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Abstract
Measles and influenza are two major diseases–caused an epidemic in India. Therefore, in
this paper, a SVEIRS epidemic mathematical model for measles and influenza is proposed
and analyzed, where pre and post vaccinations are considered as control strategies with
waning natural, vaccine-induced immunity and saturation incidence rate. The dissection of
the proposed model is conferred in terms of the associated reproduction number Rv , which
is determined by the next-generation approach and obtained that if Rv ≤ 1, the disease-
free equilibrium exists and it is locally as well as globally asymptotically stable. Further
for Rv > 1, a unique endemic equilibrium exists and it is also locally as well as globally
asymptotically stable under certain conditions, which shows the prevalence and persistence
of the disease in the population.

Keywords Pre and post vaccinations · Reproduction number · Saturated incidence rate ·
Global stability

Introduction

Mathematical modeling has become an essential tool to analyze the spread and control of
several infectious diseases [1,2]. In recent years, many attempts have been made to develop
some sensible mathematical models for investigating the dynamics and asymptotic behaviors
[3–6]. Mathematical models take into account foremost factors that govern improvement of
a disease, such as vaccination, transmission, recovery etc. The most important factor in the
epidemic is asymptomatic or unapparent, where the infectious diseases spread incessantly
throughout the population without showing symptoms. Individuals with asymptomatic infec-
tion are still infectious and supply to the dissemination of the disease from one human to a
different [7,8]. Asymptomatic diseases can decline the immune system and make individuals
susceptible to other diseases. When a subclinical infection is not noticed by the infected indi-
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vidual, it is dangerous not only for infected individuals but also for other people around him.
These infections are very risky for certain association of people such as pregnant women. The
asymptomatic situationmay not be identified until the patient undergoesmedical tests (X-rays
or other inquisition). Therefore, some people may remain asymptomatic for a remarkably
long period of time and even they also died. This type of infection exists for many diseases,
like measles, influenza etc. [5,7].

Vaccines play a significant role in keeping us vigorous as they defend us from serious
and sometimes fatal diseases, e.g., influenza and measles. There is a vast variability in the
construction of vaccination models in epidemiology which entirely depends on the disease
and the type of vaccines. Some vaccines may be greatly effective against infection while
others may be unsuccessful in various respects like degree, duration, infectiousness, and pro-
gression etc [9]. The most frequent vaccination plan is to immunize all individuals, where the
spread of various infectious diseases can be prevented by giving vaccination at a regular rate
to the susceptible population on pre or post level [10–12]. The pre-vaccination of susceptible
may reduce the level of an epidemic, which was studied by the several researchers [9,13,14].
The cohort (or pre-vaccination) is considered in [9], where a proportion of newly recruited
individuals are vaccinated. While the impact of post vaccination is studied by a number of
researchers [15,16], and obtained that, to eliminate the disease from the population, vaccina-
tion rate must be larger than the critical vaccination coverage otherwise the disease persists
in the population. But only a few numbers of researchers studied both vaccination strategies
simultaneously at the same time [17,18].

In modeling of the infectious diseases, the incidence function play a key role as it can
determine the rise and fall of epidemics and represents the number of new cases per unit
time. Some factors, such as density and lifestyle of the population could affect the incidence
rate openly or circuitously. Many forms of incidence rates are possible. In the conventional
epidemic disease models, bilinear incidence rate βSI and standard incidence rate βSI

N have
been studied. The bilinear incidence rate is based on the lawofmass action and is a tremendous
type,which can’t elucidate enhanced the sophisticated phenomena of disease conduction [19–
21]. Moreover, the standard incidence rate may be a good approximation if the number of
existing partners is huge enough and each one could not make more contacts than is basically
reasonable [9,22–24]. The saturated incidence rate βSI

1+α I , which tends to a saturation level
when I gets large, where β I measures the infection force when the disease is entering a
fully susceptible population, and 1

1+α I measures the inhibition effect from the behavioral
change of susceptible individuals when their number increases or from the crowding effect
of the infective individuals [25]. Capasso and Serio introduced a saturation incidence rate

