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Dysregulation of the epigenetic enzyme-mediated transcription of oncogenes or tumor
suppressor genes is closely associated with the occurrence, progression, and prognosis
of tumors. Based on the reversibility of epigenetic mechanisms, small-molecule
compounds that target epigenetic regulation have become promising therapeutics.
These compounds target epigenetic regulatory enzymes, including DNA methylases,
histone modifiers (methylation and acetylation), enzymes that specifically recognize post-
translational modifications, chromatin-remodeling enzymes, and post-transcriptional
regulators. Few compounds have been used in clinical trials and exhibit certain
therapeutic effects. Herein, we summarize the classification and therapeutic roles of
compounds that target epigenetic regulatory enzymes in cancer treatment. Finally, we
highlight how the natural compounds berberine and ginsenosides can target epigenetic
regulatory enzymes to treat cancer.
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1 INTRODUCTION

The concept of epigenetics was first introduced in 1942 by Waddington, a British scientist who
defined “epigenetics” as changes in the phenotype without underlying genotypic changes to explain
altered growth and development (1). Epigenetics is now widely recognized as the regulatory
mechanisms by which a heritable phenotype is changed without altering the DNA sequence.
Abbreviations: AML, acute myeloid leukemia; BBR, berberine; BET, BRD-extra terminal protein; BRD, bromodomain; CHD,
chromo-ATPase/helicase-DNA-binding; CDY, chromodomain Y; CpGI, CpG island; CRC, colorectal cancer; DNMT, DNA
methylase; DNMTi, DNMT inhibitor; DOT1, disruptor of telomeric silencing 1; DOT1L, DOT1-like; EZH1/2, enhancer of
zeste homologs 1/2; FAD, flavin adenine dinucleotide; GNAT, GCN5-related N-acetyltransferase; HAT, histone
acetyltransferase; HDAC, histone deacetylase; HMT, histone methyltransferase; HMTi, HMT inhibitor; HP1,
heterochromatin protein 1; JmjC, Jumonji C; KDM, lysine demethylase; KMT, lysine methyltransferase; LSD, lysine-
specific demethylase; MBD, methyl-CpG-binding domain; MBP, methyl-CpG-binding protein; MBT, malignant brain
tumor; mC; miRNA, microRNA; MLL, mixed lineage leukemia; MM, multiple myeloma; MTase, methyltransferase; MYST,
MOZ, YBF2/SAS3, SAS2, and TIP60; NA, nucleoside analog; NB, neuroblastoma; ncRNA, noncoding RNA; NHL, non-
Hodgkin’s lymphoma; PHD, plant homeodomain; PRMT, protein arginine methyltransferase; PRMTi, PRMT inhibitor;
PWWP, Pro-Trp-Trp-Pro; SAM, S-adenosylmethionine; SCLC, small cell lung cancer; SET, su(var) 3-9, enhancer of zeste, and
trithorax; SIRT, sirtuin; TET, ten-eleven translocation.
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Epigenetic changes, including DNA/RNA methylation, histone
modifications, nucleosome localization, non-coding RNA
(ncRNA) expression, and chromatin 3D structure, are involved
in cellular growth, development, and function (2). These
epigenetic modifications constitute the specific epigenome of
an individual organism and provide a regulatory mechanism for
cellular diversity. Recently, epigenetics has gained attention in
fields such as medicine, exerting a profound impact on the
research and treatment of diseases such as cancer.

Epigenetic modifications catalyzed by epigenetic regulatory
enzymes are important for regulating chromatin structure and
gene expression. Imbalanced gene expression can be one of the
main mechanisms underlying diseases such as cancer. In
particular, thee aberrant expression of oncogenes, tumor
suppressor genes, or cancer-related genes by dysregulated
epigenetic regulatory enzymes can trigger tumorigenesis by
modulating basic processes, such as DNA repair, cell
proliferation, and mortality (3, 4). Therefore, epigenetic marks
such as DNA methylation, histone modifications, and ncRNA
expression have been identified as potential biomarkers for the
early diagnosis and prognosis of cancers (5, 6). In recent years,
many small-molecule compounds targeting epigenetic regulatory
enzymes have been discovered, some of which are promising
anticancer drugs.

The discovery and development of inhibitors targeting
epigenetic regulatory enzymes are extensively described in this
review. Further, we summarize the functions of berberine (BBR)
and ginsenosides, natural compounds capable of targeting
Frontiers in Oncology | www.frontiersin.org 2
epigenetic enzymes in cancer. Additionally, we discuss
promises and challenges that lie ahead of us.
2 DNA METHYLATION AND ITS ROLE IN
CANCER TREATMENT

2.1 DNA Methylation
DNA methylation is a stable epigenetic event in intracellular
processes, such as cell differentiation, and is involved in the
lineage classification and quality control of stem cells (7). In
humans, DNA methylation occurs almost exclusively at cytosine
residues in CpG sequences. These dinucleotides are dispersed
unevenly across the genome, and most are heavily methylated. In
contrast, CpG-rich regions known as CpG islands (CpGIs)
remain largely unmethylated, especially in promoter regions
(8). However, altered CpGI methylation patterns during cancer
progression result in both genome-wide hypomethylation and
site-specific CpGI hypermethylation (9). Therefore, DNA
methylation provides a useful molecular marker for cancer
diagnosis and therapeutics (10). In mammals, DNA
methyltransferases (DNMTs) are responsible for transferring
methyl donor S-adenosyl-L-methionine (SAM) to the 5′-
residue of cytosine (5′-C) in DNA (Figure 1A). The DNMT
family includes DNMT1, DNMT2, DNMT3A, DNMT3B, and
DNMT3L, which differ based on their structural characteristics
and functional domains (Figure 1B). For example, the Pro-Trp-
Trp-Pro (PWWP) domain of DNMT3A/3B recognizes the di- or
A

B C

FIGURE 1 | Types of DNA methyltransferases (DNMTs) and antitumor activity of its inhibitors: (A). Schematic of DNA methyltransferases (DNMTs) transferring methyl
donor S-adenosyl-L-methionine (SAM) to cytosine (5 ‘C) 5’- residues in DNA or removing SAM from DNA. (B). Functional domains of DNMTs. (DNMT1, DNMT2,
DNMT3A, DNMT3B and DNMT3L) (C). Three types of DNMTs inhibitors.
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tri-methylation of histone H3 lysine 36 (H3K36) to activate gene
expression (11, 12), whereas the ATRX-like domain of DNMT3A
and XXC-BAH1 domain of DNMT1 interact with deacetylase
HDAC1 to repress gene expression (13, 14). Further, the C-
terminal catalytic methyltransferase (MTase) domain of
DNMT3A mediates homo- and heterodimerization to regulate
progressive DNA methylation (15, 16). Cleavage between the N-
and C-terminal domains reportedly affects the relative preference
of DNMTs for unmethylated and hemi-methylated DNA (17).
DNMTs preferentially bind to hemi-methylated CpG sites (18).

