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Here, we discuss several important aspects of magnetically recoverable catalysts which

can be realized when magnetic oxide nanoparticles are exposed to catalytic species and

catalytic reaction media. In such conditions magnetic oxides can enhance performance

of catalytic nanoparticles due to (i) electronic effects, (ii) catalyzing reactions which are

beneficial for the final reaction outcome, or (iii) providing a capacity to dilute catalytic

metal oxide species, leading to an increase of oxygen vacancies. However, this approach

should be used when the magnetic oxides are stable in reaction conditions and do not

promote side reactions. Incorporation of another active component, i.e., a graphene

derivative, in the magnetically recoverable catalyst constitutes a smart design of a

catalytic system due to synergy of its components, further enhancing catalytic properties.

Keywords: magnetically recoverable catalysts, iron oxide influence, catalytic species distribution, graphene

derivative, side reactions

INTRODUCTION

Magnetically recoverable catalysts received considerable attention in the last decade due to
possibility of magnetic separation, allowing for easy recovery with a minimal catalyst loss. In
addition, it leads to conservation of energy and of a rare metal catalyst and results in cheaper
target products. Several excellent reviews have been published onmagnetically recoverable catalysts
(Shylesh et al., 2010; Polshettiwar et al., 2011; Hudson et al., 2014; Kainz and Reiser, 2014; Rossi
et al., 2014; Wang and Astruc, 2014; Sharma et al., 2016; Kang et al., 2017). In the majority of
cases, magnetic nanoparticles (NPs) are isolated from the catalytic centers (immobilized catalytic
complexes or catalytic NPs) using carbon (graphene) or silica coating. Coating of magnetic NPs
with carbon or silica layers allows one to accomplish two goals: (i) to isolate NPs to prevent
oxidation of a magnetic metal (it is imperative for Co or Fe) and/or (ii) to impart functional groups
on themagnetic NP surface which is facilitated via sp2 carbon of graphene or silanol groups of silica.
In the former case, unprotected metal nanoparticles require a strong protective shell because their
high sensitivity to air makes them pyrophoric. The carbon shells provide the best protection due
to their superior chemical and thermal stabilities, while silica shells do not fully block the oxygen
diffusion (Schaetz et al., 2010b). The silica shells are more applicable for iron oxide or ferrite NPs.
They protect magnetic cores more efficiently than, for example, long-chain alkyl surfactants (Sun
and Zeng, 2002) or polymers (Caruso, 2001; Pyun, 2007) and can be formed by sol-gel method
using silanes (Lu et al., 2002).

In order to implement functional groups on the surface of carbon coated magnetic NPs,
diazonium chemistry was utilized (Grass et al., 2007). This approach can be modified by
introducing azide groups that allow the covalent attachment of acetylene terminated molecules
via Cu(I)-catalyzed “click” reaction (Schaetz et al., 2008, 2010a). Additionally, noncovalent
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functionalization via the carbon layer can be achieved by π-
π stacking interactions (Wittmann et al., 2010), allowing, for
example, the thermally reversible attachment of a pyrene-
terminated Pd-containing N-heterocyclic carbene (NHC) ligand.
It is worth noting that in all cases, the effective loading with
functional molecules was limited to a moderate level of 0.1–0.2
mmol/g.

In the case of silica shells, silanol groups on the surface allow
simple surface functionalization with various silanes and silane-
modified molecules such as polymers, dendrimers, chelating
ligands, catalysts, etc (Wang et al., 2013; Costa et al., 2014).

In our work, magnetically recoverable catalysts are
based on superparamagnetic iron oxide NPs stabilized by
dendron(dendrimer)/polymer molecules or formed in the
pores of mesoporous solids. No solid shells exist around
magnetic NPs which would isolate an iron oxide surface.
Because magnetic iron oxides (even magnetite) are quite stable
toward oxidation, exposure of the catalysts containing such
NPs to air is not detrimental for their magnetic properties,
ensuring the reliability of their magnetic response. In the
absence of an isolating shell, the catalytic metal NPs can
be in a direct contact with magnetic NPs, whose surface is
also exposed to a catalytic reaction mixture. Due to these
conditions, we observed a number of interesting phenomena
which demonstrate that the direct exposure of magnetic NPs
can be beneficial for the catalyst development and the catalytic
properties.