βSI
1+βδ I (δ > 0) in [26], for the cholera epidemic model, where the infection force for a very
large number of infective may decrease as the number of infective individuals increases.
Saturation incidence rate seems more sensible than the bilinear incidence rate because of it
includes the behavioral change and crowding effect of the infective individuals and prevents
the unboundedness of the contact rate by choosing suitable parameters [15,27,28]. Longini Jr
et al. [29,30] and Germann et al. [31], proposed models by including two classes of infective
persons, namely, symptomatic infective with clinical symptoms and asymptomatic infective
with no or negligible symptoms. A model to include the asymptomatic stage in a standard
SARS epidemic model to study the treatment and chemoprophylaxis strategies and their
effects on enlarging of the disease is proposed by Stilianakis et al. [32]. According to our
knowledge, the role of asymptomatic infection on the transmission dynamics of influenza
was never analytically explored. It is thought that, asymptomatic cases and asymptomatic
infection of influenza occur regularly [33,34].
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Several studies have indicated that asymptomatic infections account for about one-third
of infections [35–38]. Through its character, asymptomatic flu cases are difficult to diagnose.
Therefore, it is impossible to specifically define the number of asymptomatic cases. As a
result, clinical evidence of asymptomatic infection is enormously limited and the size of
its donation to spread of flu is tough to determine. Longini Jr et al. [29], assumed that the
chance that a person will be symptomatic given that person has been infected is 0.67, based
on population-level influenza cohort studies in the U.S. Furthermore, they assumed that an
asymptomatic infection is only 50% as infectious as a symptomatic infection. Intuitively,
there might be a considerable difference in the respective transmission probabilities from
asymptomatic and symptomatic person to susceptible [8]. Obviously, an infected person with
clinical illness sheds additional virus thandoes onewith sub-clinical symptoms.Alternatively,
infected persons with clinical symptoms may show reduced contacts if they are sufficiently
ill to be restricted to bed. For clear discussion, the readers are referred to Hsu and Hsieh
[8] and references therein. The aforementioned modeling studies with asymptomatic stage
utilize complex models and simulation studies to explore the role of sub-clinical infection in
intervention strategies.

The present study is more reasonable than the existing literature as it includes the
impact of asymptomatic individuals with both pre and post vaccinations, which has not
been given much prominence in the past. Motivated with the work of Sahu and Dhar [15],
in this paper we consider a SVEIRS epidemic model with asymptomatic stage and satu-
rated incidence rate. The intent of this paper is to propose an epidemic model, to examine
the global dynamics and ensures the conditions for the eradication of the disease from the
population.

This article is organized as follows: in “Formulation of the Mathematical Model” section,
we develop a mathematical model as system of ODEs and describe all parameters used in
the model. In section “Steady States and the Control Reproduction Number”, we determine
all possible steady states and associated reproduction number. In section “Stability Analysis
of the Equilibria”, stability analysis is carriedout for both the equilibriua. Finally, numerical
simulations and discussions are given in the last section.

Formulation of theMathematical Model

AnSVEIS epidemicmodel for an infectious disease that spread in the host population through
horizontal transmissionwas investigated by Sahu andDhar [15]. They proposed the following
mathematical model:

dS

dt
= Λ − μS − ωS + θV − βSI

1 + aI
+ (1 − q)γ I ,

dV

dt
= ωS − θV − μV + ξE + qγ I ,

dE

dt
= βSI

1 + aI
− μE − ξE − σ E,

d I

dt
= σ E − μI − γ I ,

where Λ is the recruitment rate of susceptible; μ is the natural death rate; ω is the rate at
which susceptible individuals are vaccinated; θ is the rate at which vaccine wanes; β is the
transmission coefficient of exposed individuals; 1

a is the half-saturation constant of infected
individuals; q is the fraction recovered individuals getting disease acquired immunity; ξ is
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the rate of recovery from exposed class due to natural immunity; 1
γ
is the average length of

infection of the infected individuals and 1
σ
is the average time-span of infected individuals

in exposed class.
In [15], the authors assumed that constant vaccination is applied continuously and

the population is mixing and interacting homogeneously. The disease induced death rate
is negligible and infection is spread due to the interaction of infected and susceptible
individuals with nonlinear saturation incidence rate. Another model was proposed by
Samsuzzoha et al. [41] and studied uncertainty and sensitivity of the basic reproduction
number of a vaccinated epidemic model of influenza. From these models, it is observed
that the model is given in [15] is not applicable in the case if the symptoms of infec-
tious diseases are not shown (e.g., influenza and measles diseases). Also, in the model
proposed by Samsuzzoha et al. [41], the authors do not consider the case in which the
infection is asymptomatic and the effect of vaccination on the infected or infectious
individuals is not discussed. Hence, the model is extended by incorporating a new com-
partment for the infectious individuals, when they will remain in an asymptomatic stage
without showing any symptoms and also consider pre-vaccination and post-vaccination
strategies.

