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Comparative metagenomics 
reveals taxonomically idiosyncratic 
yet functionally congruent 
communities in periodontitis
Shareef M. Dabdoub*, Sukirth M. Ganesan* & Purnima S. Kumar

The phylogenetic characteristics of microbial communities associated with periodontitis have been 
well studied, however, little is known about the functional endowments of this ecosystem. The present 
study examined 73 microbial assemblages from 25 individuals with generalized chronic periodontitis 
and 25 periodontally healthy individuals using whole genome shotgun sequencing. Core metabolic 
networks were computed from taxa and genes identified in at least 80% of individuals in each group. 
50% of genes and species identified in health formed part of the core microbiome, while the disease-
associated core microbiome contained 33% of genes and only 1% of taxa. Clinically healthy sites in 
individuals with periodontitis were more aligned with sites with disease than with health. 68% of the 
health-associated metagenome was dedicated to energy utilization through oxidative pathways, 
while in disease; fermentation and methanogenesis were predominant energy transfer mechanisms. 
Expanded functionality was observed in periodontitis, with unique- or over-representation of genes 
encoding for fermentation, antibiotic resistance, detoxification stress, adhesion, invasion and 
intracellular resistance, proteolysis, quorum sensing, Type III/IV secretion systems, phages and toxins 
in the disease-associated core microbiome. However, different species or consortia contributed to these 
functions in each individual. Several genes, but not species, demonstrated robust discriminating power 
between health and disease.

Periodontitis, a microbially induced disease that destroys the structures anchoring the tooth to the jawbone, is 
the sixth most prevalent disease in the world, affecting over 700 million adults worldwide1. The consequences of 
untreated disease are tooth loss, poor nutritional status, loss of speech and masticatory function. With the annual 
cost of periodontal treatment exceeding 15 billion dollars in the USA alone, this disease poses a significant health 
burden2. Additionally, emerging evidence implicates periodontitis in the pathogenic pathways of several systemic 
diseases3,4, and therefore, the consequences of untreated periodontitis may extend beyond the oral cavity.

Periodontitis is a site-specific disease, with the disease affecting many, but not all teeth in an individual with 
disease. Also, disease progression occurs through recurrent bursts of destruction followed by varying periods of 
quiescence. This temporally and spatially haphazard mode of disease progression has been named the random 
burst model5. Several reasons have been proposed to explain the random burst hypothesis, including the qual-
ity of plaque, presence of plaque retentive factors and local inflammatory response6, however, the mechanism 
underlying this arbitrariness is poorly understood; and poses a barrier to effective clinical treatment and disease 
prevention.

An ecological shift in the indigenous microbiome towards dysbiosis is known to play a primary role in the 
etiology of this disease. While the taxonomic profiles of eubiotic and dysbiotic periodontal communities are 
well-studied7–15, little is known about their genome signatures, and whether community level functional altera-
tions accompany compositional shifts in the transition to and in the state of disease. Even less is known about the 
selection pressures exerted by a disease-associated environment on the pre-existing microbiome. Also, although 
several lines of evidence have suggested a role for viruses, archaea and fungi in disease etiology16–18, their contri-
butions to the functionality of the periodontal ecosystem has never been explored.
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The primary purpose of the present investigation, therefore, was to better understand the functional poten-
tials encoded within health-compatible and disease-associated periodontal microbiomes, using a comprehensive 
metagenomic approach and computational bioinformatics to characterize correlations between the mycobi-
ome, virome, archaeome and bacteriome. A secondary aim was to investigate if periodontitis is the result of a 
site-specific dysbiosis or a global shift in the subgingival microbial ecosystem.

Methods
Subject and site selection. Approval for this study was obtained from the Office of Responsible 
Research Practices at The Ohio State University and the study was conducted in accordance with the approved 
guidelines. Twenty-five periodontally healthy never-smokers (attachment loss ≤ 1, probing pocket depths ≤ 3, 
gingival index ≤ 1) and twenty-five never-smokers with generalized moderate to severe chronic periodontitis 
(attachment loss ≥ 5, probing pocket depths ≥ 5, gingival index > 1 in 30% or more sites) were recruited follow-
ing clinical and radiographic examination and informed consent obtained. Exclusion criteria for both groups 
included diabetes, HIV infection, use of immunosuppressant medications, bisphosphonates, or steroids, anti-
biotic therapy, or oral prophylactic procedures within the preceding 3 months, and fewer than 20 teeth in the 
dentition. Sample size was estimated using the HMP package in R19, based on an 80% power to detect an effect 
size of at least 0.20 using weighted UniFrac distances as the primary outcome variable, assuming a two-sided 
significance level of 0.05.

Sample collection. From healthy subjects, samples were collected and pooled from 15 mesial sites on teeth 
with CAL ≤  1 mm, PD ≤  3 mm, GI ≤  1 and no BOP (shallow-healthy) using sterile endodontic paper-points 
(Caulk-Dentsply, Milford, DE, USA). From the disease group, subgingival plaque from four nonadjacent proxi-
mal sites with attachment loss (CAL) ≥  5 mm, probe depths (PD) ≥  6 mm, bleeding on probing (BOP), and Loe 
and Silness gingival index (GI) ≥  2 was collected using 15 paper points and pooled (deep-diseased). Samples 
were similarly acquired from four sites with CAL ≤  1 mm, PD ≤  3 mm, GI ≤  1 and no BOP and separately pooled 
(shallow-diseased).

