGC.
To obtain an upper bound we used a heuristic procedure, where
we replaced the codon of each coding region in the input sequence
with the one maximizing the difference with respect to TGC; suc-
cessively, we divided the sequence into the maximum admissible
number of blocks and evaluated the objective function.

Codon usage objective function. One of themost common oper-
ations in synthetic biology is the transfer of genes or pathways
from one organism to another. Nevertheless, each organism has
its codon usage, since for each amino acid some codons are less
common than others, and so are the related tRNAs [23], ultimately
resulting in slower translation. Thus, we considered an objective
function that rewards designs using the most frequent codons as
follows:

f2(z) =
∑

c∈C(z)

|Q(aa(c))− q(c)| (6)

where z is a candidate solution, Q is the frequency of the most
frequent codon for the amino acid aa(c) encoded by the codon c in
a given species, and q is the frequency of codon c used in z. The
lower bound for the codon usage objectives function is 0, which
is obtained when each amino acid is encoded by the most fre-
quent codon in the target species; conversely, the upper bound
is obtained when all rare codons are used. Although our objec-
tive function is not accurate, introducing a new accurate model
for evaluating translation efficiency is outside the scope of this
research work.

Block length variance objective function. DNA assembly meth-
ods work best when the fragments of DNA have approximately the
same size. Thus, we reward designs with blocks of homogeneous
size by defining the following objective function:

f3(z) =
1

|B(z)|
∑

b∈B(z)

(l(b)− l̂(b))2 (7)

where b belongs to the set of blocks B(z) of the solution z, l is the
length of the block and l̂ is the average block length in the design z.

The block variance minimum is 0 when each block has the same
length, whereas its maximum is (lmax − lmin)

2/4, with lmin and lmax

being the minimum and maximum admissible fragment length,
respectively.

Block number objective function. A small number of blocks usu-
ally simplifies and speeds up the assembly process. Thus, we eval-
uated each solution considering the number of blocks required for
the assembly as follows:

f4(z) = |B(z)| (8)

where B(z) is the set of blocks defined by z. Obviously, the mini-
mum value is l(s)/lmax, whereas the maximum number of blocks
is simply l(s)/lmin.

Achieving an optimal design with respect to all four require-
ments is not trivial, as they have conflicting objectives. For exam-
ple, optimizing codon usage can introduce AT/GC rich regions in
a construct; similarly, while splitting the construct in fragments
could overcome GC restrictions, it increases manufacturing com-
plexity. It is clear that as the complexity of the constructs and the
number of requirements increase, finding an optimal trade-off is
challenging.

Finally, it is important to note that the minimum and maxi-
mum of an objective function might be difficult or impossible to
compute; however, using heuristic estimates, such as the value of
the best known solution, usually works well in practice.

3. Results
We tested MOODA on an extensive dataset of DNA constructs to
assess the quality of solutions and its computational efficiency.

Currently, no benchmark is available to evaluate DNA design
methods, effectively hindering a fair assessment of the meth-
ods available in literature. Therefore, as part of our work, we
developed a testbed to generate DNA sequences with tunable
features.

Here we assume that our input sequences represent modular
designs consisting of a set of transcription units (TUs) made of a
promoter, a CDS and a terminator [26]. We then parameterized
our dataset considering the number of TUs encoded, the length
of the constructs, their GC content and codon usage. The length
of the CDS of each TU was set by sampling the number of codons
from a Poisson distribution with λ=250, which is approximately
equal to the average number of codons in Escherichia coli genes
(288.67 codons in the HUSEC2011 strain) [27], whereas the amino
acid sequence and the frequency of each codon were generated
at random. We then set the length of promoters and termina-
tors by sampling from a Poisson distribution with λ=500 bp. For
each TU component, the GC content of the sequence was set at
random by sampling from a Beta distribution with α= k× t and
β = k× (1− t) with k=150 and t=0.55; this leads to TUs with
a GC content of ∼ 55% on average. Finally, we generated three
datasets consisting of 10 sequences made of 5,10,20 TUs, with a
final sequence length ranging from 8481 bp to 35264 bp.

We then redesigned our 30 sequences with respect to four
design problems characterized by a varying number objectives,
namely P1, P2, P3 and P4 (see Supplementary Table S1); ultimately,
we tested our method on a benchmark of 120 design problems.