IRON OXIDE CAN ENHANCE CATALYTIC
ACTIVITY

The influence of iron oxide NPs on catalytic hydrogenation
of various substrates was demonstrated on several occasions
for Pt (Gumina et al., 2013), Au (Milone et al., 2007), Pd
(Easterday et al., 2014), and Ru (Easterday et al., 2015) NPs.
For Pd and Ru NPs (Easterday et al., 2014, 2015), this effect is
especially straightforward because the catalysts were prepared
by direct combination of iron oxide NPs with Ru or Pd NPs
formed in situ in the presence of 1,2-hexadecane diol, oleylamine,
and oleic acid. Moreover, the desired effect, i.e., a significant
increase of activity and selectivity in selective hydrogenation, was
observed in the conditions which promoted partial aggregation of
magnetic and catalytic NPs (due to polarization forces), allowing
for magnetic separation and close proximity of both types of
particles (Figure 1). This approach also allowed for a direct
comparison with Pd and Ru NPs of the same sizes (synthesized
in the analogous conditions but without iron oxide NPs), whose
activity and selectivity were significantly lower than those for
magnetically recoverable counterparts. Even when Pd (Ru) NPs
are not attached to the iron oxide NPs, their close proximity can
result in collisions, leading to interactions and electron transfer
between the iron oxide NP surface and the Pd (Ru) surface which
is a common phenomenon in the support-metal interactions.
This results in the activation of the functional group facilitating
hydrogenation (Milone et al., 2007; Cardenas-Lizana et al., 2011;
Easterday et al., 2014, 2015).

FIGURE 1 | TEM image (Left) and schematic representation of the catalyst

catalyzing hydrogenation of nitrobenzene to aniline (Right). Red arrows

indicate Ru NPs (Easterday et al., 2015). It is being reproduced with the

permission of the copyright holder [Royal Society of Chemistry].

IRON OXIDE CAN CHANGE THE
CATALYTIC REACTION PATHWAY

Iron oxide can change a reaction pathway due to catalyzing the
process which completely changes the reaction outcome. Below
we are discussing two cases, where the change of the reaction
pathway was clearly documented.

Ethylene glycol (EG) and propylene glycol (PG) are known to
be key precursors for pharmaceuticals, liquid fuels, emulsifiers,
and surfactants (Harlin, 2011; Yue et al., 2012). One of the
environmentally friendly ways of their syntheses is cellulose
(a major component of biomass) catalytic hydrogenolysis in
water. This reaction can be carried out as a one-pot process in
subcritical water with various heterogeneous catalysts (Verendel
et al., 2011). Ru-containing catalysts are considered the best,
but produce mainly sorbitol and mannitol, while EG and PG
are obtained in small amounts (Dhepe and Fukuoka, 2007;
Luo et al., 2007; Kobayashi et al., 2011; Manaenkov et al.,
2014). Recently we developed magnetically recoverable catalysts
based on mesoporous magnetic silica (Fe3O4-SiO2) and Ru NPs
(Manaenkov et al., 2016). In optimized reaction conditions in
subcritical water, the Ru-Fe3O4-SiO2 catalyst allowed for the
highest selectivities to EG (19%) and PG (20%) with trace
amounts of sorbitol and some other compounds.

It is well documented that cellulose hydrogenolysis is a
multistep process. The first step occurs in subcritical water due
to formation of hydroxonium protons (Luo et al., 2007). This
leads to the formation of glucose, which easily caramelizes in
the absence of hydrogenation catalysts. If suitable Ru-containing
catalysts are present, sorbitol is formed (Manaenkov et al., 2014).
It is noteworthy that at the beginning of the reaction with Ru-
Fe3O4-SiO2 sorbitol is also formed but it is later consumed
to produce EG and PG, revealing that Fe3O4 promotes these
transformations, i.e., hydrogenolysis.

To corroborate this hypothesis, we synthesized the Ru-SiO2

catalyst using the same mesoporous silica as precursor and the
same procedure as that for Ru-Fe3O4-SiO2 but without Fe3O4 NP
formation. The Ru-SiO2 catalyst allowed formation of sorbitol
and mannitol (with the total selectivity of 6.5%) along with other
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polyols, showing that without Fe3O4 NPs hydrogenolysis barely
takes place. In the case of Ru-Fe3O4-SiO2, these polyols are
nearly absent due to efficient hydrogenolysis. Thus promoting
hydrogenolysis, Fe3O4 NPs change the reaction pathway and as
consequence, different reaction products (EG and PG) can be
targeted.

