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Abstract

Introduction: Recurrent episodes of pneumonia are frequently modeled using extensions of the Cox proportional
hazards model with the underlying assumption of time-constant relative risks measured by the hazard ratio. We aim
to relax this assumption in a study on the effect of factors on the evolution of pneumonia incidence over time based
on data from a South African birth cohort study, the Drakenstein child health study.

Methods: We describe and apply two models: a time-constant and a time-varying relative effects model in a
piece-wise exponential additive mixed model’s framework for recurrent events. A more complex model that fits in the
same framework is applied to study the continuously measured seasonal effects.

Results: We find that several risk factors (male sex, preterm birth, low birthweight, lower socioeconomic status, lower
maternal education and maternal cigarette smoking) have strong relative effects that are persistent across time. When
time-varying effects are allowed in the model, HIV exposure status (HIV exposed & uninfected versus HIV unexposed)
shows a strong relative effect for younger children, but this effect weakens as children grow older, with a null effect
reached from about 15 months. Weight-for-length at birth shows a time increasing relative effect. We also find that
children born in the summer have a much higher risk of pneumonia in the 3-to-8-month age period compared with
children born in winter.

Conclusion: This work highlights the usefulness of flexible modelling tools in recurrent events models. It avoids
stringent assumptions and allows estimation and visualization of absolute and relative risks over time of key factors
associated with incidence of pneumonia in young children, providing new perspectives on the role of risk factors such
HIV exposure.
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Content
Introduction
Children may experience multiple (recurrent) pneumonia
episodes. The episodes within a child’s longitudinal profile
may not be independent. Two common regression mod-
els in a recurrent events framework that can take into
account this dependence are the Poisson regressionmodel
with an individual random effect (a mixed-effects model)
and the shared frailty model [1] – an extension of the Cox
proportional hazards (CPH) model [2]. In these models
the individual random intercept describes the correlation
between recurrent events for a single individual. The con-
cept of shared random intercept in a multiple outcomes
scenario is based on the idea that individuals may be het-
erogeneous but each individual’s risk of failure may be
homogenous for the different events [1].
The estimated risk effects in these models are usually

presented in terms of a measure for relative risks i.e. the
incidence rate ratio for the Poisson regression model or
the hazard ratio for the shared frailty model. The main
assumption in these models are, that, conditional the
random intercepts, these measures of relative risks are
proportional over time. This is obviously not a problem
if the effects are indeed time-constant, but flexibility in
these models is needed otherwise.
Previous results [3] from the Drakenstein Child Health

Study (DCHS) show several significant risk factors for the
incidence of pneumonia in the first year of life based on
a mixed-effects Poisson regression model in which the
incidence rate ratios of risk factors are assumed to be con-
stant over the first year of life. These results are useful
and helpful in the understanding of relative risks averaged
over a short time period. However, for longer follow-up
periods, as in the analysis presented in this paper, it is bio-
logically plausible that these ratios are not constant over
time. As a consequence, important periods in which the
relative risks are high or important changes of the relative
risks happen over time may be missed. It may therefore be
important to use a model that is flexible enough to detect
these periods of high relative risks or changes, but is still
sufficiently rigid to be able to interpret the results; models
that are too rigid may mask these risk periods for instance
by averaging over a longer period.
An accurate estimate of the absolute risk (underlying

hazard), possibly changing over time, is as important as
the relative risks in understanding the evolution of the
risk over time. Namely, relative risks can be easily mis-
understood; for instance a high relative risk may still be
clinically irrelevant if the overall hazard rate is low at that
particular point in time. Conditional on the random inter-
cept, the mixed-effects Poisson regression model assumes
a constant underlying hazard over time. This assump-
tion may be too rigid, which makes the model unsuitable
for our aim. In the CPH frailty model, parameters are

estimated by maximizing the partial likelihood function
where the baseline hazard is not specified and not explic-
itly estimated in survival analysis software. Because the
baseline hazards are needed to estimate the absolute risks
over time, this model is also less appropriate. To relax the
constant hazard assumptions and to be able to estimate
absolute risks in addition to relative risks, we propose to
model the underlying hazard flexibly by using splines. To
model the potential time-varying effect of the risk fac-
tors (discussed in the previous paragraph) splines are also
used. To avoid overfitting of the data, a penalty for the
number of model parameters is applied.
More specifically, a piece-wise exponential additive

mixed model (PAMM) approach is used to model the
effect of risk factors on the hazard of pneumonia in a
recurrent events framework. PAMMs for time-to-event
data is a combination of piece-wise exponential mod-
els (PEMs) [4] and generalized additive mixed models
(GAMMs) [5], and was introduced by [4, 6] for mod-
elling smooth non-linear baseline hazards, non-linear
effects of covariates, time-varying hazard ratios in time-
to-event models and more complex non-linear interac-
tions. In this paper the PAMM is applied to model
the effect of risk factors on the hazard of recurrent
pneumonia.