We run the standard MOODA implementation on our bench-
mark using the parameters reported in Supplementary Table S2,

https://github.com/stracquadaniolab/mooda

A. Gaeta et al. 5

and in Supplementary Table S3 for the sequence editing opera-
tors. Since MOODA is a stochastic algorithm, we performed five
independent runs for each problem and parameters combination
to estimate the expected quality and optimality of the designs.

3.1 Evaluation of design quality
Evaluating the quality of solutions returned by multi-objective
optimization algorithms is not trivial, since standard metrics,
such as the root mean square error (RMSE), are poor performance
indicators. Instead, we used the hypervolume indicator, which is
a robust metric used for assessing the quality of a set of Pareto
optimal solutions [28]. Let y ∈ Rk be a vector of size k, where yi is
the value of the i-th objective function. The hypervolume indica-
tor is a function Vk : Rk → R returning the volume enclosed by the
union of the polytopes p1, · · · ,pi, · · · ,pk, where pi is the intersec-
tion of the hyperplanes arising from yi and the axes. In practice,
Vk provides an approximation of how many solutions are domi-
nated by a set of Pareto optimal solutions, where the higher the
values of Vk, the better is the quality of the non-dominated set.
Computing the hypervolume requires the definition of a reference
point, estimated either analytically or numerically; in our case, we
used the minimum value of each objective function as reference
point. It is important to note that the hypervolume value is an
unscaled metric; thus, its interpretation is not straightforward.
To overcome this problem, we first evaluate the hypervolume of
the search space, VΩ, by computing the hypervolume for the poly-
tope bounded by the reference point and the nadir point; here we
defined the nadir point as the vector of the maxima of each objec-
tive function. Then, we computed the normalized hypervolume,
NVk, as Vk/VΩ; intuitively, NVk values close to 1 are associated
with optimal trade-off solutions.

We analyzed the quality of solutions for Problems P1 and P2
and observed that MOODA achieves near-optimal results regard-
less the number of TUs in each construct, with an average normal-
ized hypervolume of 0.95, ranging from 0.93 to 0.97 (see Figure 1).
Interestingly, we observed negligible differences in design quality
between parameter settings, although better solutions are usually
found with a higher number of iterations rather than large design
pools.

We then analyzed solutions for the 3-objective Problems P3 and
P4. Consistent with our previous findings, we obtained excellent
results for P3 regardless of the number of TUs, with an average
NVk = 0.94, ranging from 0.90 to 0.97; as expected, we see a lin-
ear decrease in quality with the increasing number of TUs, albeit
always approximately > 0.93 on average. As already observed, bet-
ter solutions are usually obtained by increasing the number of
iterations rather than the size of the pool; this difference becomes
evident when designing constructs with 20 TUs (see Figure 1C and
Supplementary Figure S1).

Surprisingly, we found worse performances on P4, which
includes the codon usage objective function, with NVk = 0.5 on
average (see Figure 1D). Upon inspection of the non-dominated
sets, we found that the codon usage objective function was con-
sistently far from the optimal value. We then reasoned that this
could be because the codon usage procedure changes very few
codons, resulting in extremely suboptimal designs. Thus, we run
MOODA on P4 by allowing the codon usage operator to alter
more codons, by setting σc = 0.75; as expected, we observed an
increase in quality, albeit limited to 0.64 on average (see Sup-
plementary Figure S2). This result suggests that as GC content is
taken into account, finding a trade-off with codon usage becomes
significantly more difficult.

Figure 1. Evaluation of design quality. We report the normalized
hypervolume values, NVk, for different parameter settings for the Design
Problems A) P1 (GC content, block number), B) P2 (GC content, block
variance), C) P3 (GC content, block variance and block number) and D)
P4 (GC content, codon usage, block number). The normalized
hypervolume, NVk, is the ratio between the hypervolume, Vk, of the
trade-off solutions generated by MOODA and the hypervolume of the
design space, VΩ. We report normalized hypervolume values for each
design problem at increasing number of transcription units; here n and
Tmax represent the pool size and the number of iterations, respectively.