DNA demethylation can occur either passively or actively.
DNA demethylation or “erasing DNA methylation” can occur
passively when DNA is replicated and the modification is not re-
established. One example of passive DNA demethylation is the
absence of methylation owing to a lack of DNMT1, whereas
another is the removal of methyl groups from cytosine (5-mC)
by ten-eleven translocation proteins (TETs) in a replication-
independent manner. TETs mainly oxidize 5-mC to form 5-
hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-
carboxycytosine (5caC) (19, 20). The catalytic domain of TETs
consists of a double-stranded b-helix domain and cysteine-rich
domain at the carboxyl end (21). In addition, TET1 and TET3
contain CXXC domains at their N-terminus, which are
composed of two Cys4-type zinc finger motifs that promote
DNA binding (22). Importantly, DNA methylation can be
recognized by methyl-CpG-binding proteins (MBPs), which
bind and interpret methylated DNA to initiate gene silencing
by recruiting other factors (23). MBPs can be classified as
methyl-CpG-binding domain (MBD) proteins as follows: su
(var) 3-9, enhancer of zeste, and trithorax (SET), RING-
associated, and zinc finger (24). To date, 11 proteins in the
MBD family have been identified, including methyl-CpG-
binding protein 2, MBDs 1–6, SETB1/2, and BAZ2A/B (25). In
addition to the MBD domain, SETB1/2 and BAZ2A/B also
contain other domains, such as SET, DNA-binding homeobox
and different transcription factors, plant homeodomain (PHD),
and bromodomain (BRD). Although they cannot interact with
5mC residues, MBPs can bind to methylated or acetylated
histones to participate in heterochromatin formation and
t ransc r ip t iona l inh ib i t ion by coord ina t ing H3K9
demethylation, histone H4 deacetylation, and DNA
methylation, which are essential for the epigenetic silencing of
ribosomal DNA (26, 27).

2.2 Inhibitors Targeting DNMTs (DNMTis)
In view of the hypermethylation of CpGIs in the promoter region
of most cancers, DNMT inhibitors (DNMTis) have been
developed for tumor treatment. DNMTis are mainly divided
into three types, nucleoside analogs (NAs), non-nucleoside
compounds, and natural compounds (Figure 1C) (28).
Compounds that inhibit DNMTs lead to hypomethylation
across cell divisions, subsequently inducing the expression of
tumor suppressors. Using methylation-specific PCR, Chan et al.
demonstrated substantial demethylation of all latent and lytic
Epstein-Barr virus promoters in nasopharyngeal cancer patients
after treatment with 5-azacytidine (a DNMTi) (29). DNMTis
such as azacitidine, decitabine, guadecitabine, and 4-thio-2-
Frontiers in Oncology | www.frontiersin.org 3
deoxycytidine have been examined in clinical anti-tumor trials
(30–32) (Table 1). Non-nucleoside compounds with various
chemical scaffolds have also been studied (63). Compounds
such as RG108, nanaomycin A, mithramycin A, SGI-1027,
hydralazine, procaine, S-adenosyl-L-homocysteine analogs, and
miR-29a have been shown to suppress the activity of DNMTs
(33–40). Among these, hydralazine has been shown to be an
effective demethylation agent and tumor suppressor gene
transcriptional reactivator (36). In a phase II clinical study,
hydralazine in combination with standard cytotoxic
chemotherapy reactivated tumor suppressor genes silenced by
DNA methylation and increased chemotherapy efficacy in
prostate cancer (33). Interestingly, some natural compounds,
such as (-)-epigallocatechin-3-gallate, curcumin, and genistein
from green tea/soybean, also reportedly block the activity of
DNMTs (36, 37). Genistein and related soy isoflavones
reportedly reactivate methylation-silenced genes to delay the
progression of breast or prostate cancer by directly blocking
DNMT. Although many DNMTis have been identified, few have
been applied clinically as current DNMTis are nonselective
cytosine analogs that induce cytotoxic side effects (64).
3 HISTONE METHYLATION AS AN
ANTICANCER TARGET

3.1 Histone Methylation
Histone methylation, a unique post-translational modification
catalyzed by histone MTases (HMTs), occurs at both lysine (K)
and arginine (R) residues. Abnormal histone methyl
modification plays an important role in the proliferation,
apoptosis, differentiation, and invasion of tumor cells. Thus,
blocking these abnormal modifications has become a new
direction in tumor therapeutics (65, 66). The key steps of the
histone methylation process, including HMT inhibitors (HMTis)
and histone lysine demethylases (KDMs), are shown in
Figures 2A, B. Lysine methylation occurs in mono-, di-, and
tri-states, whereas arginine methylation only occurs in mono-
and di-states. These methyl marks contribute to transcriptional
regulation and serve as platforms for the recruitment of effector
proteins. Most HMTs contain the SET domain. Methylation
occurs at lysine residues K4, K9, K27, K36, and K79 of histone
H3 and K20 of histone H4 (Figure 2B). In general, methylation
at H3K9, H3K27, and H4K20 correlates with transcriptional
repression, whereas methylation at H3K4, H3K36, and H3K79
corresponds with gene transcription (67). H3K9me2/me3,
H3K27me2/me3 , and H4K20me3 of ten appear on
heterochromatin where genes remain silent (68).