Pneumonia background
Globally, pneumonia is the single major cause of mortal-
ity in young children outside the neonatal period, with a
disproportionately higher number of children dying from
pneumonia in Africa [7–10]. The seriousness of pneu-
monia can range from mild to life threatening, more
seriously affecting those who are immune compromised,
malnourished or young children.
The introduction of vaccination programmes like pneu-

mococcal conjugate vaccines (PCV) and Haemophilus
influenzae type B immunization decreased the incidence
and severity of childhood pneumonia [11–14]. However,
even with high coverage for PCV13 (a PCV that pro-
tects against 13 serotypes of pneumococcus) the incidence
of pneumonia remains high, particularly in the first six
months of life (0.55 episodes per child year in the DCHS
birth cohort [3, 14]).
Children living in fragile environments are especially

at high risk for pneumonia and mortality. Knowing the
effect of risk factors for pneumonia incidence is important
for further understanding of pneumonia aetiology and for
reducing childhood pneumonia incidence and mortality
[13, 15]. Known risk factors for childhood pneumonia,
subdivided into four categories, are [3, 10, 11, 13]:

• Environmental – poverty, pollution, crowding,
cigarette smoke exposure, season,

• Maternal – low education, HIV, psychosocial distress,
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• Child – nutrition, male sex, HIV, preterm birth, low
birthweight, lack of breastfeeding, and

• Health system – lack of access to preventive
treatment (immunization).

For a better understanding of pneumonia aetiology with
respect to the effect of risk factors and improved organi-
sation of medical care it is important to know

• in which periods certain subgroups are at high(er)
risks, and

• how the relative risks possibly evolve over time.

Models to understand the effect of risk factors on pneu-
monia incidence with recurrences often assume that the
relative risks between levels of a covariate are constant
over time (conditional on the random individual intercept
in recurrent events models). From a biological point of
view, the developmental trajectory of babies and young
children under two years is rapid, much more so than at
older ages. It is thus more likely that the relative effect of
covariates vary over time at young age. In this paper, we
aimed to analyse data from the DCHS study using a model
that allows a flexible smooth baseline hazard and flexible
smooth time-varying relative risks, i.e. PAMM.

Methodology
The Drakenstein child health study data
The DCHS is a birth cohort designed to investigate the
incidence and aetiology of childhood pneumonia after the
introduction of the PCV13 and HiB vaccines, and the fac-
tors affecting the disease. The study is located in two sites,
Mbekweni and TCNewman, in a low socio-economic area
in Paarl, South Africa [14, 16]. In the DCHS 1137 chil-
dren were enrolled, whowere born betweenMay 2012 and
September 2015. Children were followed prospectively
from birth with active surveillance for pneumonia [3].
Pneumonia was diagnosed according to the WHO clini-
cal case definitions [17]. Repeated events were defined as
any events that happened more than 14 days after a previ-
ous event. The episode dates were known exactly. Data of
the first two years of life or until termination (death, end
of study, lost to follow-up) was analyzed. Congenital cases
were excluded from the analysis.

Possible risk factors
In this paper, the possible risk factors studied are sex, HIV
exposure, weight-for-length (WfL) at birth, prematurity,
low birthweight, study site, socioeconomic status, crowd-
ing, maternal smoking, exposure to indoor air pollution,
maternal education and seasonality. HIV exposure refers
to a comparison between children who are HIV exposed
and uninfected (HEU) and HIV unexposed (HU) children.
The HIV exposed and uninfected children are exposed by
means of being born to HIV positive mothers who are on

antiretroviral therapy, but these children themselves are
HIV negative. Low birthweight is quantified as having a
birthweight under 2500 grams. Preterm birth is defined
as having a gestational age less than 37 weeks. Weight-
for-length (WfL) at birth Z scores are computed from the
WHO algorithms [18]. LowWfL at birth is then indicated
as a WfL Z score less than or equal to -2. The two study
sites are TC Newman and Mbekweni. It must be noted
that owing to the history of apartheid in South Africa,
these study sites are culturally different with respect to
ancestry and language. Socioeconomic status is measured
based on a composite score of asset ownership, household
income, employment and education, adapted from items
used in the South African Stress and Health Study (SASH)
[19]. A score below the median are referred to as lower
socioeconomic status, while scores above the median are
referred to as a higher socioeconomic status. Maternal
smoking is derived from urine cotinine levels at an ante-
natal visit and categorised into exposed, where the mother
actively smoked, or unexposed, where the mother did not
actively smoke. Exposure to indoor air pollution, specifi-
cally fossil heating, is categorised as exposed (wood, gas,
paraffin or coal used for heating in the household) and
unexposed. Maternal education is categorised as lower
(primary and some secondary schooling) and higher (at
least completed secondary schooling). Crowding is repre-
sented by the number of other children under 5 years in
the household where >1 child under 5 is representative of
crowding. For seasonality, we model two covariates, sea-
son at birth and current season, of which both effects may
vary over time. In both instances, we model seasonality as
a continuous covariate. So, season at birth is recorded as
the day of the year in which the child is born and current
season as a time-varying covariate defined as the current
day of year at risk.