The other example of the reaction pathway change was
observed for magnetic zeolites (Mann et al., 2016). Zeolite ZSM-
5 is a well-known catalyst of methanol-to-hydrocarbon (MTH)
and methanol-to-gasoline (MTG) transformations (Olsbye et al.,
2012). In our studies we compared the methanol conversion
rates and the yields of different fractions of hydrocarbons
in MTH in the presence of ZSM-5 and Fe3O4-ZSM-5, both
prepared from the same mesoporous SiO2 precursor. While the
methanol conversion rate increased by only 15% for magnetic
zeolite vs. regular zeolite, the yield of hydrocarbons increased
by a factor of 2.7 for Fe3O4-ZSM-5. Moreover, the yields of
important hydrocarbons such C5-C8 (for synthesis of value-
added chemicals) and C9-C11 (gasoline fraction) increased by
more than 300 and 130%, respectively (Mann et al., 2016). Such
an increase in the product yield could not be attributed to merely
increased catalyst activity (15% increase). This phenomenon
was puzzling until we considered the possibility of a different
reaction pathway. Recently, it was reported that formaldehyde
can be formed as an intermediate in the MTH reaction and it
may participate in Formose-type reactions leading to carbon–
carbon formation and chain growth (Sun et al., 2014). At
the same time, iron-containing compounds were shown to
catalyze the formaldehyde synthesis from methanol (Bowker
et al., 2002; Thivasasith et al., 2015). Thus, the Fe3O4-ZSM-
5 catalysts most likely allow for a higher formaldehyde yield,
therefore promoting the chain growth and formation of long
hydrocarbons.

IRON OXIDE CAN BECOME A RESERVOIR
FOR CATALYTIC SPECIES

A methanol synthesis from syngas is an important sustainable
process (Waugh, 2012) which is closely associated with biomass
or biooil conversion to syngas (Wang et al., 2007; Seyedzadeh
Khanshan and West, 2016) and syntheses of value-added
chemicals such as hydrocarbons or fuels obtained frommethanol.
ZnO and mixed zinc containing oxides were reported to
show promising catalytic properties in transformation of syngas
to methanol due to oxygen vacancies in these metal oxides
(Kurtz et al., 2005; Polarz et al., 2006; Strunk et al., 2009).
Recently, we reported syntheses of Zn-containing magnetic
oxides, prepared by thermal decomposition of Zn(acac)2 in the
reaction solution of preformed magnetite nanoparticles (NPs)
stabilized by polyphenylquinoxaline (PPQ) (Baird et al., 2016).
While magnetite is not a catalyst in this reaction, the iron
oxide species could behave as a dopant increasing the ZnO
oxygen vacancies. However, no ZnO phase was detected in
Zn-containing magnetic oxides, although the activities of these
catalysts in the methanol synthesis were much higher than
those of conventional catalysts. To further enhance the catalytic
activity, we studied the influence of such doping metals as

Ni, Co, and Cr on the structure of Zn-containing magnetic
oxides and their catalytic properties in the methanol synthesis
(Baird et al., 2017). Two thermally stable capping polymers
have been explored: (i) linear PPQ (Singh et al., 1995; Keshtov
et al., 2001) and a hyperbranched pyridylphenylene polymer
(PPP) (Kuchkina et al., 2015). At low doping metal contents,
a significant increase of catalytic activity has been observed
(the most pronounced for hyperbranched PPP). In neither case,
however, Zn or doping metal formed a separate phase and the
Fe2+:Fe3+ atomic ratio of magnetite was preserved, both on the
NP surface and in subsurface layers (by X-ray photoelectron
spectroscopy, XPS) (Baird et al., 2017). XPS also showed that
there is a gradient in Zn and doping metal contents with clear
surface enrichment. These data reveal that magnetite NPs serve
as reservoir for others metals, probably creating oxygen vacancies
which are crucial in the syngas-to-methanol transformation.

This approach was further extended to magnetically
recoverable catalysts based on magnetic silica (Oracko et al.,
2017). Similar to the polymer stabilized Zn-containing magnetic
oxides, incorporation of Zn and doping metal species resulted
in a single magnetite phase with a gradient of the Zn and the
doping metal contents from the surface to subsurface layers
(Figure 2). Furthermore, X-ray absorption spectroscopy (EXAFS
and XANES) revealed that the catalyst structure is different from
Fe3O4 or ZnO or Cr2O3. Instead, magnetic oxides demonstrated
a significant shortage of oxygen atoms around Fe, Zn, and Cr,
i.e., oxygen vacancies which increased from a single oxide phase
(for example, Fe3O4 or ZnO) to Zn-Fe3O4-SiO2 and further to
Zn-Cr-Fe3O4-SiO2, resulting in a significant increase of catalytic
activities of these magnetic oxides (Oracko et al., 2017).