There are two families of histone demethylases, lysine-specific
demethylases (LSDs) and Jumonji C (JmjC) domain-containing
lysine demethylases (JmjC-KDMs). The LSD family includes
LSD1/KDM1A and LSD2/KDM1B proteins, which contain the
N-terminal Swi3p, Rsc8p, and Moira (SWIRM) domains, a flavin
adenine dinucleotide-binding motif (FAD), and a C-terminal
amine oxidase domain that is responsible for LSD activity in an
FAD-dependent manner (69). Both LSD1 and LSD2 function as
corepressors through the demethylation of mono- or di-methyl
March 2022 | Volume 12 | Article 848221
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marks on H3K4 (70). However, LSD1 can also act as a
coactivator of the androgen receptor via the demethylation of
H3K9me1/me2 (71). The JmjC-KDM family includes iron- and
a-ketoglutarate-dependent dioxygenases, which can be divided
into KDM 2–8 subfamilies. Members of the JmjC-KDM family
are responsible for the demethylation of all statuses of H3K4,
H3K9, H3K27, H3K36, H3K79, and H4K20 through the co-
substrate 2-oxoglutarate, dioxygen, and Fe (II) as a cofactor (42,
72). The lysine residues mentioned previously herein are prone
to methylation and play critical roles in tumorigenesis (73, 74).
Frontiers in Oncology | www.frontiersin.org 4
3.2 Histone Methyltransferase
Inhibitors (HMTis)
Histone methylation is a hot topic in tumor epigenetic modification.
This modification is associated with the biological behavior of
tumor cells and plays a role in the development of tumors. In this
section, we focus on a subclass of epigenetic regulators, namely
histone methyltransferases. To date, hundreds of HMTs have been
identified, including lysine and arginineMTases (47). Several HMTs
have been linked to different types of cancer. However, in most
cases, we only have limited knowledge regarding the molecular
TABLE 1 | Small molecule compounds targeting epigenetic regulatory enzymes.

Compound Type Tumor types Status Ref.

DNMTi
5-azacytidine/AZA NA DMS/AML Phase I (29)
5-aza-2’deoxycytidine/DAC NA DMS/AML Phase I (29)
RX-3117 NA DMS/AML Phase I (30)
Guadecitabine/SGI-110 NA AML Phase II (31)
4-Thio-2-deoxycytidine NA Cancer N/A (32)
RG108 NNC Prostate cancer N/A (33)
Nanaomycin A NNC Colorectal cancer Phase III (33)
Mithramycin A/MMA NNC Lung cancer N/A (33)
SGI-1027 NNC Cancer N/A (34)
Procaine NNC Human cancer N/A (35)
Hydralazine NNC Prostate cancer Phase I (36)
SAH analogs NNC MDS N/A (37)
MiR-29a NNC AML N/A (38)
EGCG Natural compounds Colon Cancer Phase I (39)
Curcumin/Genistein Natural compounds Breast Cancer Phase II (39)
Soybean Natural compounds Prostate Cancer Phase II (40)
HMTi
BIX-01294 G9a-GLP inhibitors Prostate/colon cancer N/A (41)
Chaetocin Non-specific inhibitor Glioma cancer N/A (41)
GSK343 LIS Osteosarcoma CTT (42)
CPI-1205/UNC0321 LIS Solid tumors/BCL Phase I (43)
UNC1999 LIS Bladder cancer CTT (25)
EPZ005687/GSK-126/EL LIS DLBL CTT (25)
Tazemetostat/EPZ6438 LIS Solid tumors/BCL Phase I (44)
Tazemetostat LIS follicular lymphoma Phase 2 (45)
Tazemetostat LIS Papillary thyroid cancer N/A (46)
EPZ004777 DOT1L inhibitor Leukemia N/A (47)
EPZ-5676 DOT1L inhibitor Leukemia Phase I (48)
SYC-522 DOT1L inhibitor AML N/A (49)
PRMTi
DB75 Type I PRMT Inhibitor Malaria Phase I (44)
GSK3368715 Type I PRMT Inhibitor Solid tumors Phase I (50)
TP-064/EZM2302 CARM1 inhibitor MM N/A (51)
GSK3235025/EPZ015666 PRMT5 inhibitor NHL N/A (52)
GSK3326595/EPZ015938 PRMT5 inhibitor Breast cancer Phase II (52)
Ly -283 PRMT5 inhibitor NHL N/A (53)
GSK3203591 PRMT5 inhibitor Breast cancer N/A (54)
KDMi
PCPA LSD1 inhibitor Cancer N/A (55)
INCB059872 LSD1 inhibitor Myeloid leukemia Phase I (56)
IMG-7289 LSD1 inhibitor Acute myeloid leukemia Phase I (57)
CC-90011 LSD1 inhibitor Prostatic cancer Phase I/II (58)
Thieno[3,2-b]pyrrole-5-carboxamides LSD1 inhibitor Human leukemia N/A (59)
GSK2879552 PCPA derivatives AML/SCLC Phase I (60)
ORY-1001 PCPA derivatives AML/SCLC Phase I (61)
HCI-2059 PCPA derivatives MYCN-amplified neuroblastoma N/A (62)
March 2022
 | Volume 12 | Article 84
AML, Acute Myeloid Leukemia; BCL, B-cell lymphoma; CTT, Clinical trial termination; DLBL, Diffuse large B-cell lymphoma; EGCG, (-)-epigallocatechin-3-gallate; LIS, Lyridine-indazole
scaffold; MDS, Myelodysplastic syndrome; MM, Multiple myeloma; NA, Nucleoside analogues; NHL, Non-Hodgkin’s lymphoma; NNC, Non-nucleoside compounds; SCLC, Small cell lung
cancer.
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mechanisms by which the HMTs contribute to disease
development. HMTis can be classified according to their
specificity for different types of methyltransferases. Here, we
summarize the current knowledge regarding some of the best
validated examples of HMTis inhibiting tumorigenesis and
discuss their potential mechanisms of action.