Therefore, in this paper, we propose amathematical model with vaccination and saturation
incidence rate. Here, the susceptible-vaccinated-exposed-infected- asymptomatic-recovered-
susceptible (SV E I RS) model, to be described. The model divides the total population size
at time t , say N (t), into seven mutually exclusive subpopulations, called compartments, e.g.
susceptible (S(t)), pre-vaccinated (V1(t)), post-vaccinated (V2(t)), exposed (E(t)), asymp-
tomatic (A(t)) and recovered (R(t)), such that N (t) = S(t)+V1(t)+V2(t)+ E(t)+ I (t)+
A(t)+ R(t).Here, the population is mixing, interacting equivalently and the disease induced
death rate is negligible. The transmission of diseases is taken to be horizontally and vertically
and the movement of population is not considered in this paper. The basic assumptions of
the model are as follows:

(A1) The model assumes a simple demographic progression in which recently recruited
individuals (such as newborns or pre and early-adolescents) come into the population
at a rate Π and go out (e.g., due to natural death) at the same rate μ.

(A2) Infectious persons can be divided into two compartments namely, I (t) (with symptoms)
and A(t)( without any symptoms called asymptomatic). A(t) is assumed to be less
infective than I (t), i.e., 0 < b < 1, where b is the proportion at which the exposed
individuals will join the infectious class.

(A3) The disease induces momentary protection in a fraction of recovered population and
rest of the recovered population rejoin to the susceptible class.

(A4) Instead of being infected, a small part of exposed individuals recovers and develops
disease acquired short-term immunity and hence joins to vaccinated class.

(A5) After becoming infected, one part of the population becomes infected with the rate b
and remaining part becomes asymptomatic.

(A6) Vaccination is assumed to be temporary effective and continuous vaccination is given
to the population with constant vaccination rate.

Keeping in mind the above assumptions and the transition diagram shown in Fig. 1, our
proposed SVEIRS epidemic model is given by the following system of ordinary differential
equations:
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Fig. 1 Flow chart of an SVEIRS epidemic model with demographic effect

dS

dt
= Π(1 − φ) + aV1 − βS(I + cA)

(1 + I )
+ θV2 + r R − (ω + μ)S,

dV1
dt

= Πφ − (a + μ)V1,

dV2
dt

= ωS + ξE − (θ + μ)V2,

dE

dt
= βS(I + cA)

(1 + I )
− (ξ + η + μ)E,

d I

dt
= bηE − (α + μ)I ,

d A

dt
= (1 − b)ηE − (γ + μ)A,

dR

dt
= α I + γ A − (r + μ)R,

(2.1)

where the descriptions of parameters used in above model is given in the Table 1.All the
parameters of the model (2.1) are assumed to be positive. The model has following initial
conditions:

S(0) = S0 ≥ 0, V1(0) = V10 ≥ 0, V2(0) = V20 ≥ 0, E(0) = E0 ≥ 0,

A(0) = A0 ≥ 0, I (0) = I0 ≥ 0 and R(0) = R0 ≥ 0.

Steady States and the Control Reproduction Number

Now, we appraise all feasible steady states and the associated reproduction number Rv for
the model system (2.1).