DNA isolation and sequencing. Bacterial DNA was isolated from paper points, using Qiagen DNA 
MiniAmp kit (Qiagen, Valencia, CA, USA) and quantified using Qubit fluorometer. Library generation was com-
pleted using an Illumina TruSeq kit according to the manufacturer’s instructions. Briefly, genomic DNA was 
sheared enzymatically yielding an average fragment size of 500 base pairs. The fragment ends were blunted and 
adenylated, before ligation of barcodes and sequencing adaptors. Quantified and pooled libraries were clustered 
on the Illumina MiSeq (Illumina, Inc., San Diego, California), and 150 bp paired-end sequencing was performed 
in a commercial facility (Molecular Research LP, Shallowater, TX).

Metagenomic Analysis. Trimmed and filtered sequences were uploaded to the MG-RAST metagenomics 
analysis pipeline (version 3.3.6)20,21 (Argonne National Laboratory) for quality processing and basic functional 
analysis. The MG-RAST API22, and the custom Python library we developed to access it and analyze/visualize 
results, were used throughout the analysis process to download relevant data and pipeline results (available for 
download at http://github.com/smdabdoub/PyMGRAST). Comparisons of functional potential between clinical 
groups were made in the context of the KEGG (Kyoto Encyclopedia of Genes and Genomes)23 and the SEED24 
ontological hierarchies and statistical analysis of differential functional potential was performed using R and 
DESeq225. Taxonomic identities for archeal, fungal, and viral sequences were assigned using the Lowest Common 
Ancestor (LCA) alignment to the M5NR database26. Bacterial rRNA genes were filtered from the metagenome 
by BLAT27 search against 90% clustered SILVA28. Rarefaction curves were generated from the 16S data and 
used to estimate sequencing coverage (Supplementary Fig. 1A). Taxonomic profiles were generated by compar-
ing these filtered rDNA sequences to the HOMD database29 using the QIIME (version 1.8) and PhyloToAST  
(version 1.2) pipelines as previously described30. A core microbiome was computed for health and disease to 
include all s-OTUs (core phylome) and functional genes (core metagenome) present in at least 80% of the subjects 
in a group.

Contributions of each species to community function were assessed by network analysis of KEGG-annotated 
bacterial genome sequences. Taxonomic identifiers were assigned to the genes by alignment to the full set of 1528 
genomes in the Human Oral Microbiome Database (HOMD) using Bowtie 2 (version 2.2.5)31. Sequences with mul-
tiple equivalent matches (within 10% alignment score) were assigned to the lowest common ancestor (LCA). The 
LSU genes of fungal sequences were similarly isolated, and identified by comparison to the SILVA database housed 
within MG-RAST. Species assignment was made at 97% identity32. Function-taxonomy networks were visualized 
using force directed networks (Fruchterman-Reingold33) and Force Atlas 3D34. Network-wide degree of special-
ization (H2′ ) was determined as a standardized degree of entropy, with 0.0 representing extreme generalization 
and 1.0 extreme specialization35,36. Specialization was calculated using version 2.05 of the R package bipartite37.  
The ability of genes to discriminate between health and disease was examined using a machine-learning algo-
rithm (RandomForest package in R). The robustness of the classifier was evaluated using ROC curves (ROCR 
package in R). Two-thirds of the dataset was used to train the algorithm, which was tested on the remaining data. 
This was iterated 10 times and the mean ‘importance’ computed for each marker gene. The importance classi-
fication was used to select marker genes based on the methodology of Diaz-Uriarte38. For each iteration of the 
test, a ‘confusion table’ was created for each of the marker genes based on the number of correctly classified and 
misclassified samples; and this data was used to compute sensitivity and specificity.

http://github.com/smdabdoub/PyMGRAST
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Results
An average of 3.32 million sequences per sample (range 1.97–4.53 million) were obtained for the shallow-healthy, 
shallow-diseased, and deep-diseased groups respectively. On average 77.22% of the shallow-healthy, 70.16% 
of the deep-diseased and 62.96% of the shallow-diseased sequences were human sequences. This is line with 
other investigations using similar approaches to study the subgingival microbiome13,39,40. Average coverage 
per sample ranged from 38% to 93% based on Nonpareil41, and was not significantly different between groups 
(p >  0.05, Tukey HSD, Supplementary Figure 1B). These sequences represented 4837 functionally annotated 
genes of bacterial, fungal, viral and archeal origin. The distribution of the sequences in each sample is shown in 
Supplementary Figure 2. Overall, 95% or more of the sequences belonged to bacteria. Viruses, archeae and fungi 
were identified in the samples, but were variably distributed. An average of 7% (range from 2.5–9.3%) of the 
sequences encoded for rRNA.