3.2.1 Inhibitors of H3K9 HMTs
Most HMTs are present as closely homologous pairs. For
example, the catalytic SET domains of G9a and GLP share
77% sequence identity and are present as a stoichiometric
heterometric complex (75). In cells, they are responsible for
H3K9 methylation and G9a/GLP-mediated H3K9me2, which are
highly associated with transcriptional repression (76). A recent
study reported high expression of G9a in various cancers, such as
prostate/colon/lung cancers, multiple myeloma, and
lymphocytic leukemia, indicating that G9a inhibitors might
suppress cancer proliferation (41, 77). BIX-01294 was first
found as a G9a/GLP-specific inhibitor that can modulate
global H3K9me2 levels in cells (78). Although specific G9a/
GLP inhibitors, such as UNC0224, UNC0321, E72, UNC0638,
and UNC0642, have been developed, they have not been used in
clinical trials because of their cell toxicity or poor bioavailability.

3.2.2 Inhibitors of H3K27 HMTs
In mammals, polycomb repressive complex 2 exhibits HMT
activity on H3K27 via catalytic subunits enhancer of zeste
homologs 1/2 (EZH1/2) (79). In Drosophila, EZH1 and 2 are
Frontiers in Oncology | www.frontiersin.org 5
mainly responsible for maintaining the spatial expression pattern
of homeobox (HOX) genes (80). Aberrant EZH2 expression has
been associated with various human cancers. For example, the
overexpression of EZH2 has been detected in prostate, breast,
and other cancers, suggesting that it might serve as a prognostic
marker for cancers (43, 81). Further, wild-type and mutant EZH2
cooperatively regulate and maintain the hypertrimethylation of
H3K27, which inhibits the proliferation of lymphoma cells by
abnormally silencing PCR2-target genes (47).

Inhibitors of EZH1/2 can be classified into three groups
according to their basic skeleton structure as follows: those
with the pyridone-indazole scaffold, which includes
EPZ005687, UNC1999, and GSK343 (48); those with the
pyridone-indole scaffold, which includes GSK-126, CPI-1205,
and E11 (41, 78); and those with the pyridone-phenyl scaffold,
which includes EPZ006088 and EPZ6438 (tazemetostat) (45).
More recently, several non-SAM-derived inhibitors of the
catalytic activity of EZH2 have been discovered. Among them
are GSK126 and EPZ005687, inhibitors effective against EZH2
mutant lymphomas, and EI1, a low MW inhibitor that blocks
diffuse large B-cell lymphoma proliferation (46). Tazemetostat
has been recently approved for relapsed/refractory after two or
more lines of therapy in the presence of an EZH2 mutation or
independent of an EZH2 mutation in the absence of other
options (82). Combined tazemetostat and MAPKis enhances
the differentiation of papillary thyroid cancer cells harboring
BRAFV600E by synergistically decreasing the global
trimethylation of H3K27me (44). UNC1999, a modified
A

B

FIGURE 2 | The histone methylation process, inhibitors of histone lysine methyltransferases (HMTs) and histone lysine demethylases (KDMs). (A). Schematic
diagram of three states of lysine methylation: mono, di, and tri states. (B). A summary of the histone methylation process and inhibitors of HMTs and KDMs.
March 2022 | Volume 12 | Article 848221
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inhibitor, improves the specificity of EZH2 and achieves better
oral bioavailability (83). As a second-generation compound,
EPZ6438 shows improved potency, pharmacokinetic
properties, and selectivity for EZH1 than EPZ005687 (81).
Both EPZ6438 and CPI-1205 are currently undergoing clinical
trials for solid tumors or B-cell lymphoma (84) (Table 1).

3.2.3 Inhibitors of H3K79 HMTs
DOT1-like protein (DOT1L), an enzyme responsible for H3K79
methylation, does not contain the SET catalytic domain and
displays a class I SAM-dependent MTase fold (85). In cells,
DOT1/DOT1L-mediated H3K79 methylation is involved in
various biological processes, including gene transcription, the cell
cycle, and DNA damage repair (86). DOT1L interacts with mixed
lineage leukemia (MLL) translocation fusion proteins, such as
AF10, ENL, AF9, and AF4, resulting in the DOT1L-mediated
H3K79 methylation of target genes. Therefore, DOT1L has
become a potential target for developing therapeutic drugs to
treat leukemia.

To date, more than 20 DOT1L inhibitors have been reported.
Among them,EPZ004777wasfirst found to selectively kill leukemic
cells by repressing DOT1L-mediated H3K79 methylation (87).
EPZ-5676, an optimized version of EPZ004777, forms hydrogen
bonds with residues Asp222, Glu186, Gly163, and Asp161 of
DOT1L to prevent cellular H3K79 methylation. EPZ-5676 has
been used against leukemia in phase I clinical trials (88). Another
DOT1L inhibitor, SYC-522, effectively delayed the progression of
MLL in the preclinical phase by suppressing H3K79 methylation
and reducing the expression of two important leukemia-related
genes, HOXA9 and MEIS1. Additionally, SYC-522 significantly
reduces the expression of CCND1 and BCL2L1, which are
important regulators of the cell cycle and anti-apoptotic signaling
pathways (49) (Table 1).

3.3 Inhibitors Targeting Protein Arginine
Methyltransferases (PRMTis)
The protein arginine MTase (PRMT) family includes nine
enzymes divided into three types, type I PRMT, CARM1, and
PRMT5. In cells, PRMTs catalyze the methylation of arginine
residues on histones. PRMT dysfunction is associated with the
occurrence of several cancers.

PRMTis are also classified into three types based on their
corresponding PRMT type and have been investigated in the
early preclinical stage (Table 1). Type I PRMTis include AMI-1,
AMI-6, DB75, GSK3368715, and MS023 (50, 89). MS049, TP-064,
and EZM2302 exhibit the highly selective inhibition of CARM1
(PRMT4) (51), and the latter two compounds canbeeffectively used
to treat multiple myeloma (MM) by selectively blocking CARM1
(90, 91). Interestingly, PRMT5 inhibitors, such as EPZ015666
(GSK3235025), EPZ015938 (GSK3326595), and LLY-283, possess
high anti-tumor activities. EPZ015666 was used against NHL in
clinical trials by blocking SmD3 methylation (52–54).