Taken together, we showed that MOODA provides near-optimal
designs for the vast majority of test cases. We found that the algo-
rithm performs remarkably well despite no tuning of the editing
operators, suggesting the overall robustness of our framework.

3.2 Evaluation of design optimality
The normalized hypervolume indicator provides a quantitative
measure of solutions quality, but it does not inform on whether
the solutions found by the algorithm are the best trade-offs pos-
sible. Here we studied which parameter settings are likely to
provide optimal trade-off solutions, that is solutions that are glob-
ally Pareto optimal. In general, rigorous proof of global optimality
is non-deterministic polynomial acceptable problems (NP)-hard;
thus, we relaxed our requirements and reverted to an approximate
measure.

We defined the approximately global Pareto optimal set as
the union of all non-dominated solutions identified by u inde-
pendent algorithms for a given set of objective functions. In our

6 Synthetic Biology, 2021, Vol. 6, No. 1

experiments, for each design problem, we obtained an approxi-
mate global Pareto optimal set, P̂f, by combining non-dominated
solutions obtained by running MOODA with different parame-
ters settings. Then, we computed Rθ , that is the proportion of
global Pareto optimal solutions found by running MOODA with
parameter setting θ, normalized according to the pool size (see
Supplementary Table S2); intuitively, the best parameter setting
will have values of Rθ close to 1.

We found that MOODA consistently finds the vast majority
of global Pareto optimal solutions when setting the pool size to
n=100 and the maximum number of iterations to Tmax = 200,
with Rθ values ranging from 0.3 for Problem P1 to 1 for Problem
P4 (see Figure 2). Consistent with our design quality analysis, we
observed a linear dependency between the number of iterations
and higher Rθ values (0.5 on average), with significant differences
depending on the number of TUs in the construct, ranging from
0.05 for P1 to 1 P4. Conversely, we observed that the algorithm
requires large pools when increasing the number of objectives in
P3 and P4, suggesting that as the design space becomes bigger,
more solutions need to be sampled.

Here we showed that the probability of finding globally opti-
mal trade-off depends on the number of iterations the algorithm

Figure 2. Evaluation of design optimality. We report the percentage of
globally Pareto optimal solutions, Rθ , derived from the global Pareto
front, P̂f, for the four Design Problems A) P1 (GC content, block number),
B) P2 (GC content, block variance), C) P3 (GC content, block variance and
block number) and D) P4 (GC content, codon usage, block number). We
report Rθ values for each design problem at increasing number of
transcription units; here n and Tmax represent the pool size and the
number of iterations, respectively.

is allowed to perform. This result suggests that promising solu-
tions are likely to be found as a result of iterative improvements,
rather than by simple stochastic sampling.

3.3 Computational complexity analysis
We then analyzed the running time of our algorithm on all
instances of our benchmark. For consistency, we performed
all our experiments on a system with 2 Intel Xeon Gold 6130
central processing units (16 cores, 2.10Ghz), 128Gb DDR4 ran-
dom access memory and running Scientific Linux 7; we then
recorded the user time and averaged across five independent
runs.

We found the running time to scale linearly with the number
of TUs and iterations (see Figure 3), with a running time ranging

from 100 to 8000 seconds. Moreover, while the time remains com-

parable across P1, P2 and P3, we found MOODA to be substantially
slower on P4; this can be explained by the use of the codon usage
operator, which is computationally taxing.

Since the quality and the number of global Pareto optimal solu-
tions depend more on the number of iterations than the pool

Figure 3. Running time analysis. We report the average running time,
measured in seconds, of each parameter settings for the four Design
Problems A) P1 (GC content, block number), B) P2 (GC content, block
variance), C) P3 (GC content, block variance and block number) and D)
P4 (GC content, codon usage, block number). We report the average
running time at increasing number of transcription units; here n and
Tmax represent the pool size and the number of iterations, respectively.