Energy efficiency and functional equitability are central characteristics of a health-compatible 
microbial ecosystem. 3348 functions were identified from periodontally healthy subjects, of which 1811 
were present in the core healthy metagenome (≥ 80% of the healthy group); suggesting that in health, more than 
half of the microbial metagenome is conserved among all individuals.

The most abundant functional group represented metabolic potential. Within this group 29% of genes 
encoded for protein metabolism, with genes responsible for protein, amino acid, RNA and DNA biosynthesis 
predominating this group (Fig. 1A,B and Supplementary Table 2). The second most abundant functionality was 
carbohydrate metabolism (22%). Within this framework, the primary pathways were related to aerobic metabo-
lism of monosaccharides, organic acids, polysaccharides and one-carbon sugars, with an abundance of co-factors 
as catalysts (Fig. 1B). 17% of the core genes contributed to oxidative phosphorylation (aminotransferases, TCA 
cycle, pentose phosphate shunt, electron transport (cytochrome and ubiquinone families) and membrane trans-
port (Fig. 1B and Supplementary Table 2)).

The second most abundant group of functions encoded in health (28%) was related to virulence lifestyle, 
and included antimicrobial resistance genes (AMRs), cell-signaling, competence, peptidoglycan biosynthesis and 
non-siderophore type iron transport (Fig. 1B and Supplementary Table 2). Additionally, a large number of phages, 
transposons, and gram-negative cell wall components (ranging from 1.3% to 5.7% of the metagenome) were also 
observed in health.

75% of the community membership was made up of 46 species belonging to the genera Streptococcus, Veillonella, 
Actinomyces, Corynebacterium, Neisseria, Fusobacterium and Selenomonas, of which 22 belonged to the core 
(Fig. 1C). There were no viruses or archaebacteria in the core; however, the fungal species Candida albicans was 
identified in 87% of healthy individuals. Co-occurrence networks demonstrated strong correlations (Spearman’s 
ρ  >  0.8, p <  0.05) between Actinomyces gerencseriae, A. oris, A. johnsonii, Selenomonas noxia, S. sputigena,  
S. artemides, Streptococcus sanguinis, S. oralis, Fusobacterium nucleatum and Veillonella parvula. Each of the spe-
cies contributed 879 ±  137 genes. While there was 60% overlap in the genes that each species contributed, there 
was a 98% overlap in the functions encoded by these genes, indicating that these species contribute to similar 
functions in the health-compatible microbiome (functional equitability or functional generalization). Some level 
of functional specialization was observed, with 6 species contributing genes encoding for motility and chem-
otaxis. Together, these 6 species (Campylobacter rectus, C. showae, C. curvus, Selenomonas noxia, Eubacterium 
yurii, and Centipeda periodontii) formed 0.019% of the core microbiome, and hence, were rare taxa within the 
microbiome.

Global dysbiosis in disease. In addition to collecting samples from sites with clinical disease 
(deep-diseased), samples were collected from clinically healthy sites in subjects with disease (shallow-diseased) 
and from healthy subjects (shallow-healthy). The shallow-diseased sites were clinically similar to the 
shallow-healthy sites (Supplementary Table 1). If periodontitis were a result of a site-specific dysbiosis, then we 
would expect to see marked differences between deep-diseased and shallow-diseased samples, as well as signifi-
cant similarities between shallow-healthy and shallow-diseased samples.

Relative abundances of functional genes and taxa in the three groups were compared using DESeq225. 
Shallow-healthy and deep-diseased sites demonstrated significant differences in nearly 2000 genes (p <  0.05, 
FDR adjusted Wald test), 1730 of which were part of the core metagenomes (Fig. 2A). Shallow-healthy and 
shallow-diseased sites differed in 1000 gene abundances (Fig. 2B), again, 880 of these belonged to the core. Few 
differences were detected between shallow-diseased and deep-diseased sites (Fig. 2C).