Positive Invariance and Boundedness of the Solution Set

It is easy to prove that all the solution sets of model (2.1) are non-negative for all t ≥ 0.
Here, the total population size N (t) satisfies, dN

dt = Π − μN . So, N (t) → Π
μ

, as t →
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Table 1 Definition of the parameters

Parameter Description Unit

Π Recruitment rate of susceptible individuals Individuals· time−1

N Total population size Individuals

φ Proportion that the newly recruited individuals are vaccinated None

μ Natural death rate of the population Time−1

a Loss of pre-vaccination rate Time−1

β Disease transmission rate from infectious individuals to susceptible Time−1

c Number of successful contacts from asymptomatic to susceptible none

ω Vaccination rate given to the susceptible populations (post vaccination) Time−1

b The rate at which exposed individuals join the infectious class None

γ Recovery rate of asymptomatic individuals Time−1

α Recovery rate of infectious individuals Time−1

θ Loss rate of vaccine induced immunity Time−1

ξ Recovery rate of exposed individuals due to natural immunity Time−1

η Per capita rate of becoming infectious Time−1

r The rate at which the recovered individuals become susceptible again Time−1

∞. Therefore, the region of attraction for the model (2.1), where the system has biological
and feasible meanings, is given by

Γ =
{
(S, V1, V2, E, A, I , R) ∈ R

7+ : 0 ≤ S + V1 + V2 + E + A + I + R ≤ Π

μ

}
.

This is the positive invariant set because all solutions of themodel (2.1) with initial conditions
in Γ remain in Γ for all time t > 0. This proves the boundedness of system (2.1).

The Existence of Disease Free Equilibrium (DFE)

The disease free equilibrium exists if and only if I = 0. Hence, the unique disease free
equilibrium is E0 = (S0, V 0

1 , V 0
2 , E0, A0, I 0, R0), where

S0 = (θ + μ)Π{a + μ(1 − φ)}
μ(a + μ)(θ + ω + μ)

, V 0
1 = Πφ

a + μ
, V 0

2 = ωΠ{a + μ(1 − φ)}
μ(a + μ)(θ + ω + μ)

,

E0 = 0, A0 = 0, I 0 = 0, R0 = 0.

The Existence of Endemic Equilibrium

The endemic equilibriumpoint exists and is unique only if the associated reproduction number
Rv > 1 and the details are given in “Existence of Endemic Equilibrium” appendix section.
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The Associated Reproduction Number

Here, we derive the associated reproduction number (or control reproduction number) for
the model system (2.1) by using Next-generation approach which is formulated in [7,39].

Let m1 = (ω + μ), m2 = (a + μ), m3 = (θ + μ), m4 = (ξ + η + μ), m5 = (α + μ),
m6 = (γ + μ), m7 = (r + μ) and x = (E, A, I )T , then model (2.1) follows that,

dx

dt
= F − V,

where

F =
⎛
⎝

βS(I+cA)
1+I
0
0

⎞
⎠ and V =

⎛
⎝ m4E
m6A − (1 − b)ηE

m5 I − bηE

⎞
⎠ .

Now, we define F and V such that

F = Jacobian of F at DFE =
⎛
⎜⎝
0 βcS0

1+I 0
βS0(1−cA0)

(1+I 0)2

0 0 0
0 0 0

⎞
⎟⎠

and

V = Jacobian of V at DFE =
⎛
⎝ m4 0 0

−(1 − b)η m6 0
−bη 0 m5

⎞
⎠ .

Hence, the Next-generation matrix is given by the matrix K , where

K = FV−1 =
⎛
⎜⎝

βcS0(1−b)η
m4m6

+ bβS0η
m4m5

βcS0

m6

βS0

m5

0 0 0
0 0 0

⎞
⎟⎠ .

Now, the associated reproduction number of the model (2.1) is denoted by Rv and is given
by the spectral radius of the next-generation matrix K = FV−1 i.e.,Rv = ρ(K ). Therefore,

Rv = bηβ(θ + μ)Π{a + μ(1 − φ)}
μ(α + μ)(a + μ)(θ + ω + μ)(ξ + η + μ)

(R0 + 1),

where R0 = c(α+μ)(1−b)
b(γ+μ)

, denotes the basic reproduction number and Rv denotes con-
trol reproduction number for the model (2.1), which measures the average number of new
infections generated by a typical infectious individual in a population, where a fraction of
the susceptible individuals is vaccinated [1,9]. Both Rv and R0 are used to determine the
severity of an endemic.
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Stability Analysis of the Equilibria

Local Stability of DFE

For the local stability of the disease free equilibrium point, first we calculate the jacobian of
model system (2.1) at the DFE, i.e.,

J (E) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

− β(I+cA)
1+I − (ω + μ) a θ 0 βS(1−cA)