A. Gaeta et al. 7

Figure 4. Evaluation of the design quality obtained using MOODA and
using MOODA using the archive system. We report the normalized
hypervolume values, NVk, for different parameter settings for the Design
Problems A) P1 (GC content, block number), B) P3 (GC content, block
variance and block number) and C) P4 (GC content, codon usage, block
number).

size, we decided to test whether we could obtain the same perfor-
mances at a lower computational cost, by using the same number
of iterations but reducing the pool size by 5-fold. To mitigate the
risk of finding fewer Pareto optimal solutions, we used the archive
system implemented in MOODA, by setting its size m=100 for
all experiments (see Supplementary Table S4); with these set-
tings, themaximumnumber of non-dominated solutions remains
approximately comparable between different experiments. We
then evaluated the quality of the designs obtained in terms of
normalized hypervolume and compared these values to the nor-
malized hypervolume values obtained with standard parameter
settings (see Supplementary Table S2), limiting our analysis to
experiments with an equal number of iterations for Problems P1,
P3 and P4.

Interestingly, we found that using the MOODA archive sys-
tem effectively compensates for the smaller pool size; specif-
ically, the algorithm was able to produce near-optimal results
(see Figure 4), showing negligible differences compared to the
design produced by running MOODA with standard parame-
ter settings (see Figure 5). Conversely, the difference in run-
ning time is extremely significant (see Figure 6), with a drop
of 2000 seconds on average; in particular, the archiving system
exponentially reduces the running time on more complex prob-
lems (e.g. TUs=20), leading to MOODA being up to 2.2h faster
for P4.

Taken together, we showed that MOODA has a running
time growing linearly with sequence complexity. The use of an
archiving system to keep track of non-dominated solutions effec-
tively reduces the computational burden of our method.

Figure 5. Comparison of design quality between standard MOODA and
MOODA using the archive system. We report the difference in
normalized hypervolume, ∆NVk, between standard MOODA and the
MOODA with the archive system for the Design Problems A) P1 (GC
content, block number), B) P3 (GC content, block variance and block
number) and C) P4 (GC content, codon usage, block number). Positive
values of ∆NVk are associated with better quality of the standard
MOODA solutions compared to the archive version.

4. Discussion
Advances in chemical synthesis and molecular assembly tech-
niques have enabled a plethora of synthetic biology applications
of increasing complexity. Nonetheless, designing a DNA con-
struct that can be easily manufactured remains a complex and
time-consuming task.

Here we developed a newmathematical framework and a com-
panion algorithm to tackle the design and assembly of a biological
construct as a multi-objective optimization problem, aiming at
finding the best trade-offs between conflicting design and man-
ufacturing requirements. To the best of our knowledge, this is
the first time that the concept of Pareto optimality has been pro-
posed to simultaneously design and plan the assembly of DNA
molecules. Moreover, we introduced quantitative measures of
design quality, which provide useful information to speed up the
design-build-learn-test cycle.

We performed extensive experiments and showed that our
approach can find near-optimal manufacturable designs for arbi-
trary long and complex DNA molecules. We found that the prob-

ability of finding optimal trade-off solutions scales linearly with

the number of iterations allowed to our method, and it is only

marginally affected by the size of the pool of solutions. We fur-
ther refined our algorithm by adding an archiving system to keep

track of non-dominated solutions found throughout the optimiza-

tion process, which dramatically reduces the running time of our

method and ultimately allows end users to run complex analyses
on standard desktop machines. We released our software as an
open-source Python package, which can be easily installed from
PyPi, Anaconda or Docker and extended with plug-ins.

8 Synthetic Biology, 2021, Vol. 6, No. 1

Figure 6. Comparison of the running time between standard MOODA
and MOODA using the archive system. We report the difference in
running time, measured in seconds, between standard MOODA and
MOODA with the archive system for the Design Problems A) P1 (GC
content, block number), B) P3 (GC content, block variance and block
number) and C) P4 (GC content, codon usage, block number). Positive
values of ∆Time are associated with MOODA archive system being faster
than the standard implementation.

We are also aware of the limitations of our work. In partic-
ular, like every optimization method, the quality of solutions
depends on the effectiveness of the search procedures and the
accuracy of the objective functions to capture specific require-
ments; in biology, this has often proved to be a complex problem
itself, as we experienced in our codon usage optimization exper-
iments. Nonetheless, as models of biological processes become
more accurate, defining objective functions that can exactly cap-
ture biological behavior will be feasible, and our method is ready
to take advantage of these advances.

Ultimately, with the advent of large-scale synthetic genome
projects, our framework provides exciting opportunities to do
extensive chromosome editing in mammalian and plant systems.