Phylogenetically, both deep-diseased and shallow-diseased sites demonstrated a significantly higher alpha 
diversity (Chao) when compared to shallow-healthy sites (p <  0.05, Tukey HSD, Fig. 3A). Higher levels of sev-
eral species (notably those belonging to the genera Porphyromonas, Fusobacterium, Fretibacterium, Filifactor, 
Parvimonas, Selenomonas, Treponema and Kingella), and lower levels of health-compatible species were observed 
in disease (p <  0.05, FDR adjusted Wald test, Fig. 3B and Supplementary Table 4). Shallow-diseased sites also 
exhibited lower levels of Dialister invisus, Tannerella forsythia, Fusobacterium nucleatum and Fretibacterium 
HOT.452 when compared to deep-diseased sites. There were no significant differences in the abundances of 
human viral species between groups (Fig. 4A). In shallow-healthy sites, gram-positive phages, especially those 
belonging to the genera Streptococcus, Enterococcus and Lactobacillus predominated (p <  0.05, FDR adjusted 
Wald test), while in disease (both shallow-diseased and deep-diseased sites) gram-negative phages associ-
ated with Prevotella, Burkholderia, Campylobacter, Haemophilus and Aggregatibacter were significantly more 
abundant (Fig. 4A and B). The abundances of the archebacterial species Methanobrevibacter oralis, M. smithii, 
Methanomassiliicocus luminyensis and Methanosphaera stadtmaniae were significantly higher in disease when 
compared to health (Fig. 4C). Shallow-diseased and shallow-healthy sites demonstrated higher levels of Candida 
albicans when compared to deep-diseased sites (Fig. 4D).
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Expanded functional capabilities and functional specialization in disease. Out of the 4837 
functional units identified in the present investigation, 2612 were common to both health and disease, 1489 
were uniquely observed in disease (of which 1249 belonged to the disease-associated core microbiome) and 736 
uniquely in health (657 in the health-compatible core microbiome). The common genes predominantly encoded 
for central functions such as carbohydrate and protein metabolism, aerobic respiration, protein and amino acid 
synthesis and virulence. However, the abundances of these common genes were significantly different between 
groups (p <  0.05, FDR adjusted Wald test, Fig. 2A and B, and Supplementary Table 3). The genes unique to disease 
encoded for fermentation, antibiotic resistance, detoxification stress, adhesion, invasion and intracellular resist-
ance, proteolysis, quorum sensing, Type III and IV secretion systems, phages and toxins and superantigens (Fig. 5 
and Supplementary Table 3). Significant over-representation (p <  0.05, FDR adjusted Wald test) of genes associ-
ated with oxidation of primary alcohols, butyrate, isovalerate, propionate, acetate, glycolate and aromatic com-
pounds was observed in disease (Fig. 5, and Supplementary Table 3). Furthermore, while shallow-healthy samples 
demonstrated high levels of aerobic reductases, anaerobic reductases were almost exclusively found in disease, 
and constituted 1.2% of this metagenome. Strong and significant correlations (r2 >  0.7, p <  0.05) were observed 

Figure 1. Predominant functionalities in health. (A) Shows a circle-packing graph of core genes grouped into 
higher order functions. Circles are sized by relative abundances of genes contributing to each function.  
(B) Shows a KEGG map of the core metabolic pathways in the health-associated microbiome. The lines are sized 
by log fold abundances. The genes and pathways used to create this map are presented in Supplementary Table 2. 
(C) Shows a selected group of species that contributed to these functions. The species shown here belonged to 
the core microbiome (80% or more of healthy individuals). The green bars represent the relative abundances of 
the species in all samples.
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between bacterial fermentation and archeal methanogenesis genes (especially coenzyme F420, coenzyme B, coen-
zyme M, methanofuran, and methanopterin) in shallow-diseased and deep-diseased but not shallow-healthy sites 
(Supplementary Figure 3). Very few sulfate-reducing genes were identified in disease.

49 genes contributing to flagellar motility and 14 genes encoding for chemotaxis were identified in the core 
disease microbiome. Of these, 28 genes, especially those contributing to assembly of the filament, hook, basal 
body, rods and rings (FlhA/B, FlgG/C, FliG/I/J/K/L/S, FlgC/G) were either over-represented or uniquely repre-
sented in deep-diseased and shallow-diseased sites when compared to shallow-healthy samples (p <  0.05, FDR 

Figure 2. Bland-Altman plots of metagenomic differences between healthy, shallow and deep sites. Relative 
mean abundances of genes were plotted against log differences in abundance between groups. (A) Shows 
differences between healthy subjects and deep sites in subjects with periodontitis. Genes that were significantly 
overrepresented in deep sites (p <  0.05, FDR adjusted Wald test) are in red, those whose levels were significantly 
greater in health are in green. The central red line represents a log fold difference of zero. (B) Shows differential 
abundances between shallow sites (in orange) in subjects with periodontitis and healthy subjects (in green), 
while comparisons between shallow and deep sites in subjects with periodontitis are shown in (C). The genes 
and functions that were used to create these plots are shown in Supplementary Table 3.

Figure 3. Alpha and beta phylogenetic diversity in health and disease. Kernel plots of Chao diversity index 
of healthy subjects and shallow and deep sites of subjects with periodontitis are shown in (A). Significant 
differences (p <  0.05, Tukey HSD) are indicated by an asterisk (*). Taxonomic differences between core 
microbiomes of health and disease are shown in (B). The bars represent the mean relative abundances of each 
species in each group.
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adjusted Wald test, Fig. 5, and Supplementary Table 3). Type III secretion systems (FlhA/B and FliI) were also 
significantly higher in disease when compared to health. Flagellar proteins play important roles not only in bacte-
rial motility, but also in adhesion, Type III secretion and virulence. Flagellins belong to the family of PAMPS and 
stimulate innate and adaptive immune responses through TLR542.