3.4 Inhibitors Targeting Histone Lysine
Demethyltransferases (KDMis)
Many small-molecule compounds have emerged as lysine
demethyltransferase inhibitors (KDMis), some of which have
Frontiers in Oncology | www.frontiersin.org 6
entered different clinical stages as anti-tumor drug candidates
(Table 1). Inhibitors of both the LSD/KDM and JmjC-KDM
family proteins have been shown to block the catalytic domain to
reduce catalytic activity. One of the most potent LSD1 inhibitors,
tranylcypromine (PCPA), causes the irreversible inhibition of
LSD1 by forming a covalent adduct with the FAD cofactor of
LSD1 (92). This process destroys the catalytic group of the
histone lysine demethyltransferase, which inhibits the activity
of the enzyme and inactivates it. Based on the chemo-type
scaffold, a series of PCPA derivatives have been designed and
shown to exert anti-tumor effects (55). Two recently developed
PCPA derivatives, ORY-1001 and GSK2879552, promoted the
differentiation of acute myeloid leukemia (AML) and limited the
growth of small cell lung cancer (SCLC) in a phase 1 clinical trial
aimed to assess their roles against AML and SCLC (60, 61). These
two PCPA derivatives exhibit higher selectivity for LSD1 than for
PCPA (93). Therefore, PCPA derivatives have the potential to
become new epigenetic anticancer drugs. In addition, HCI-2509,
a potent small-molecule inhibitor of LSD1, hinders the growth of
and exerts the cytotoxic effects on neuroblastoma (NB) cells via
p53 (62). Of the thieno[3,2-b]pyrrole-5-carboxamides, novel
reversible inhibitors of KDM1A, that showed a remarkable
anti-clonogenic cell growth effect on MLL-AF9 human
leukemia cells (59) (Table 1).

Various structural scaffolds, including hydroxamic acid,
hydroxyquinoline analogs, and cyclic peptides, reportedly
function as effective JmjC-KDM inhibitors (25). For example,
the 8-hydroxyquinoline derivative IOX1 can block many KDM
isoforms (94). Several catechol molecules and flavonoid analogs
have also been identified as JmjC-KDM inhibitors (25).
However, the aforementioned compounds are still in the
developmental phase.
3.5 Inhibitors Targeting Specific Functional
Domains of Methyl-Lysine Readers
The methylation of lysine residues in N-terminal tails of histones
H3 and H4 widely mediates biological processes in cells. In
recent decades, various proteins containing specific functional
domains that recognize methyl-lysine on histones have been
identified, such as methyl-lysine reader proteins. Methyl-lysine
readers are approximately categorized into chromodomain, PHD
finger domain, Tudor domain, PWWP domain, WD40 repeat
(WDR) domain, and malignant brain tumor (MBT) domain
families (5). These proteins exhibit different abilities to recognize
methylated lysine residues according to their different
functional domains.

Chromodomain proteins are further classified into
heterochromatin protein 1 (HP1)/polycomb (Pc), chromo-
ATPase/helicase-DNA-binding (CHD), chromobarrel domain,
and chromodomain Y (CDY) families (5). Both HP1/Pc and
CDY proteins show strong preference for trimethylated H3K9
and H3K27 (68). Moreover, CHD proteins recognize methyl-
lysine residues on H3K4 (95), whereas chromobarrel domain
proteins interact with methylated H3K36 and H4K20 (96). In
addition, both PHD and MBT domain proteins recognize
methylated H3K4 (97).
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Methyl-lysine reader proteins play important roles in regulating
many cellular processes, such as development, the cell cycle, stress
responses, andoncogenesis, andhave increasingly become the focus
of epigenetic research. Inhibitors of methyl-lysine reader proteins,
such asMS37452A, SW2_110A, andUCN3866, have been found to
inhibit the growth of cancer cells as selective inhibitors of Pc
chromobox (CBX) and CDY proteins (98, 99). Additionally,
several compounds have been identified as PHD inhibitors (100).
For example, macrocyclic calixarenes can disrupt the binding of
ING2 PHD to H3K4me, disulfiram, amiodarone, and tegaserod to
prevent interactionsbetween JARID1APHD3andH3K4me3(2, 6).
Moreover, benzimidazole can be selectively docked in methylated
H3K4, preventing the binding of the Pygo-BCL9 chromatin reader
to H3K4me PHD (101). Thus, many proteins targeting methyl-
lysine readers have been shown to exert anticancer effects (102).
4 HISTONE ACETYLATION AS A TARGET
FOR ANTI-TUMOR DRUG DEVELOPMENT

4.1 Histone Acetylation
Acetylation of the e-amino group of a lysine residue was first
discovered with histones in 1968, but the responsible enzymes,
histone acetyltransferases anddeacetylases,were not identifieduntil
themid-1990s (103).Histone acetylation is a reversible process that
occurs via the addition of an acetyl group to the e-amino of the
lysine residue at the midamino end and tail of the histone. This
process is dynamically controlled by histone acetyltransferases
(HATs), lysine acetyltransferases, and histone deacetylases
(HDACs) (Table 2). Lysine residues on histones are prone to
acetylation, resulting in a decrease in the positive charge and
weakening of the interaction between histones and DNA (104).

There are three major families of HATs, general control non-
derepressible 5 (Gcn5)-related N-acetyltransferases (GNATs),
p300/CBP, and MYST proteins. p300 (adenoviral E1A-associated
protein of 300 kDa) and CBP (CREB-binding protein) form a pair
Frontiers in Oncology | www.frontiersin.org 7
of paralogous transcriptional co-activators.Members of the GNAT
family include HAT1, yeast Gcn5, and its metazoan orthologs
GCN5 and PCAF (p300/CBP-associated factor) (103). HATs are
classified into typesA andB based on their cellular location. TypeA
is responsible for acetylating histones associated with chromatin,
whereas type B acetylates newly translated histones in the
cytoplasm. Nuclear HATs can be divided into two categories
based on their sequence homology and shared structural features.
The GCN5-related N-acetyltransferase (GNAT) family, which
includes GCN5 and p300/CBP-associating factor (PCAF), can
acetylate lysine residues on histones H2B, H3, and H4.
Meanwhile, the MOZ, YBF2/SAS3, SAS2, and TIP60 (MYST)
families of proteins are characterized by a highly conserved
MYST domain (105).