Statistical models
We describe the PAMMs approach tailored for modelling
recurrent events in the DCHS data. We only applied uni-
variable models with a single possible risk factor since
the primary aim is to investigate association between the
possible risk factors (mentioned before) and the inci-
dence of pneumonia over time. We consider models with
binary covariates and models with the continuously mea-
sured seasonal covariates. For the binary covariates, we
consider two scenarios. In the first scenario we assume
time-constant effects only, whereas in the second scenario
we allow time-varying effects. These corresponding mod-
els are described by means of their hazard functions given
below. For seasonality as a continuous covariate, we look
at two similar models, described by their hazard functions
also given below.
The hazard functions are given conditional on an indi-

vidual frailty term zi. The frailty term is a random gaussian
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distributed term that is specific for each child (i) in the
dataset. This frailty term is included to take into account
that children may have multiple recurrent events in the
dataset. For more details, see [5]. For describing the three
models, the observation window from 0 to 2 years (728
days) is partitioned into J intervals with cutpoints 0 =
τ0 < τ1 < · · · < τJ = 728 where the jth interval is defined
as

(
τj−1, τj

]
, extending from and excluding the

(
j − 1

)st

boundary to and including the jth boundary. The cutpoints
τ1 < · · · < τJ−1 are the ordered unique event times in the
data.

Binary covariates models
Suppose a covariate xi for the ith child has two levels which
are denoted by 0 and 1 for simplicity. For the model with
a time constant effect of the covariate, the hazard rate
at time t ε

(
τj−1, τj

]
, for the ith child conditional on the

covariate and frailty zi equals

λ (t|zi, xi) = exp
(
β0 + β1xi + f0

(
tj
) + zi

)
(1)

and for the model with the time-varying effects the condi-
tional hazard equals

λ (t|zi, xi) = exp
(
β0 + β1xi + f0

(
tj
) + xif1

(
tj
) + zi

)
.
(2)

In both models tj is a fixed time point across individuals
within the jth interval

(
τj−1, τj

]
, usually defined as the end

time of the interval or the midpoint. We chose the end
time tj = τj. The model formulation of the above models
are expressed as conventional GAMMs. Model 1 is equiv-
alent to the standard survival frailty model formulation
λ (t|zi, xi) = λ0(t) exp (β1xi + zi) where the baseline haz-
ard is specified as λ0(t) = exp

(
β0 + f0

(
tj
))
. The β0 could

be interpreted as the time-average log-hazard of children
with the covariate xi equal to zero (the first category) and
β1 is the time-average difference between log-hazards for
the second and the first category of the covariate. Fur-
ther, f0 represents the smooth deviation from the average
baseline log-hazard rate β0 over time, noting that f0 in the
two models may differ notwithstanding the notation (this
may also be true for β0 and β1). In model 2, f1 is a dif-
ference smooth function, which is the smooth shifts over
time, for the difference between the effects for the sec-
ond and first category of the covariate, from the average
effect of the covariate β1 [20]. Further, it can be seen
that the conditional hazard ratio for the covariate over
time equals HR(t) = exp

(
β1 + f1

(
tj
)) ∀ t ε

(
τj−1, τj

]

for a child with xi = 0 and one with xi = 1, who have
identical frailty values. The smooth functions, fk , k=0,1,
evaluated at the point tj are equal to a weighted sum of S
simpler, fixed basis functions bs,, s = 1, . . . .S, in time tj,
weighted by its corresponding regression coefficients βk,s,
i.e. fk

(
tj
) = ∑S

s=1 βk,s×bs
(
tj
)
, for k=0,1. For identifiability

of the model parameters, the sum of each smooth func-
tion across time is set to equal 0, i.e.

∑
j fk

(
tj
) = 0. The

basis functions bs(t) are usually represented by splines, for
which there are several options. For the analysis described
in this paper, we use thin plate regression splines [21].
The individual frailties zi account for the possible corre-

lation between multiple episodes of pneumonia from the
same child. The z′is are assumed to be normally distributed
with a mean of 0 and a constant variance σ 2. The vari-
ables exp(zi) act to multiplicatively increase or decrease
the hazard of a child over time, so that children with zi > 0
have a hazard higher than the mean and children with
zi < 0 have a hazard lower than the mean. Children with
zi = 0 have the average hazard. We interpret the model
parameters for an average child, for zi = 0 (in the esti-
mation of the parameters, the full likelihood is obtained
by integrating out the frailty variables from the joint like-
lihood). Please note that this is not the same as leaving
the frailty variables out of the model because the frailties
affect the parameter estimates.
Model 2 generalizes model 1 into a larger model that

makes no assumptions about the shape of hazard ratio
over time, whereas model 1 assumes a time-constant haz-
ard ratio. More specific, the hazard ratio for the two
groups in model 1 is HR = exp (β1) and is constant
over time, whereas in model 2 the time-varying hazard
ratio is HR(t) = exp

(
β1 + f 1

(
tj
))

. The latter consists
of two parts; β1, the average log hazard ratio and f1

(
tj
)
,

the time-varying component of the log hazard ratio. If the
function f1 is constant and equal to zero the two models
are equivalent.