Overall, 28% of the genes in the shallow-healthy, 36.8% in shallow-diseased and 38.2% in deep-diseased sites 
encoded for virulence. However, in health, these genes accounted for 8.9% of the genome abundance, while in 
disease, 33.1% of the genomic content was attributable to virulence. The greatest differences between health and 
disease were observed in antibiotic resistance, iron acquisition, and gram negative and gram-positive cell wall 
components (p <  0.05, FDR adjusted Wald test, Fig. 5 and Supplementary Table 3). The abundances of efflux 
pumps ranged from 0.07 to 0.6% of the genomic content, and a statistically significant correlation (r2 =  0.61, 
p =  0.0036) was observed between efflux pumps and gram-negative phages in disease, but not in health 
(Supplementary Figure 4C). EPs are a three-component system (comprising an outer membrane protein, a peri-
plasmic fusion protein and an inner membrane protein), which displace toxic compounds (including antibiotics)  
from gram-negative bacteria. Although EPs are an intrinsic part of the genome of several gram-negative bacte-
ria, within an ecosystem these genes are typically acquired either through horizontal gene transfer or through 
mutations43,44. A similar correlation was also observed between LPS, metal resistance and efflux pumps 
(Supplementary Figure 4A and B). LPS is most known for being a powerful antigen that triggers a florid inflam-
matory response, however, its role in the bacterium is one of barrier function. Our data corroborate previous 
studies in the literature suggesting a synergy between cell exclusion and efflux in mediating antibiotic resistance45.

Iron is important for bacterial survival since it facilitates electron transport, nucleotide synthesis, peroxide 
reduction and other essential cellular functions. The host typically sequesters iron by complexing it as hemoglo-
bin, or by storage proteins such as ferritin and lactoferrin (nutritional immunity). Bacteria take up iron either 
directly from heme and heme-containing compounds using surface receptors and ABC transporters, or indirectly 
using high affinity small-molecule chelators known as siderophores. Bacteria also use iron availability as a metric 
to sense their environment; iron-deprivation leads to expression of several outer membrane proteins, sidero-
phores, hemolysins and toxins, while availability of iron promotes pathogen expansion and cellular invasion. Iron 
transport genes accounted for 1.3% of the health-associated genome and 5% of the disease-associated metagen-
ome. Both siderophoric and non-siderophoric transport mechanisms were significantly different between health 
and disease.

Lipid-A, the lipid moiety of LPS, is a powerful antigen that elicits a florid pro-inflammatory host response. 
Lipid-A synthesis is known to be upregulated in the presence of hemin46. Genes responsible for Lipid-A syn-
thesis were preferentially enriched in disease when compared to health, with Capnocytophaga, Campylobacter, 
Fusobacterium, Porphyromonas, Prevotella, Tannerella, and Treponema, as major contributors. The com-
bined enrichment of both iron acquisition genes and Lipid A in disease suggests that this microbiome has the 

Figure 4. Non-bacterial members of the metagenomes of periodontal health and disease. Distribution of 
viral species by sample is shown in (A) and viral genes in (B). Relative abundances of species belonging to the 
archaebacterial kingdom in each sample is shown in (C,D) shows the distribution of species belonging to the 
fungal kingdom by sample. Genes and taxa that were significantly different between deep-diseased and shallow-
healthy sites (p <  0.05, FDR adjusted Wald test) are indicated by an asterisk (*) in the legend.
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potential for a virulent transcriptional profile in the presence of blood (i.e. in conditions of inflammation, such 
as gingivitis).

Genes responsible for management of oxidative stress formed 4.12% of shallow-healthy sites and 0.98% of 
disease (p <  0.05, FDR adjusted Wald test, Fig. 5, and Supplementary Table 3). The disease-associated micro-
biome, on the other hand, demonstrated a greater abundance of rubrerythrin and sigma factors. Glutathione 
is an important redox-buffering compound that protects bacterial cells from osmotic stress, electrophiles and 
oxidative stress and by acting as an electron donor during reduction of lipid peroxides and hydroperoxides, and 
for scavenging reactive oxygen. The present investigation suggests that the health-compatible microbiome is well 
equipped to handle oxidative stresses through the glutathione, and that this functionality is not as marked in 
disease. Rubrerythrin is a non-haem iron compound that protects anaerobic bacteria such as P. gingivalis from 
reactive oxygen and nitrogen species, both of which are produced during a neutrophil-mediated host response47. 
This mechanism enables growth and tissue invasion by the organism. Sigma factors are dissociable subunits of 
RNA polymerase. Recent evidence indicates that these factors may play a major role in enabling bacterial transi-
tion from a free-living state to host invasion48 by regulating the expression of several virulence genes. Thus, the 
data indicate that the disease-associated microbiome possesses the capabilities for host tissue invasion in response 
to environmental stress.

A significantly higher degree of functional specialization was evident in disease when compared to health 
(p <  0.05, Tukey HSD of H2′ , Fig. 6). 547 bacterial, viral, and archebacterial s-OTUs were identified in disease 
(148 ±  23 in each sample). Each species contributed an average of 867 genes, however the range varied from 
97 genes (Archebacteria, Treponema, Synergistes, TM5) to 1256 genes (Streptococcus, Neisseria, Actinomyces, 
Filifactor, Dialister, Porphyromonas, Fusobacterium, Eubacterium). Also, while more than 400 species contributed 
genes encoding for respiration, protein and carbohydrate metabolism, 32 species contributed flagellar genes, 69 
contributed genes for glycan synthesis and 76 species encoded for LPS.