(1+I )2
−βcS
1+I r

0 −(a + μ) 0 0 0 0 0
ω 0 −(θ + μ) ξ 0 0 0

β(I+cA)
1+I 0 0 −(ξ + η + μ)

βS(1−cA)

(1+I )2
βcS
1+I 0

0 0 0 bη −(α + μ) 0 0
0 0 0 (1 − b)η 0 −(γ + μ) 0
0 0 0 0 α γ −(r + μ)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

which implies that

J (E0) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎝

−(ω + μ) a θ 0 βS0 −βcS0 r
0 −(a + μ) 0 0 0 0 0
ω 0 −(θ + μ) ξ 0 0 0
0 0 0 −(ξ + η + μ) βS0 βcS0 0
0 0 0 bη −(α + μ) 0 0
0 0 0 (1 − b)η 0 −(γ + μ) 0
0 0 0 0 α γ −(r + μ)

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Here, four eigenvalues of the above matrix are −(a +μ), −(r +μ), −μ, −(ω +μ+ θ) and
the remaining eigenvalues are given by the following characteristic equation

λ3 + c1λ
2 + c2λ + c3 = 0,

where,

c1 = ξ + η + α + γ + 3μ > 0,

c2 = (α + μ)(ξ + η + μ) + (γ + μ)(ξ + η + α + 2μ) − bβηS0 − (1 − b)βηcS0.

= (α + μ)(ξ + η + μ)

(
1 − Rv

1 + R0

)
+ (γ + μ)(α + μ)

+(γ + μ)(ξ + η + μ)

(
1 − R0Rv

1 + R0

)
,

and c3 = (γ + μ){(α + μ)(ξ + η + μ) − bβηS0} − (1 − b)ηβc(α + μ)S0.

= (γ + μ)(α + μ)(ξ + η + μ)(1 − Rv).

Now,

c1c2 − c3 = (ξ + η + α + γ + 3μ)

(
(α + μ)(ξ + η + μ)

(
1 − Rv

1 + R0

)
+ (γ + μ)(α + μ)

+ (γ + μ)(ξ + η + μ)

(
1 − R0Rv

1 + R0

))
− (γ + μ)(α + μ)(ξ + η + μ)(1 − Rv)

= (ξ + η + μ)

(
(ξ + η + μ)(α + μ)

(
1 − Rv

1 + R0

)
+ (α + μ)2

(
1 − Rv

1 + R0

)

+(γ + μ)

(
1 − R0Rv

1 + R0

)
+ (γ + μ)(α + μ)

( R0Rv

1 + R0

))
> 0.

Clearly, c1c2 − c3 > 0, if Rv ≤ R0 (0 < R0 ≤ 1). Hence, by Routh-Hurwitz criterion [7]
the DFE E0 is locally asymptotically stable if Rv ≤ 1, otherwise it is unstable.
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Global Stability of DFE

Here we will prove the global stability of disease free equilibrium using the method given in
[40]. Since dN

dt = Π − μN . Then N → Π
μ

as t → ∞. Taking the limiting case similar as

discussed in [42], i.e., N = Π
μ
, then the system (2.1) reduces to

dV1
dt

= Πφ − (a + μ)V1, (4.1)

dV2
dt

= ω

(
Π

μ
− (V1 + E + I + A + R)

)
+ ξE − (ω + θ + μ)V2, (4.2)

dE

dt
= β(I + cA)

(1 + I )

(
Π

μ
− (V1 + V2 + E + I + A + R)

)
− (ξ + η + μ)E, (4.3)

d I

dt
= bηE − (α + μ)I , (4.4)

d A

dt
= (1 − b)ηE − (γ + μ)A, (4.5)

dR

dt
= α I + γ A − (r + μ)R. (4.6)

Let X = (V1, V2, R) and Z = (E, I , A). Here U 0 = (X0, Z0), where X0 = (
V 0
1 , V 0

2 , 0
)

and Z0 = (0, 0, 0). At Z = Z0, G(X , 0) = (
V 0
1 , V 0

2 , 0
)
. We have,

dV1
dt

= Πφ − (a + μ)V1,

dV2
dt

= ω

(
Π

μ
− V1 − R

)
− (ω + θ + μ)V2,

dR

dt
= −(r + μ)R. (4.7)

It is easy to show that, V1(t) → V 0
1 and R(t) → R0 as t → ∞. From system (4.7), we have

dV2
dt

= ω

(
Π

μ
− V1 − R

)
− (ω + θ + μ)V2.