Seasonality models
We model both season at birth and season during follow-
up (i.e. current season). Wemodel season at birth, defined
by day of the year the child was born (x1), as a time-
varying effect. We model the current season at risk as a
time-varying covariate, which we define x2(t) as the day of
year for the start date of the interval. We use the start of
the interval because this is the start season of risk within
the interval. For simplicity of notation, we write x2 instead
of x2(t) henceforth. So, in the model we assume that sea-
son is constant within the interval but varies between
intervals and that the current season effect is periodic, in
the sense that it equals the effect one year later. For the
two scenarios just described, the hazard rate at time t, for
the ith child conditional on the individual random effect zi
and either x1i or x2i the seasonal covariates as described
before, is given by

λ
(
t|zi, xk,i

) = exp
(
β0 + gk

(
tj, xk,i

) + zi
)
, (3)

for t ε
(
τj−1, τj

]
, tj = τj and k= 1, 2. The interaction

function gk
(
tj, xk,i

)
models the interaction of continuous

season at birth if k= 1, or current season if k= 2, and



Ramjith et al. BMCMedical ResearchMethodology           (2021) 21:17 Page 5 of 13

age (time) and allows the effect season on the hazard to
be smooth and non-linear at each point in time, and also
allows the effect each season (day of year) to be smoothly
and non-linearly time-varying. This smooth function
refers to a tensor product represented by S×M basis func-
tions such that gk

(
tj, xk,i

) = ∑S
s=1

∑M
m=1 αk,m,s × bs

(
tj
) ×

bm
(
xk,i

)
for k= 1, 2. In these models, we use cubic regres-

sion spline basis functions for modelling the time effect
and a cyclic cubic regression spline basis function for
modelling seasonality effect [22]. A cyclic cubic regression
spline is a penalized cubic regression spline whose ends
match up to a second derivative. We use the cyclic cubic
regression spline basis to ensure continuity in the hazard
from day 365 to day 1. The sum-to-zero constraints are
applied to all smooth functions for identifiability.
The three different models with hazard functions in

(1) – (3) are referred to as models 1 to 3, where the
number corresponds to the number of the corresponding
expression of the hazard function.

Estimation
The likelihood function for the PAMM is equivalent to
the full likelihood of the CPH model if the baseline haz-
ards were assumed constant within the intervals. It has
also been shown that the likelihood of the piece-wise
exponential model is proportional to the likelihood of the
Poisson model including an offset [23]. The offset for the
PAMM is the log of the amount of actual time an indi-
vidual spends in an interval. This allows the model to
account for an individual’s exact event times, making the
model a model for continuous time-to-event data [4]. For
a recurrent events PAMM, the likelihood also includes
the subject-specific frailty. Penalized negative log likeli-
hood functions are derived in which the model (negative
log) likelihood is modified by the addition of a penalty for
each smooth function, penalizing its ‘wiggliness’. We esti-
mate the unknown parameters in the model with the fast
restricted maximum likelihood method, where numer-
ical maximization of the likelihood is performed with
Penalized Iteratively Re-weighted Least Squares (P-IRLS)
[5, 24]. We use the R packages pammtools and mgcv for
the data restructuring and analysis [25, 26]. A guide to
performing the analysis, with R code, is provided as a
Supplementary file.

Statistical analysis andmodel selection
The effects of the smooth functions fk

(
tj
)
(k = 0, 1) can

be expressed in terms of the estimated degrees of freedom
(EDF) and a corresponding p-value [27, 28]. This EDF,
is not like degrees of freedom that are usually used, but
rather it is more like the degree of the polynomial needed
to describe curvature. It provides an idea for how “wiggly”
the best fitted smooth function is over time (best fitted in
terms of the maximal penalized likelihood function). The

p-values are the result of testing the null hypothesis of a
zero effect of the indicated smooth function, i.e. whether
fk

(
tj
) = 0 , k = 0, 1 for j = 1 . . . J . A high EDF implies

a more complex shape (or ”wiggliness”) of the penalized
smooth function. Note that if the p-value is below the pre-
specified significance threshold we may conclude that the
effect is time varying and model 2 is preferred over model
1, whereas if the p-value is above the threshold this can-
not be concluded and model 1 is chosen. We refer to the
chosen model for each covariate as the final model. It is
important to note that making this choice based on a p-
value threshold is one option to decide between models,
but not the only one.
In this paper, we show the results for the estimated

difference smooth function f̂1
(
tj
)
and not f̂0

(
tj
)
since

f̂1
(
tj
)
is used to indicate the time-varying effect and thus

allows us to choose between model 1 and 2 for each
covariate. An EDF=1 implies that the penalized smooth
function, and thus the estimated time-varying log hazard
ratio, logĤR(t) = β̂1 + f̂1

(
tj
)
, is estimated to be lin-

ear over time. Note that high EDF doesn’t mean greater
significance. These effects are better understood visually,
illustrated in the “Results” section. 95% confidence inter-
vals for the results are calculated from the linear predictor
at the respective intervals.
The results for seasonality are only expressed visually as

heatmap plots representing a 3-dimensional association
between seasonality, time (age) and the hazard or hazard
ratios.
Since PAMMs assume constant hazard rates within

intervals, the hazard rate and the daily incidence rate (the
number of episodes per child day) are equal within inter-
vals. To allow for a better epidemiological interpretation,
both are multiplied by 365.25 to obtain a yearly incidence
rate within each interval (i.e. the number of episodes per
child year), as well as a “yearly hazard rate”.