Figure 5. Metabolic differences between health and disease. KEGG maps of differences between healthy 
subjects and deep sites are shown in (A). The pathways are sized by relative abundances (Log scale) of genes 
contributing to the functionality. (B) shows a circle-packing graph of core genes in deep-diseased sites grouped 
into higher order functions. Circles are sized by relative abundances of genes contributing to each function 
Differences between healthy subjects and shallow sites are shown in (C) and core genes in shallow-diseased sites 
in (D). The genes and functions that were used to create these maps are shown in Supplementary Table 3.
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Figure 6. Functional contributions of bacterial species in the subgingival metagenome. Force-directed 
networks of bacterial species and their contribution to metabolic pathways in health (A), shallow sites (B) 
and deep sites (C). Each network graph contains nodes (circles) and edges (lines). Nodes in the center of each 
network represent species-level OTU’s in healthy (green), deep sites (red) and shallow sites (orange) and nodes 
on the outer edge represent the functional contributions of these species. Edges represent the number of genes 
contributed by each species to each functional family. Only significant correlations between species and their 
functional contributions (p <  0.05, t-test) with a coefficient of at least 0.75 are shown. The data used to create 
these networks are presented in Supplementary Table 5. Few species-level nodes can be seen in health, with 
equal number of edges connecting each of these species to the functional nodes. Both deep and shallow sites 
demonstrate larger numbers of species-level nodes than health. Moreover, while many functions species are 
connected to their cognate species by large numbers of edges, certain functions have contributions only from a 
few species. This is numerically indicated by the degree of functional specialization (H2′ ).
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Taxonomically idiosyncratic yet functionally congruent communities in disease. Of the 547 
s-OTUs identified in disease, only 9 were found in the core microbiome associated with disease (Fig. 3B). On the 
other hand, the core metagenome of deep-diseased sites comprised of 1207 out of 3855 functional units, while 
that of shallow-diseased sites comprised 1211 out of 4137 functional units, indicating that one third of the func-
tionality is conserved among all sites in an individual with disease.

The predominant bacterial species responsible for fermentative pathways were Anaerococcus lactolyticus,  
A. prevotii, Anaeroglobus geminatus, Bacteroidetes oral taxon 274, Corynebacterium urealyticum, Dialister invisus, 
Eubacterium infirmum, E. limosum, E. saburreum, E. saphenum, E. yurii, Filifactor alocis, Fusobacterium gonidia-
formans, F. necrophorum, F. nucleatum, F. periodonticum, Fusobacterium sp. oral taxon 370, Johnsonella ignava, 
Kytococcus sedentarius, Lachnospiraceae [G-1] sp. oral taxon, Peptoniphilus indolicus, Peptoniphilus sp. oral taxon 
375, Peptostreptococcus stomatis, Porphyromonas asaccharolytica, P. endodontalis, P. gingivalis, Pseudoramibacter 
alactolyticus, Shuttleworthia satelles, Stomatobaculum longum, Tannerella forsythia, Treponema medium, and 
Veillonella parvula. However, different bacterial consortia contributed to fermentation in each subject, even 
between shallow and deep sites within each subject (Fig. 7A). Similarly, although flagellar genes formed part 
of the core microbiome of disease, several different species contributed to these functions in each sample. For 
example, in certain individuals, the Treponemes were the dominant contributors of flagellar function, while in 
certain others it was the Selenomonads or Campylobacters (Fig. 7B). Although there were no statistically sig-
nificant differences in the abundances of iron acquisition genes between shallow-diseased and deep-diseased 
sites, in shallow-diseased sites, this was attributable to species belonging to the genera Neisseria, Bifidobacterium, 
Porphyromonas, Selenomonas, Actinomyces and Streptococcus, while in deep-diseased sites of the same individ-
uals Prevotella, Lactobacillus, Fusobacterium and Treponema contributed to a large fraction of this functionality 
(Fig. 7C).

All three red complex bacteria (Porphyromonas gingivalis, Treponema denticola and Tannerella forsythia) 
were detected in 23 out of the 73 samples. At least one of these species was detected in 45 samples. Principal 
co-ordinate analysis of the functional genes did not reveal significant clustering of the samples based on presence 
or absence of these species. Moreover, a Random Forest machine-learning algorithm did not identify any species 
or consortia in the core microbiomes of health or disease that could discriminate between health and disease. 

Figure 7. Phylogenetic distribution of functional potential in health and disease. Distribution of taxa 
encoding for fermentation (A), flagella (B) and iron acquisition (C) by sample. 23 paired samples of shallow and 
deep sites in subjects with periodontitis and 25 samples from periodontally healthy subjects are shown.
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However, the algorithm did identify 31 functional genes within the core microbiomes of health and disease that 
were capable of discriminating between health and disease. Together, this panel of genes was capable of classifying 
subjects into the health and disease categories with 99% sensitivity and 100% specificity (Table 1).