Supplementary data
Supplementary data are available at SYNBIO Online.

Data availability
Source code and Docker images are available at: https://github.
com/stracquadaniolab/mooda.

The Python package is available at: https://pypi.org/project/
mooda-dna.

The Anaconda package is available at: https://anaconda.org/
stracquadaniolab/mooda.

Author contributions
A.G. and G.S. conceived the algorithm. A.G. developedMOODA and
performed experiments. V.Z. developed supporting software. A.G.

and G.S. analyzed experimental results. A.G. and G.S. wrote the
manuscript.

Conflict of interest statement. The authors declare that there is no
conflict of interest.

References
1. Paddon,C.J., Westfall,P.J., Pitera,D.J., Benjamin,K., Fisher,K.,

McPhee,D., Leavell,M.D., Tai,A., Main,A., Eng,D. et al. (2013)
High-level semi-synthetic production of the potent antimalarial
artemisinin. Nature, 496, 528–532.

2. Hutchison,C.A., Chuang,R.-Y., Noskov,V.N., Assad-Garcia,N.,
Deerinck,T.J., Ellisman,M.H., Gill,J., Kannan,K., Karas,B.J., Ma,L.
et al. (2016) Design and synthesis of a minimal bacterial genome.
Science, 351, aad6253–aad6253.

3. Richardson,S.M., Mitchell,L.A., Stracquadanio,G., Yang,K.,
Dymond,J.S., DiCarlo,J.E., Lee,D., Huang,C.L.V., Chan-
drasegaran,S., Cai,Y., Boeke,J.D. and Bader,J.S. (2017) Design
of a synthetic yeast genome. Science, 355, 1040–1044.

4. Engler,C., Gruetzner,R., Kandzia,R. and Marillonnet,S. (2009)
Golden gate shuffling: a one-pot DNA shuffling method based on
type IIs restriction enzymes. PLoS One, 4, e5553.

5. Gibson,D.G., Young,L., Chuang,R.-Y., Craig Venter,J.,
Hutchison,C.A. and Smith,H.O. (2009) Enzymatic assembly of
DNA molecules up to several hundred kilobases. Nat. Methods, 6,
343–345.

6. Roehner,N., Young,E.M., Voigt,C.A., Gordon,D.B. and Densmore,D.
(2016) Double dutch: a tool for designing combinatorial libraries
of biological systems. ACS Synth. Biol., 5, 507–517.

7. Nielsen,A.A.K., Der,B.S., Shin,J., Vaidyanathan,P., Paralanov,V.,
Strychalski,E.A., Ross,D., Densmore,D. and Voigt,C.A. (2016)
Genetic circuit design automation. Science, 352, aac7341–aac7341.

8. Hillson,N.J. (2014) DNA cloning and assembly methods. Methods
Mol. Biol., 1116, 245–269.

9. Appleton,E., Tao,J., Haddock,T. and Densmore,D. (2014) Interac-
tive assembly algorithms for molecular cloning. Nat. Methods, 11,
657–662.

10.Oberortner,E., Cheng,J.-F., Hillson,N.J. and Deutsch,S. (2017)
Streamlining the design-to-build transition with build-
optimization software tools. ACS Synth. Biol., 6, 485–496.

11.Yang,K., Stracquadanio,G., Luo,J., Boeke,J.D. and Bader,J.S. (2016)
BioPartsBuilder: a synthetic biology tool for combinatorial assem-
bly of biological parts. Bioinformatics, 32, 937–939.

12. Stracquadanio,G., Romano,V. and Nicosia,G. (2013) Semiconduc-
tor device design using the BIMADS algorithm. J. Comput. Phys.,
242, 304–320.

13. Stracquadanio,G., Drago,C., Romano,V. and Nicosia,G. (2010)
Multi-objective optimization of doping profile in semiconduc-
tor design. In: Proceedings of the 12th Annual Conference on
Genetic and Evolutionary Computation. ACM, Portland, OR, USA,
pp. 1243–1250.

14.Hu,X.-B., Wang,M. and Di Paolo,E. (2013) Calculating complete
and exact pareto front for multiobjective optimization: a new
deterministic approach for discrete problems. IEEE Trans. Cybern.,
43, 1088–1101.