Results
Data description
The sample consists of 1137 children, of whom 445 (39%)
experienced ≥1 pneumonia episode. Of these 445 chil-
dren, 236 (53%) had only one episode while a further
209 (47%; 18% of the entire sample) children experienced
at least a second episode. In Table 1 we show a cross-
tabulation of how the different risk factors are distributed
across the study site. From the total of 1137 children,
approximately 628 (55%) of children were fromMbekweni
and 509 (45%) from TC Newman. The largest differ-
ences across study sites were HIV exposure (228 (36%)
exposed in Mbekweni and 16 (3%) exposed in TC New-
man), socioeconomic status (356 (57%) with lower SES
in Mbekweni and 211 (42%) with lower SES in TC New-
man), cigarette smoke exposure (91 (14%) in Mbekweni
and 261 (51.3%) in TC Newman) and exposure to indoor
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Table 1 Frequency distribution of risk factors across the sites

Risk factors Mbekweni n (%) TC Newman n (%)

Total 628 (55.2) 509 (44.8)

HU 397 (63.2) 493 (96.9)

HEU 228 (36.3) 16 (3.1)

Girls 316 (50.3) 232 (45.6)

Boys 312 (49.7) 277 (54.4)

Not low WfL 386 (61.5) 299 (58.7)

Low WfL 174 (27.7) 154 (30.3)

Not preterm birth 522 (83.1) 425 (83.5)

Preterm birth 106 (16.9) 84 (16.5)

Not low birthweight 554 (88.2) 414 (81.3)

Low birthweight 74 (11.8) 95 (18.7)

Lower SES 356 (56.7) 211 (41.5)

Higher SES 272 (43.3) 298 (58.5)

Uncrowded 487 (77.5) 344 (67.6)

Crowded 141 (22.5) 165 (32.4)

No maternal smoking 504 (80.2) 232 (45.6)

Maternal smoking 91 (14.4) 261 (51.3)

Unexposed to Indoor air pollution 311 (49.5) 387 (76.0)

Exposed to indoor air pollution 132 (21.0) 7 (1.4)

High maternal education 239 (38.1) 206 (40.5)

Low maternal education 389 (61.9) 303 (59.5)

air pollution (132 (21%) in Mbekweni and 7 (1%) in TC
Newman).

The estimated baseline hazard and baseline cumulative
incidence proportion
The estimated average hazard rate in the first two years
of life for the reference and comparison groups i.e. λ̂ =
exp

(
β̂0

)
and λ̂ = exp

(
β̂0 + β̂1

)
have also been rescaled

to an annual rate in Table 2 such that the estimated aver-
age incidence rate (episodes per child year) in the first
two years of life

(
IR

)
for the reference and comparisons

group are 365.25 × exp
(
β̂0

)
and 365.25 × exp

(
β̂0 + β̂1

)

respectively. Estimates of the incidence rates as the num-
ber of episodes per child year and the proportion of
children accumulated over time who have experienced at
least one episode of pneumonia are presented in Fig. 1.
We ran a model without any covariates and estimated

baseline hazard rates and cumulative incidence. The base-
line hazard rates estimated in the model without covari-
ates show that pneumonia incidence peaks when children
are between three and four months and thereafter slowly
decreases substantially, but this decrease slows down after
children turn 9 months (Fig. 1a). From Fig. 1b, we see that
approximately 25% of the children have a first episode of

pneumonia by 6 months old and another 25% of the chil-
dren will have a first episode by 2 years old. The average
estimated incidence for the first two years of life is 0.31
(95% CI: 0.28, 0.35) episodes per child year.

Analysis of binary risk factors
Model 1 represented by (1) is the model assuming time-
constant effects of the covariates over time and model 2
represented by (2) is the model assuming flexible time-
varying effects of the covariates over time.
Estimates of the incidence rates as number of episodes

per child year are presented in Fig. 2. Plots of the esti-
mated cumulative incidence over time are in Fig. 5; this
shows the proportion of children accumulated over time
who have experienced at least one episode of pneumonia.
In all figures, the time tj on the x-axis is representative of
all t ε

(
τj−1, τj

]
.

Relative risks (i.e. hazard ratios) over time
From the estimated hazards ratios in model 1 given in
Table 2, we see that HEU, male sex, preterm birth, low
birthweight, lower socioeconomic status, lower maternal
education and maternal cigarette smoke exposure are sig-
nificantly associated with relatively higher incidences of
pneumonia over time for the first two years of life (relative
to their counterpart categories).
Male sex, preterm birth, low birthweight, lower socioe-

conomic status, lower maternal education and maternal
cigarette exposure do not have significant time-varying
effects (model 2, Table 2) but children in each of these
exposure categories have at least a 20% higher incidence
averaged across time relative to children in the counter-
part categories (HR>1.2; model 1, Table 2).
The time-varying effects smooth function for HIV expo-

sure and weight-for-length at birth are statistically sig-
nificant (p=0.036 and p=0.023 respectively) with EDF=1
implying a linear time-varying effect of the log hazard
ratio (model 2, Table 2). The time-varying hazard ratios
for both these factors (defined in “Statistical models”
section) are visualized in Fig. 3, where we can see that
the effect of HIV exposure is decreasing over time until
it is approximately a null effect (HR = 1) from around
15 months. Although the HR of weight-for-length at birth
is not statistically significant in model 1 (Table 2), from
model 2 the HR appears to start slightly protective after
birth and then increases and appears increasingly harmful
after approximately 9 months of age (Fig. 3).
Further, from the results ofmodel 2 presented in Table 2,

we also see the estimated averaged time-varying hazards
ratios for all variables. These hazard ratios are similar to
the estimated time-constant hazard ratios estimated from
model 1, with the exception of HIV exposure, weight-
for-length at birth and cigarette exposure. The estimated
averaged time-varying hazard ratio for HIV exposure is