Discussion
There have been several investigations in recent years that have examined the functional potential of the subgingi-
val microbiome in health and disease12–14,40,49. While some of these investigations have used a targeted DNA-array 
based approach to examine selected functions14, others have been limited by small sample sizes in making sta-
tistical comparisons12,13,40,49. Moreover, all of these studies have focused only on the bacteriome. Since there is 
considerable evidence in the literature that viruses, archaea and fungi are common inhabitants of the subgingival 
microbial ecosystem and may play a role in health or disease17,18,50, we examined the metagenomes of all these 
domains using a comprehensive open-ended approach on a sample size large enough to permit robust statistical 
inferences to be made. There is little evidence in the literature on what fraction of the subgingival microbiome is 
comprised of viruses and fungi. In the present investigation, only 5% of the genomic abundance was attributable 
to these taxonomic clades, since we did not specifically enrich for these organisms. While it is possible that these 
taxa were underrepresented in the present investigation, previous investigations have reported that the propor-
tions of viruses in complex microbial communities can be accurately estimated without enrichment strategies51. 
Moreover, other investigations have reported similar proportions of these organisms13.

Since the oral cavity is an open microbial ecosystem with transient members (allochthonous constituents) 
and stable colonizers (autochthonous community), we examined the core metagenome52 of health and disease to 
minimize the effect of allochthonous species and genes on the analysis. We defined the core metagenome as that 
which is found in 80% or more of individuals. This is a far more conservative definition than that used by previous 
investigations10,52, and ensured that the genes under investigation were truly representative of the subgingival 
metagenome.

The term ecosystem describes a community of living organisms interacting as a system and linked to each 
other through energy transfer and nutritional flow53. Our data suggest that the health-compatible microbiome 

Gene Functional role Association

N-methylhydantoinase (ATP-hydrolyzing) (EC 3.5.2.14) Amino acid derivatives Disease

Putrescine transport ATP-binding protein PotG (TC 3.A.1.11.2) Amino acid derivatives Disease

Heterodisulfide reductase Anaerobic respiratory reductases Disease

Deoxyribonuclease YjjV Carbohydrate Metabolism Health

Dihydrolipoamide dehydrogenase (EC 1.8.1.4) Carbohydrate Metabolism Health

Hydroxypyruvate reductase (EC 1.1.1.81) Carbohydrate Metabolism Health

Iron-containing alcohol dehydrogenase Carbohydrate Metabolism Health

Pyruvate oxidase (EC 1.2.3.3) Carbohydrate Metabolism Health

Chromosome (plasmid) partitioning protein ParB-2 Cell Division Health

Flavodoxin 2 Cofactors, Vitamins, Prosthetic Groups, Pigments Disease

CRISPR-associated RAMP Cmr4 CRISPs Disease

CRISPR-associated RecB family exonuclease Cas4b CRISPs Disease

Stage V sporulation protein Dormancy and Sporulation Disease

UDP-2,3-diacylglucosamine hydrolase (EC 3.6.1.− ) Gram-Negative cell wall components Disease

N-acetylmannosaminyltransferase (EC 2.4.1.187) Gram-Positive cell wall components Disease

Haemin uptake system permease protein Iron Acquisition Disease

Membrane fusion protein (MFP) component of efflux pump Membrane Transport Disease

Na(+ ) H(+ ) antiporter subunit A Membrane Transport Disease

Nudix hydrolase Phage regulation of gene expression Disease

Co/Zn/Cd efflux system membrane fusion protein Resistance to antibiotics and toxic compounds Disease

Cobalt-zinc-cadmium resistance protein CzcD Resistance to antibiotics and toxic compounds Disease

rRNA adenine N-6-methyltransferase (EC 2.1.1.48) Resistance to antibiotics and toxic compounds Disease

BatC (Bacteroides aerotolerance operon) Respiration Disease

Cytochrome c oxidase polypeptide I (EC 1.9.3.1) Respiration Disease

Cold shock protein CspC Stress Response Health

Ferric siderophore transport system, biopolymer transport protein ExbB Ton and Tol transport systems Disease

Flagellar biosynthesis protein FliQ Virulence, Disease and Defense Disease

Flagellar biosynthesis protein FliS Virulence, Disease and Defense Disease

Flagellar motor rotation protein MotB Virulence, Disease and Defense Disease

Hemolysin III Virulence, Disease and Defense Disease

Inner membrane protein CreD Virulence, Disease and Defense Disease

Table 1.  Candidate marker genes. The ability of genes to discriminate between health and disease. The genes 
that were identified using random forest and their predicted function are shown. 
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is a highly energy efficient ecosystem, with 68% of the genome dedicated to energy acquisition, transfer and 
utilization. The genomic framework is set up for energy acquisition mainly through carbohydrate metabolism. 
Energy transfer is mediated mainly through oxidative phosphorylation; the high levels of aminotransferases and 
the robust glutamate pathway point to the citric acid cycle as a preponderant energy transfer mechanism. This 
is possibly facilitated by high oxygen tensions that prevail in the healthy gingival sulcus54. Strong co-occurrence 
patterns among known nutritional and structural symbionts (e.g., Veillonella, Streptococci, Actinomyces and 
Fusobacteria) attest to functional cooperativity in this system.