IRON OXIDE CAN BE DETRIMENTAL TO
THE REACTION OUTCOME

There are two major avenues for iron oxide NPs being
detrimental for the catalytic reaction outcome: (i) dissolution
of iron oxide NPs in an acidic medium, leading to a loss
of magnetic recovery or (ii) catalyzing side reactions, which
could result in undesired products. The former phenomenon
was observed in hydrogenation of bio-oil into higher alcohols
with Ru-containing magnetic silica containing magnetite and
Ru NPs in the silica pores (Cherkasov et al., 2017). In optimal
conditions at pH 3 the highest hydrogenation rate was achieved
at the minimum hydrogen and energy consumption, however, a
noticeable dissolution of iron oxide was observed. When pH was
adjusted to 6.0, the rate of hydrogenation of furfural and phenol
decreased by a factor of 2. Finally, it was determined that the pH
of 4.5 allows a reasonable compromise between a hydrogenation
reaction rate and the catalyst deactivation rate via dissolution.

A side reaction was found to be a problem in the furfural
hydrogenation to furfuryl alcohol with magnetically recoverable
catalysts containing Pd and Pt NPs stabilized by PPQ and
PPP (Alibegovic et al., 2017). The control experiments carried
out with magnetite NPs stabilized by these polymers showed
that the furfural conversion occurs with both Fe3O4-PPQ and
Fe3O4-PPP, giving 15.3 and 2.7% of i-propyl-furfural ether,
respectively. For the optimized Pd-Fe3O4-PPQ, the selectivity
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FIGURE 2 | EDS elemental maps (Left), normalized Zn K-edge XANES spectra (Right), and schematic representation of Zn-Cr-Fe3O4-SiO2 catalyzing the methanol

synthesis (Center) (Oracko et al., 2017). It is being reproduced with the permission of the copyright holder [American Chemical Society].

to furfuryl alcohol did not exceed 88.7% due to formation of
10.3% of i-propyl-furfural ether (from 2-propanol solvent). On
the other hand, for optimized Pd-Fe3O4-PPP, the selectivity
to furfuryl alcohol was 99.4% with only 0.6% of i-propyl-
furfural ether. Clearly, in this case, iron oxide is detrimental
to the reaction outcome, but for PPP, the side reaction is
minimized. This is explained by tethering of catalytic NPs
by a hyperbranched polymer increasing the distance between
catalytic and magnetite NPs and better protection/isolation
of the iron oxide surface with a large amount of the
polymer.

SYNERGY OF IRON OXIDE WITH
GRAPHENE DERIVATIVE SUPPORTS

In magnetically recoverable catalyst, iron oxide is often a support
for catalytic NPs along with a polymer or a mesoporous solid.
At the same time, magnetic nanocomposites could benefit from
an additional active support component which could play an
important role in a catalyst formation and in a catalytic reaction.
In recent years, graphene derivatives such as graphene oxide
(GO), reduced GO (RGO), N-doped graphene, etc. have been
introduced as catalysts and catalyst supports (Singh et al., 2015;
Das et al., 2017). The remarkable feature of graphene derivatives
containing a significant fraction of sp2 carbon atoms is that they
are capable of directing the formation of metal or metal alloy
NPs along the certain crystalline planes, thus, controlling the
catalyst structure (Dahal and Batzill, 2014). We have developed a
novel magnetically recoverable nanocomposite based on partially
reduced GO (pRGO), polyethyleneimine (PEI), magnetite and
Ru NPs, which showed remarkable regio- and chemoselectivity
in transfer hydrogenation of nitrobenzene to aniline using 2-
propanol as a hydrogen source (unpublished). We discovered
that Fe3O4 NP formation in the presence of GO and PEI results
in partial reduction of GO to pRGO, whose structure directs the
Ru or Ag NP formation and creates synergy between the catalyst

components (Das et al., 2018). This synergy is reflected in the
catalyst behavior, as pRGO allows for adsorption of nitrobenzene
and intermediates, while Ru NPs catalyze hydride transfer, with
magnetite NPs making the system magnetically recoverable.

SUMMARY AND OUTLOOK

In this perspective we highlight the importance of many aspects
of magnetically recoverable catalysts which are often overlooked
when such catalysts are developed and studied. Careful design of
magnetically recoverable catalytic systems can enhance activities
of the catalysts via several effects such as the electron transfer
from the magnetic NP surface, change of the reaction pathway
or distribution of catalytic species within iron oxide NPs, leading
to their unique properties. These effects, however, can be only
observed when magnetic NPs are unprotected by any solid shells,
thus, the magnetic NPs need to be stable in reaction conditions
and do not catalyze any side reactions.

Despite the title of this paper (“Beyond magnetic separation”),
we would like to emphasize that easy magnetic separation
is still a very important attribute of magnetically recoverable
catalysts. Moreover, the catalysts with high cooperative magnetic
moments, can be used for magnetic catalyst fixation in
continuous-flow processes (Park and Kim, 2010; Schaetz et al.,
2010a; Rehm et al., 2015), which constitutes the future for
commercialization of magnetically recoverable catalysts.
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