Ramjith et al. BMCMedical ResearchMethodology           (2021) 21:17 Page 7 of 13

Table 2 Estimated average incidence rate
(
IR

)
in number of episodes per child year and estimated hazard ratios for the different

covariates from model 1 i.e. ĤR = exp
(
β̂1

)
, and for model 2 the estimated average incidence rate,

(
̂HR(t)

)
= expβ̂1 , as well as the

estimated degrees of freedom (EDF) for the time-varying smooth function in the hazard ratio, f̂1(t)

Model 1 Model 2

IR (95% CI) ̂HR (95% CI; p-value) IR (95% CI) ̂HR(t) (95% CI; p-value) EDF (p-value)

HU 0.29 (0.26, 0.32) 0.29 (0.26, 0.33)

HEU 0.42 (0.35, 0.51) 1.49 (1.21, 1.83; p<0.001) 0.40 (0.33, 0.48) 1.37 (1.10, 1.71; p=0.004) 1.00 (p=0.036)

Girls 0.25 (0.22, 0.29) 0.25 (0.22, 0.29)

Boys 0.38 (0.34, 0.43) 1.53 (1.28, 1.84; p<0.001) 0.37 (0.33, 0.43) 1.48 (1.22, 1.79; p<0.001) 1.00 (p=0.261)

Not low WfL 0.30 (0.26, 0.33) 0.29 (0.25, 0.33)

Low WfL 0.29 (0.25, 0.35) 0.99 (0.81, 1.22; p=0.926) 0.31 (0.26, 0.37) 1.07 (0.87, 1.33; p=0.522) 1.00 (p=0.023)

Mbekweni 0.34 (0.30, 0.38) 0.33 (0.29, 0.38)

TC Newman 0.29 (0.25, 0.33) 0.85 (0.71, 1.02; p=0.074) 0.29 (0.25, 0.34) 0.89 (0.73, 1.07; p=0.212) 1.00 (p=0.162)

Not preterm birth 0.30 (0.27, 0.33) 0.29 (0.26, 0.33)

Preterm birth 0.42 (0.34, 0.51) 1.41 (1.12, 1.77; p=0.003) 0.42 (0.34, 0.52) 1.43 (1.12, 1.81; p=0.003) 1.00 (p=0.752)

Not low birthweight 0.29 (0.26, 0.32) 0.29 (0.26, 0.32)

Low birthweight 0.46 (0.37, 0.56) 1.56 (1.23, 1.97; p<0.001) 0.47 (0.37, 0.58) 1.61 (1.26, 2.05; p<0.001) 2.11 (p=0.168)

Lower SES 0.37 (0.32, 0.41) 0.37 (0.33, 0.42)

Higher SES 0.26 (0.23, 0.30) 0.72 (0.60, 0.87; p<0.001) 0.26 (0.22, 0.30) 0.69 (0.57, 0.83; p<0.001) 1.00 (p=0.127)

Uncrowded 0.30 (0.27, 0.34) 0.30 (0.27, 0.34)

Crowded 0.34 (0.29, 0.41) 1.14 (0.94, 1.39; p=0.177) 0.35 (0.29, 0.41) 1.16 (0.95, 1.43; p=0.152) 1.01 (p=0.635)

No maternal smoking 0.28 (0.25, 0.32) 0.28 (0.25, 0.32)

Maternal smoking 0.38 (0.33, 0.45) 1.35 (1.12, 1.64; p=0.002) 0.39 (0.33, 0.45) 1.38 (1.13, 1.68; p=0.001) 1.00 (p=0.537)

Indoor air pollution unexposed 0.32 (0.28, 0.36) 0.32 (0.28, 0.36)

Indoor air pollution exposed 0.27 (0.21, 0.36) 0.85 (0.63, 1.15; p=0.279) 0.26 (0.20, 0.35) 0.83 (0.61, 1.12; p=0.224) 2.00 (p=0.337)

High maternal education 0.27 (0.23, 0.32) 0.28 (0.24, 0.33)

Low maternal education 0.34 (0.30, 0.38) 1.24 (1.03, 1.50; p=0.022) 0.33 (0.30, 0.38) 1.18 (0.97, 1.44; p=0.093) 1.47 (p=0.218)

lower in model 2 but still significant (p=0.004), while
for weight-for-length at birth it is higher but still not
significant (p=0.522).
The EDF for birthweight is 2.11 (Table 2) and is higher

than that for all the other covariates but is statistically not

significant (p=0.168). From the effects plots (Fig. 4), we
see that the estimated HR is “wigglier” but a flat line easily
fits within the 95% confidence intervals of the estimated
curve. So, the time-varying HR estimated for birthweight
in model 2 cannot be distinguished from a time constant

Fig. 1 a The estimated baseline incidence rate and b estimated baseline cumulative incidence probabilities for the first episode and recurrent
episodes over time, with 95% confidence intervals (shaded area)
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Fig. 2 The incidence rates (hazard rates) for pneumonia from birth until 2 years by several risk factors estimated by univariable piece-wise
exponential additive mixed models. For each variable we chose the time-constant model except for HIV exposure status and weight-for-length at
birth where we had sufficient evidence for a time-varying effect. The shaded areas indicate the 95% confidence intervals

HR. A similar interpretation can be given to all non-
significant time-varying effects; whose hazard ratios are
also visualized in Fig. 4.