Acetyl groups on lysine residues must be removed by
HDACs. Dependent on sequence similarity and cofactor
dependency, HDACs are grouped into four classes and two
families, the classical and silent information regulator 2 (Sir2)-
related protein (sirtuin) families. In humans, members of the
classical family include HDAC1, 2, 3, and 8 (class I); HDAC4, 5,
6, 7, 9, and 10 (class II); and HDAC11 (class IV). They share
sequence similarity and require Zn2+ for deacetylase activity. The
sirtuin family contains seven members (SIRT1–7, class III),
which show no sequence resemblance to members of the
classical family and require NAD+ as the cofactor (106, 107).

4.2 Inhibitors Targeting Histone
Acetyltransferases (HATis)
Imbalanced HAT expression and acetylation levels in tumorigenesis
make HATs suitable targets for drug development. In preclinical
experiments, many small-molecule compounds have been screened
as potential HATis to regulate histone acetylation and reduce tumor
growth (Table 3). These compounds include isothiazolone-based
chemical compounds, the natural compounds garcinol and embelin
(108, 109), the pyrazolone-containing small molecule C646 (124),
and thepyridoisothiazole derivativesPU139andPU141,whichblock
TABLE 2 | Classification of histone deacetylases (HDACs) and their inhibitors.

Classification Locations Inhibitors

Zn++ Dependent Class I HDAC1
HDAC2
HDAC3
HDAC8

Nucleus
Nucleus
Nucleus/cytoplasm
Cytoplasm

pan-HDAC inhibitors approved by FDA to treat CTCL, PTCL, AML:
Vorinostat (SAHA),
Belinostat (PXD-101),
Panobinostat (LBH589),
Pracinostat (MEI pharma),
Romidepsin (FK228)
Chidamide (CS055, HBI-8000)
pan-HDAC inhibitors are being evaluated clinically:
Resminostat (4SC-201) !for Hodgkin’s lymphoma;
Givinostat (ITF2357) !for polycythemia;
Quisinostat (JNJ-26481585), Entinostat and Mocetinostat !for various cancers.
pan-HDAC inhibitor in preclinical stage: Trigustatin A

Class IIa HDAC4
HDAC5
HDAC7
HDAC9

Cytoplasm/nucleus
Cytoplasm/nucleus
Cyto–/mto-/nucleus
Cytoplasm/nucleus

Class IIb HDAC6
HDAC10

Cytoplasm
Cytoplasm/nucleus

Class IV HDAC11 Nucleus

NAD+ Dependent Class III SIRT 1
SIRT 2
SIRT 3
SIRT 4
SIRT 5
SIRT 6
SIRT 7

Cytoplasm
Cytoplasm/nucleus
Mitocondria
Mitocondria
Mitocondria
Nucleus
Nucleus

SIRTs inhibitors for against breast cancer:
Sirtinol and Nicotinamide
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PCAF and/or p300 (110). For example, PU139 retards the growth of
NB by blocking Gcn5, PCAF, CBP, and p300 (110).

4.3 Inhibitors Targeting Histone Lysine
Deacetylases (HDACis)
Global histone acetylation levels are frequently decreased in cancer
cells. Correcting imbalanced acetylation in tumor cells can be
achieved by reducing the activity of HDACs using HDACis
(Table 3). The first HDACi discovered was trichostatin A, a
dienohydroxamic acid obtained from Streptomyces that effectively
suppressed zinc-dependent HDACs in the preclinical stage (111).
Notably, numerous pan-HDAC inhibitors (P-HDACi) such as
vorinostat (also known as suberoylanilide hydroxamic acid,
SAHA) (112), belinostat (PXD-101) (113), panobinostat
(LBH589) (114), pracinostat (MEI Pharma) (115), romidepsin
(FK228) (116), and chidamide (CS055, HBI-8000) (117), have
been approved by the FDA to treat different cancers, including
primary cutaneous T-cell lymphoma, peripheral T-cell lymphoma,
MM, and AML. Moreover, several P-HDACis, including
resminostat (4SC-201) (118), givinostat (ITF2357) (119),
quisinostat (JNJ-26481585) (120), entinostat (121), and
mocetinostat (122), have been evaluated clinically for Hodgkin’s
lymphoma, polycythemia, ovarian cancer, and other carcinomas.
Furthermore, both sirtinol andnicotinamidehave exhibitedactivity
against breast cancer as SIRT inhibitors (123, 125) (Table 3). In
addition to the compounds mentioned, novel HDACis are
constantly being developed (25).

4.4 Inhibitors Targeting Specific Functional
Domains of Acetyl-Lysine Readers
Acetyl-lysine on histones can also be recognized by readers with
specific functional domains, such as PHD finger, Yaf9, ENL, AF9,
Taf14, and Sas5 (YEATS), andBRD. PHDfinger proteins recognize
acetylated, un-acetylated, or methylated histones, with the PHD
finger domains inMLL4 (KMT2D) andMLL3 (KMT2C) targeting
Frontiers in Oncology | www.frontiersin.org 8
H4K16acetylation and involved in the interactionbetweenMLL4/3
and males absent on the first (MOF) (1278). YEATS proteins
interact with acetylated histones H3K9, H3K14, and H3K27 (126).