15.Das,I. and Dennis,J.E. (1998) Normal-boundary intersection: a
new method for generating the pareto surface in nonlin-
ear multicriteria optimization problems. SIAM J. Optim., 8,
631–657.

16.Audet,C., Dennis Jr,J.E. and Le Digabel,S. (2012) Trade-off stud-
ies in blackbox optimization. Optim. Methods Software, 27,
613–624.

https://academic.oup.com/synbio/article-lookup/doi/10.1093/synbio/ysab026#supplementary-data
https://github.com/stracquadaniolab/mooda
https://github.com/stracquadaniolab/mooda
https://pypi.org/project/mooda-dna
https://pypi.org/project/mooda-dna
https://anaconda.org/stracquadaniolab/mooda
https://anaconda.org/stracquadaniolab/mooda

A. Gaeta et al. 9

17.Zhang,Q. and Li,H. (2007) MOEA/D: a multiobjective evolutionary
algorithm based on decomposition. IEEE Trans. Evol. Comput., 11,
712–731.

18.Deb,K., Pratap,A., Agarwal,S. and Meyarivan,T. (2002) A fast and
elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol.
Comput., 6, 182–197.

19.Knowles,J.D. and Corne,D.W. (2000) Approximating the nondom-
inated front using the pareto archived evolution strategy. Evol.
Comput., 8, 149–172.

20.Zitzler,E. and Thiele,L. (1998) Multiobjective optimization using
evolutionary algorithms — A comparative case study. Parallel
Problem Solving FromNature— PPSN V, Springer, Berlin, Heidelberg.

21.Zheng,H. and Wu,H. (2010) Gene-centric association analysis for
the correlation between the guanine-cytosine content levels and
temperature range conditions of prokaryotic species. BMC Bioin-
formatics, 11, S7.

22.Zhou,Z., Dang,Y., Zhou,M., Li,L., Yu,C.-H., Fu,J., Chen,S. and
Liu,Y. (2016) Codon usage is an important determinant of gene
expression levels largely through its effects on transcription.
PNAS, 113, E6117–E6125.

23.Novoa,E.M., Jungreis,I., Jaillon,O., Kellis,M. and Leitner,T. (2019)
Elucidation of codon usage signatures across the domains of life.
Mol. Biol. Evol., 36, 2328–2339.

24.Gibson,D.G., Young,L., Chuang,R.-Y., Venter,J.C., Hutchison,C.A.
and Smith,H.O. (2009) Enzymatic assembly of DNA molecules up
to several hundred kilobases. Nat. Methods, 6, 343–345.

25.Deb,K., Pratap,A., Agarwal,S. and Meyarivan,T. (2002) A fast and
elitist multiobjective genetic algorithm: NSGA-II. IEEE Trans. Evol.
Comput., 6, 182–197.

26.Agmon,N., Mitchell,L.A., Cai,Y., Ikushima,S., Chuang,J., Zheng,A.,
Choi,W.-J., Martin,J.A., Caravelli,K., Stracquadanio,G. and
Boeke,J.D. (2015) Yeast golden gate (yGG) for the efficient assembly
of S. cerevisiae transcription units. ACS Synth. Biol., 4, 853–859.

27.NCBI Resource Coordinators (2016) Database resources of the
national center for biotechnology information. Nucleic Acids Res.,
44, 853–859.

28.Zitzler,E., Knowles,J. and Thiele,L. (2008) Quality assessment of
Pareto set approximations. In: Branke J, Deb K, Miettinen K,
Słowiński R (eds). Multiobjective Optimization. Springer, Berlin,
Heidelberg, pp. 373–404.

	1. Introduction
	2. Materials and methods
	2.1 A multi-objective formulation of the DNA design and manufacturing problem
	2.2 A Multi-Objective Optimisation algorithm for DNA Design and Assembly
	Sequence editing and assembly operators.
	Selection of trade-off solutions.
	Software implementation and availability.

	2.3 Design and manufacturing objectives
	GC content objective function.
	Codon usage objective function.
	Block length variance objective function.
	Block number objective function.

	3. Results
	3.1 Evaluation of design quality
	3.2 Evaluation of design optimality
	3.3 Computational complexity analysis

	4. Discussion
	 Data availability