Estimated incidence over time
The estimated incidence curves over time from the final
model for each covariate can be seen in Fig. 2 from birth
until children are two years. Here we have used the final
model (from model 1 and model 2) to estimate the haz-
ard rate over time and then rescaled the hazard rate to
correspond with incidence as number of episodes per

child year (as explained at the beginning of this section).
The shape, similar to the baseline, shows how covari-
ates act to increase or decrease the hazards over time.
For covariate effects estimated from model 1, this rela-
tive increase/decrease is constant over time, but not for
model 2: all hazards, with the exception of HIV expo-
sure status and WfL at birth, are modelled with model
1, which is clear from the figure, since we can see con-
stant relative risks across time but for the three covariate
with time-varying effects we see intersections in the haz-
ard curves over time. It is interesting to note that all risk

Fig. 3 Time-varying hazard ratios over time HR(t) = exp
(
β̂1 + f̂1(t)

)
for a HIV exposed and uninfected children versus HIV unexposed children,

and b children with low weight-for-length Z-score at birth versus children who don’t have low weight-for-length Z-score at birth all with 95%
confidence intervals (shaded area)
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Fig. 4 Time-varying hazard ratios over time HR(t) = exp
(
β̂1 + f̂1(t)

)
for the variables without significant evidence for time-varying trends, with

95% confidence intervals (shaded area)

factors appear most important in the first six months.
The risk factor associated with the largest absolute differ-
ence in incidence rates soon after birth is HIV exposure
status (0.17 episodes per child year). HIV exposure and
low birthweight, show the largest absolute differences
between subgroups at the peak (around 3.5 months) i.e.
approximately 0.5 episodes per child year.
Average incidences over the first two years of life are

given from both models in Table 2. The highest estimated
average incidences are for children with low birthweight,
children who were born preterm and HEU children (more
than 0.4 episodes per child year).

Estimated cumulative incidence over time
The cumulative incidence over time from the final model
for each covariate can be seen in Fig. 5. The largest
cumulative incidence differences between subgroups after
two years follow -up can be seen by sex and low birth-
weight. The estimated proportion of boys who have had
an episode of pneumonia by age two years is approxi-
mately 0.15 more than the proportion for girls (approx-
imately 0.55 for boys and 0.40 for girls). Likewise, the
proportion of pneumonia in children born with low birth-
weight by two years of age is approximately 0.15more than
the proportion for children who were not born with low
birthweight (0.60 versus 0.45).

Analysis of seasonal effects
Before we describe the results of the analysis, it is impor-
tant to define the day of year in South Africa as traditional
seasons to better aid interpretation. The calendar dates for
the seasons are as follows:

• Autumn/Fall – 1 March to 31 May (day 60 – day 151)
• Winter – 1 June to 31 August (day 152 – day 243)
• Spring – 1 September to 30 November (day 244 – day

334)
• Summer – 1 December to 28/29 February (day 335 –

day 365; day 1 – day 59)

Figure 6 shows heatmap plots of the incidence of pneu-
monia across seasons and the age of the child estimated
from model 3, as well as the hazard ratios for the haz-
ards from all seasons (day of year the child is born
or day of year at risk) relative to the hazards for chil-
dren in the first day of the year for both seasonality
variables.
In Fig. 6a, we can see that children born in the summer

period have the highest peaks, at ages between 3 and 8
months. This peak is higher than for children born in any
other period of the year. This is likely explained by a com-
bination of factors: children’s natural peak of developing
pneumonia is at around 3-4 months (as seen in the base-
line incidence in Fig. 1) which is in the early winter period
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Fig. 5 Cumulative incidence of pneumonia over the age of children under 2 years by several risk factors estimated by univariable piece-wise
exponential additive mixed models. For each variable we chose the time-constant model except for HIV exposure status and weight-for-length at
birth where we had sufficient evidence for a time-varying effect. The shaded areas indicate the 95% confidence intervals

for children born in summer, a period in which the risk to
develop pneumonia is increased in the whole population.
These children also appear to have the lowest incidences
when they are at their next summer at around 1 years of
age. We also see that children born in the autumn days

and early winter days have higher immediate incidence
but their incidence slowly decreases as they grow older.
Children born between the later winter days and spring
appear to havemore constant incidence even as they reach
the summer days 6 months later.

Fig. 6 a Estimated incidence (episodes per child year) and b hazard ratios (relative to children born on the first day of the year, in mid-summer) over
the age of children under 2 years from the season of birth and c estimated incidence (episodes per child year) and d hazard ratios (relative to
children currently in the first day of the year, in mid-summer) over the age of children under 2 years at the current season
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In Fig. 6b, we compare the incidences for children born
at all days of the year with children born on the first
day of the year (so children who were born close to mid-
summer in South Africa). We see that children born after
the summer months but before mid-winter have a higher
relative hazard for the first three months of life. Children
born outside the summer days appear to have lower rel-
ative hazards between the critical ages of 3 to 6 months.
However, these children tend to have much higher relative
hazards when they are around 1 year old.
Figure 6c and d are interpreted slightly differently since

the season is the current day of the year. The x-axis shows
the age of the child while the y-axis is the current sea-
son so that every x-y combination in the plot represents
the effects for a different group of children. In Fig. 6c, we
see that children who are under 9 months old between
early autumn and early spring have the highest incidence
rates. We still see slightly darker shading between mid-
autumn until the end of winter for children older than 9
months, indicating higher incidences compared to chil-
dren at these ages outside of this seasonal period. This is
better seen in the hazard ratio plot in Fig. 6d. The figure
shows the ratios of the hazard for each current season (day
of the year) relative to the hazard for children born on
the first day of the year, for children of every age under 2
years. In this plot we see that children whose current sea-
son is from mid-autumn to the end of winter have higher
hazards than children in peak summer, particularly for
children between 3 to 18 months.