On the other hand, in periodontitis (both shallow and deep sites), fermentation and methanogenesis are the 
predominant pathways for energy acquisition. Effective fermentation requires the presence of a ‘hydrogen sink’, 
that is, sulfate-reducing or methanogenic species55. The robust archeal presence, sparsity of sulfate-reducing genes 
and correlations between abundances of bacterial fermentation genes and archeal methanogenesis genes suggest 
syntrophic interspecies hydrogen transfer between archaebacteria and eubacteria in periodontal disease, which 
corroborates previous hypotheses that the presence of archaea may promote colonization by fermenters17,56. 
Fermentation of one mole of glucose yields 2–4 molecules of ATP when compared to aerobic respiration, which 
yields 32–36 ATP. Also, the end products of fermentation, short chain fatty acids such as butyrate, propionate 
and isobutyrate for example, have been strongly associated with periodontitis57,58. Thus, our data suggest that the 
disease-associated microbiome lacks the capability for efficient energy processing, forcing this community to do 
‘hard work’ rather than ‘smart work’ for survival, and that the by-products thus created may contribute to disease 
etiology.

Recent paradigms of disease pathogenesis have promulgated the ‘pathobiont’ hypothesis, which states that 
disease occurs due to expansion of certain members of the indigenous microbiome rather than acquisition of new 
species59,60. To investigate this, the transition from health to disease was modeled by comparing the core micro-
biomes of healthy subjects to sites with and without clinical disease in subjects with disease. Phylogenetically and 
functionally, diversity progressively increased from shallow-healthy to shallow-diseased to deep-diseased sites; 
and this was due to both increase in abundances of certain indigenous members and functions as well as addition 
of new members and their associated functions. Importantly, a central feature of health was that all microbial 
members contributed genes that perform the functions required by this ecosystem. Thus, the health-compatible 
ecosystem appears to be a generalist microbiome. By contrast, disease is dominated by ‘specialist organisms’, 
which encode for novel metabolic functions (e.g., proteolysis, fermentation, methanogenesis) or virulence fac-
tors (e.g., motility, communication, stress response, iron acquisition, antibiotic resistance) not seen in health. 
Furthermore, functional cooperativity between bacteria, viruses and archaea is more readily observed in disease 
than in health and, while a strong core microbiome was detected in health, it was conspicuously absent in disease. 
Taken together, the microbial heterogeneity, the predominance of specialist species and the presence of novel 
functions that correlate with the requirements of the environment suggest that many more microbial events 
underlie the etiology of periodontitis than simple pathobiont expansion.

It has previously been shown that a gradient exists in the levels of pro-inflammatory cytokines, oxygen tension 
and antioxidant capacity between shallow-healthy, shallow-diseased and deep-diseased sites6,61. Our data suggest 
that a progressive regime shift occurs in the microbial ecosystem from health to disease, which is reflective of the 
gradients in the local microenvironment. This, of course, leads to the question whether the disease microbiome 
is the cause or the product of the disease. To answer this, we compared shallow-diseased sites with deep-diseased 
sites. The core microbiomes of shallow-diseased sites were phylogenetically distinct from, but functionally more 
aligned with deep-diseased than with shallow-healthy sites (especially in energy processing, virulence, chemo-
taxis, stress response and phage-mediated transfers), indicating that the microbiomes of these sites do indeed, 
have the potential to induce disease. This observation that shallow-disease sites possess similar pro-inflammatory 
abilities to disease active sites serves in part, to explain the random burst model of disease activity. However, since 
the potential to cause disease does not equate to disease causation, this needs to be corroborated by longitudinal 
investigations of the microbial metatranscriptome during shifts from health to disease.

Several decades of research have explored the possibility of identifying species that would serve as markers or 
predictors of disease62–67. However, the present investigation demonstrates that while a tremendous functional 
complementarity exists in disease, this microbiome is taxonomically heterogeneous. Further, 30 genes found in 
the core-disease microbiome (corresponding to 14 distinct functions) were capable of discriminating between 
health and disease. Also, these genes were present in both shallow-diseased and deep-diseased sites, indicating 
that any site may be sampled to screen subjects for disease. Thus, our data suggest that a gene-centric rather than 
a species-centric approach to identifying markers and predictors may be more fruitful.

Conclusions
The central characteristics of the health-compatible subgingival microbial community are energy efficiency and 
functional equitability. Fewer functions are encoded within this healthy microbiome, and the general functional 
potential is distributed across most species, while expansion of functional capabilities can be observed in dis-
ease, within certain species or consortia contributing a few, unique functions. Disease is also characterized by 
taxonomic heterogeneity and functional congruence. Importantly, sites without clinical disease in subjects with 
disease are functionally more aligned with sites with disease than with healthy sites, indicating that they may be 
more at-risk-for-harm than previously believed.
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