Many BRD proteins are involved in chromatin-remodeling or
chromatin-modifying enzymes. BRDs in HATs act as protein–
protein interaction modules that specifically recognize acetylated
histones to regulate gene transcription, including H4K5, H4K8,
H4K12, H4K16, H4K20,H3K14, andH3K36 (5). BRD proteins are
the most widely studied acetyl-lysine readers and have been found
in many nuclear proteins, including HATs, HMTs, chromatin-
remodeling enzymes, and transcriptional co-activators (127). At
present, several inhibitors that target the acetyl-binding pocket of
BRDs or BRD extraterminal proteins (BETs) have been discovered
(25) (Table 4). Among them, BET inhibitors such as RVX-208
(RVX00022), I-BET762 (GSK525762), FT-1101, CPI-0610,
BAY1238094, INCB054329, PLX51107, GSK2820151,
ZEN003694, BMS-986158, BI 894999, ABBV-075, GS-5829 (128,
129), andOTX015 (MK-8628)havebeen tested for their anti-tumor
effects against numerous types of cancers in clinical trials (130, 131)
(Table 4). Moreover, several novel BRD inhibitors, including I-
BRD9, BI-7273, and BI-9564, can specifically target BRD9 and
possess anti-tumor activity (132, 133).
5 EPIGENETIC ENZYMES AS
ANTICANCER TARGETS OF NATURAL
COMPOUNDS AND THEIR ACTIVE
COMPONENTS

Natural compounds and their active components have been widely
used in traditional medicine in China, Japan, South Korea, and
other countries for their various pharmacological effects. Increasing
natural compounds have demonstrated high anticancer activity,
providing potential candidates for developing multifunctional
tumor-targeted drugs. However, their precise mechanisms of
TABLE 3 | Compounds targeting histone acetylation exert anti-tumor activity.

Compound Types Tumor types Status Ref.

HATi
Garcinol Natural compound Breast cancer Preclinical (108)
Embelin Natural compound Prostate cancer Preclinical (109)
PU139 A pyrazolone containing small molecule C646 Neuroblastoma Preclinical (110)
PU141 Pyridoisothiazole derivatives Neuroblastoma Preclinical (110)
HDACi
Trigustatin A Zinc-dependent HDACs inhibitors NA Preclinical (111)
Vorinostat/SAHA P-HDACi CTCL Phase II (112)
Belinostat/PXD-101 P-HDACi PTCL Approved by FDA (113)
Panobinostat/LBH589 P-HDACi MM Approved by FDA (114)
Pracinostat/MEI pharma P-HDACi AML Phase II (115)
Romidepsin/FK228 P-HDACi CTCL Phase II (116)
Chidamide/CS055/HBI-8000 P-HDACi AML Phase I (117)
Resminostat/4SC-201 P-HDACi Solid tumors Phase I (118)
Givinostat/ITF2357 P-HDACi Polycythemia N/A (119)
Quisinostat/JNJ-26481585 P-HDACi Solid tumors Phase I (120)
Entinostat P-HDACi HL Phase II (121)
Mocetinostat P-HDACi HL Phase II (122)
Sirtinol/Nicotinamide SIRTs inhibitors Breast cancer Phase I (123)
March
 2022 | Volume 12 | Article 8
CTCL, Cutaneous T-cell lymphoma; HL, Hodgkin lymphoma; MPNs, myeloproliferative neoplasms; P-HDACi, Pan-HDAC inhibitors; PTCL, peripheral T-cell lymphoma.
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action remain unclear. Here, we focus on BBR (C20H18NO4) and
ginsenosides, natural compounds that have undergone extensive
preclinical investigation and play anti-tumor roles by targeting
epigenetic enzymes and ncRNAs (Figure 3).

5.1 Berberine, a Natural Compound With
Epigenetic Regulatory Activity
BBR, the main alkaloid in the herbal medicine Coptis, and its
derivatives exhibit effective anti-tumor activity (Table 5). The
functional mechanism of BBR is closely related to its regulation
of epigenetic chromatin-modifying enzymes, as the activities of
multiple enzymes involved in histone acetylation and
methylation, such as CBP/p300, SIRT3, KDM6A, SETD7, and
HDAC8, are altered when myeloma U266 cells are treated with
BBR (138). Furthermore, BBR treatment leads to the increased
acetylation of histones H3 and H4 and suppresses total HDAC
activity, further retarding the growth of human lung cancer A549
cells (139). Chen et al. demonstrated that BBR reduces the
expression of both EZH2 and H3K27me3 in esophageal
carcinoma (134). Further, pseudodehydrocorydaline (a
protoberberine alkaloid) selectively suppresses the activity of
HMT G9a and decreases the expression of H3K9me2 in MCF-
7 breast cancer cells via CT13 occupation of the binding site of
Frontiers in Oncology | www.frontiersin.org 9
histone H3, suggesting that CT13 might provide a novel scaffold
for synthetic G9a inhibitors (135). In addition to modifying
histones, BBR also regulates DNMTs. BBR reportedly accesses
chromatin in hepatoma HepG2 cells, resulting in increased
global genome methylation and reduced methylation in
promoter region CpG sites of cytochrome P450 2B6 (CYP2B6),
cytochrome P450 3A4 (CYP3A4), and glucose regulated protein
78 (GRP78) (136). In addition, BBR effectively reduces the
expression of DNMT1/3B and promotes p53-hypomethylation,
thus further altering the p53-dependent signaling pathway to
hinder the growth of myeloma U266 cells (137, 140).

5.2 Anti-Tumor Epigenetic Regulatory
Effects of Ginsenosides
Ginsenosides, derived from saponins of ginseng, have a steroid-
like hydrophobic backbone connected to one or more sugar
moieties and are generally believed to be the major bioactive
constituents of ginseng (141). Ginsenosides are divided into
two groups based on their chemical structures, panaxatriol
(Re, Rf, Rg1, Rg2, and Rh1) and panaxadiol (Rb1, Rb2,
Rb3, Rc, Rj, Rg3, and Rh2) (142) (Table 6). Although
ginsenosides possess various pharmacological activities,
including anti-inflammatory, anti-allergic, anti-fatigue, anti-
FIGURE 3 | Chemical structure of berberine and Ginsenosides Rh2, Rg3 and Rd.
TABLE 4 | BRD-extraterminal proteins inhibitors (BETi) display the roles against tumors.

Compound Tumor types Status Ref.

GSK525762/I-BET762 Breast Cancer Phase I (128)
FT-1101 AML Phase I (128)
CPI-0610 MM Phase I (128)
BAY1238094 N/A N/A (128)
INCB054329 Solid Tumors Phase I/II (128)
PLX51107/GSK2820151 Solid Tumors Phase I (129)
ZEN003694 Prostate Cancer Phase I (129)
BMS-986158/GS-5829 Solid Tumor Phase I (129)
BI 894999 Neoplasms Phase I (129)
ABBV-075 Breast Cancer Phase I (129)
MK-8628/OTX015 AML Phase I (130)
March 2022 | Volume 12 | Article 8
48221

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Jin et al. Small-Molecular Epi-Drug Therapy for Cancer
stress, and anti-cancer properties (152), their basic biological
characteristics have not been fully studied. Recent studies have
demonstrated that epigenetic mechanisms might be involved in
pharmacological effects of ginsenosides (153).