Discussion
In this study we used piece-wise exponential additive
mixed effects models to analyse univariable effects of
covariates that were assumed either (1) time constant or
(2) time-varying. We also looked at a more complex asso-
ciation between continuously measured seasonality and
pneumonia incidence. The PAMMs approach has advan-
tages in that it allows for various possibilities of smooth
associations including non-linear effects of covariates, and
non-linear time-varying effects. Since the model is fully
parametric, it can be used in prediction models, and over-
fitting is avoided through penalization. Model selection
of time-varying effects and possible non-linear effects of
covariates are however limited to p-value based criteria
and visualization of the effects, which may be difficult
for researchers with less experience with flexible mod-
els to gauge on their own. An advantage of PAMMs is
that the hazard rates can be directly translated into inci-
dence rates as in Poisson regression models, allowing for
better interpretation by clinical researchers compared to
conventional hazard rates.
Through this analysis, we found that strong effects

of some risk factors, specifically sex, low birthweight,
preterm birth, low socioeconomic status, low levels of

maternal education and maternal cigarette smoke expo-
sure that persisted throughout the first 2 years of life.
These are well known risk factors for the incidence of
pneumonia [3, 10, 11, 13]. Further, we found that the rela-
tive risk for HIV exposure status is much higher soon after
birth and decreases to a null effect as the child approaches
an age of two years (with the lower limit of the confidence
interval at 15 months). There are limited longitudinal
studies that have compared the incidence of pneumonia
in HEU and HU children. Slogrove et al. [29] performed a
systematic review on studies that compare HEU and HU
children, with respect to morbidity and mortality. One
of their findings was that the greatest relative difference
between HEU and HU infants in morbidity occurs beyond
the neonatal period, during mid-infancy, having waned by
the second year of life. This is consistent with our find-
ings for pneumonia incidence. There has been evidence
that HIV exposure status is strongly associated with pneu-
monia severity in the first 6 months of life [3, 30]. All
pneumonia episodes in children under 2 months are clas-
sified as severe [17]. If all episodes under 2 months are
severe and HIV exposure is linked to pneumonia severity,
then this could be explaining why we see the relative risk
of HIV decline over time. Further modelling is needed to
investigate this.
We also found strong evidence of seasonal effects on the

incidence of pneumonia, where we considered season of
birth as a time-varying effect over the child’s age and also
current season as a time-varying covariate over the first
two years of life. The results suggest that incidence rates
are higher in the winter season than in the summer season,
especially within the first six months of life. Rudan et al.
[10] and Janet et al. [31] highlight that the peak incidence
of respiratory syncytial virus occurs for a period of 2 –
4 months during the cold seasons. Respiratory syncytial
virus is the leading viral cause of hospitalized pneumonia
in children who are immunised with PCV and HiB [32].
Further research is needed to study this association in the
DCHS birth cohort.
We show that even though statistically insignificant in

the analysis, WfL at birth has increasing relative risks over
time in the first two years of life. A limitation in these find-
ings is that this variable is a time-varying covariate, and
should be modelled as such. However, the data for WfL as
a time-varying covariate was limited.
Exclusive breastfeeding, although an important risk fac-

tor, was not included in the analysis because it is a special
time-varying covariate where we can hypothesize that
there are lagged effects of exposure on the hazard, and
the effects of exposure accumulate over time. A different
modelling approach [33] should be used for studying these
time-varying covariates. This approach involves the flexi-
ble modelling of complex exposure-lag-response associa-
tions in time-to-event data, wheremultiple past exposures
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within a defined time window are cumulatively associ-
ated with the hazard. The model has not been extended
to recurrent events, and is a consideration for future
research.
Further research, highlighted by this work, is to explore

the possible time-varying effect of HIV exposure status
across pneumonia severity while accounting for impor-
tant confounders, and to explore the associations between
seasonality, pneumonia incidence and the presence of
respiratory syncytial virus.

Conclusion
It avoids stringent assumptions and allows estimation and
visualization of relative risks over time of key factors asso-
ciated with incidence of pneumonia in young children,
providing new perspectives on the role of risk factors such
HIV exposure.
Flexible modelling of the incidence of infectious dis-

eases is needed for a better understanding of disease
aetiology. This work highlights the usefulness of flexible
modelling tools in recurrent events models. In particu-
lar, PAMMs extended for recurrent events, allowed for the
flexible modelling of the effect of risk factors on pneu-
monia incidence over time with and without the stringent
assumption of proportional hazards. In this study, we
have shown that the relative risks of HIV exposure status,
weight-for-length at birth and season at birth on pneu-
monia incidence varies with time. We have also shown
complex non-linear effects of continuously measured sea-
sonality. This type of flexible modelling can provide new
perspectives on the role of risk factors on time to event
outcomes. These perspectives need to be investigated
further in future analysis.
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