Genome-wide DNA methylation analysis revealed that
ginsenoside Rh2 inhibits the growth of breast cancer MCF-7 cells
by reducing long interspersed nucleotide element methylation and
the expression of hypermethylated genes involved in tumorigenesis
(143). Similarly, ginsenoside Rg3 treatment downregulates
hypermethylated tRNA methyltransferase 1-like (TRMT1L),
proteasome 26S subunit, ATPase 6 (PSMC6), and NADPH
oxidase 4 (NOX4), while upregulating hypomethylated ST3 beta-
galactoside alpha-2, 3-sialyltransferase 4 (ST3GAL4), RNLS, and
KDM5A in breast cancerMCF-7 cells to block tumor growth (154).
Ginsenosides also block DNMTs by modulating their target genes.
CompoundK (themainmetabolite of ginseng saponin) suppresses
DNMT1 expression to reduce the proliferation of colorectal cancer
(CRC) cells by reactivating the epigenetically silenced RUNX3 gene
(144). Ginsenoside Rg3 treatment decreases the expression of
DNMT1/3A/3B and increases the acetylation of histones H3K9/
K14 and H4K5/K12/K16 to inhibit the growth of ovarian cancer
cells (145). Treatment with 20(s)-ginsenoside Rh2 suppresses the
proliferation of K562 and KG1-a leukemia cells by reducing the
expression and activity of HDACs, including HDAC1/C2/C6,
suggesting that 20(s)-ginsenoside Rh2 acts as an HDACi (155).
Interestingly, treatmentwith ginsenosideRh2 also suppressesPDZ-
binding kinase/T-LAK cell-originated protein kinase
(PBK/TOPK), which retards the proliferation of tumor cells
through the ERK1/2 signaling pathway (156).

A recent study reported the ability of ginsenosides to suppress
cancer by regulating miRNAs (150, 157). The activity of ginsenoside
Rh2 against different types of cancer cells ismediated byupregulating
miR-146a-5p, miR-21, miR-491, and miR128 (158–160) or by
downregulating miR-4295, miR-31, and miR-638 (146, 161–163).
In addition, treatment with the ginsenoside Rh2 reduces anti-tumor
drug resistance in breast cancer cells by reducing the expression of
miR-222, miR-34a, and miR-29a (147). Further, treatment with 20
Frontiers in Oncology | www.frontiersin.org 10
(S)-ginsenoside Rg3 reverses epithelial–mesenchymal transition in
ovarian cancer cells by downregulating DNMT3A-mediated miR-
145 (148). Similarly, ginsenoside Rg3 treatment downregulates miR-
221 to reduce epithelial–mesenchymal transition in human oral
squamous carcinoma cells (149). 20(S)-ginsenoside Rg3-mediated
miR-532-3p/miR-324-5p also represses the expression of pyruvate
kinase M2 (PMK2), resulting in an anti-tumor effect (164, 165).

Ginsenosides also modulate lncRNAs to hamper the growth
of cancer cells (150, 166). Treatment with ginsenoside Rh2
suppresses the lncRNA C3orf67 in breast cancer MCF-7 cells
(151). Moreover, ginsenoside Rg3 binds to the promoters of two
lncRNAs, regulatory factor X-antisense 1 (RFX-AS1) and
syntaxin-binding protein 5-antisense 1 (STXBP5-AS1), to alter
DNA methylation, thus inhibiting the growth of breast cancer
MCF-7 cells (56) (Table 6). Thus, ginsenosides mediate the
expression of DNMTs and lncRNAs in tumor growth. In
summary, natural compounds and their active components,
targeting epigenetic enzymes, have therapeutic potential for
cancer treatment (57).
6 CONCLUSIONS AND PERSPECTIVES

Epigenomic alterationsmediated by epigenetic regulatory enzymes
have a profound effect on many hallmarks of cancer, including
malignant self-renewal, differentiation blockade, evasion of cell
death, and tissue invasiveness (167). The anticancer roles of
inhibitors targeting epigenetic regulatory enzymes provide
attractive targets for novel drugs, even if enzymes that selectively
regulate the target genes are not well known (168). Some HATis,
HDACis, andDNMTis have been approved as anticancer epidrugs.
However, the use ofmost epigenetic regulatory enzyme inhibitors is
limited by their poor bioavailability, cytotoxicity, and specificity.
Therefore, developing effective drugs that target epigenetic enzymes
remains challenging. An increasing number of studies has
demonstrated that many natural compounds and their active
components target epigenetic enzymes to successfully delay
TABLE 6 | Ginsenosides target epigenetic enzymes against cancers.

Compound Targets Tumor types Ref.

Ginsenosides Rh2 Hyper-methylated genes Breast cancer (143)
Ginsenosides CK DNMT1 Colorectal cancer (144)
Ginsenosides Rg3 DNMTs Ovarian cancer (145)
20(S)-ginsenoside Rh2 HDACs Leukemia (146)
Ginsenosides Rh2 MiR-222/MiR-34a/MiR-29a Breast cancer (147)
20(S)-ginsenoside Rg3 MiR-145 Ovarian cancer (148)
Ginsenosides Rg3 MiR-221 Oral squamous carcinoma (149)
Ginsenosides Rh2 IncRNA C3orf67 Breast cancer (150)
Ginsenosides Rg3 IncRNA RFX-AS1/STXBP5-AS1 Breast cancer (151)
March 2022 | Volume 12 | Article 8
TABLE 5 | Berberine targets epigenetic enzymes for cancer therapeutics.

Compound Targets Tumor types Ref.

Berberine EZH2/H3K27me3 Osteosarcoma (134)
Berberine Global histone H3/H4 acetylation Lung cancer (135)
Berberine DNMTs Gastric cancer (136)
Berberine DNMT1/DNMT3B MM (137)
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cancer progression, suggesting attractive alternatives for
anticancer treatments.
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