Which implies that,

dV2
dt

+ (ω + θ + μ)V2 = ω

(
Π

μ
− Πφ

a + μ

)
− ωV0e

−(a+μ)t − ωR0e
−(r+μ)t .

The solution of the above equation is given by

V2(t) = c1e
−(ω+θ+μ)t + ω

(
Π

μ
− Πφ

a + μ

)
+ 1

ω + θ − a
e−(a+μ)t + 1

ω + θ − r
e−(r+μ)t ,

where

c1 = ω

(
Πφ

a + μ
− Π

μ

)
− (2ω + 2θ − (a + r))

(ω + θ − a)(ω + θ − r)
.

Clearly, V2(t) → V 0 as t → ∞. Hence X = X0(= V 0
1 , V 0

2 , R0) is globally asymptotically
stable. Thus, the condition (H1) of [40] is satisfied. From Eqs. (4.3)–(4.5), we obtain

dZ

dt
= G(X , Z) = PZ − Q̃(X , Z),
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Fig. 2 Stability of disease free equilibrium E0, when Rv < 1 and R0 < 1; a time series of non-infected
population, b time series of infected population

where

P =
⎛
⎝−(ξ + η + μ)

βS
1+I

βcS
1+I

bη −(α + μ) 0
(1 − b)η 0 −(γ + μ)

⎞
⎠ and Q̃(X , Z) =

⎛
⎝ 0
0
0

⎞
⎠ .

Hence, P is an M-matrix (since off diagonal elements of P are non-negative). Thus, both the
conditions (H1) and (H2) of [40], are satisfied. Hence, the DFE is globally asymptotically
stable if Rv ≤ 1.

Stability of Endemic Equilibrium

Theorem 4.1 The endemic equilibrium E∗ is locally asymptotically stable (or linearly stable)
if the following inequalities are satisfied:

L < min

{
2(l1 + ω + μ)

21
+ (ξ + η + μ)

24bη
,
2(l1 + ω + μ)

21
+ b(ξ + η + μ)

6η

}
(4.8)

21

(l1 + ω + μ)
< min

{
M,

3(ξ + η + μ)

bηl21

}
, (4.9)

where L = 1701r2

64(r + μ)2(α + μ)2(l1 + ω + μ)
, l1 = β(I ∗ + cA∗)

(1 + I ∗)
and

M = (θ + μ)2 (4(l1 + ω + μ) + 7bη(ξ + η + μ))

21θ2(ω2 + ξ2)
.

Proof The proof of theorem is given in “Local Stability of the Endemic Equilibrium”
appendix section. �	

Theorem 4.2 The endemic equilibrium point E∗ is non-linearly stable if the following
inequalities are satisfied:

45β(μ + Π)

2μ(ξ + η + μ)(1 + I∗)
< min

{
cA∗
I∗ ,

μ2A∗ I∗
cΠ2 ,

1

cA∗ I∗

}
, (4.10)
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Fig. 3 Stability switching from disease free to endemic equilibrium (2.1). a Variation in E with respect to c.
b Variation in E with respect to c and β. c Variation in I with respect to b. d Variation in I with respect to b
and η. e Variation in A with respect to b. f Variation in A with respect to b and η

25β2

2(1 + I∗)2(ξ + η + μ)2
< min

{
2A∗2(γ + μ)2

(45)2(1 − b)2η2S∗2 ,
ω2

ξ2 I∗2 ,
μ2(α + μ)2

25b2η2Π2

(γ + μ)2

25(1 − b)2η2c2S∗2 ,
μ2(γ + μ)2

25(1 − b)2η2c2Π2 I∗2

}
, (4.11)
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Fig. 4 Stability of endemic equilibrium E∗, whenRv > 1 andR0 > 1

27r2(μ + Π)(1 + I∗)

4βμcA∗ I∗(r + μ)
< p6 < min

{
4(α + μ)2(r + μ)

9α2

(
2(l1 + ω + μ)

21
+ (ξ + η + μ)

24bη

)
,

4(γ + μ)2(r + μ)

9γ 2

(
2(l1 + ω + μ)

21
+ b(ξ + η + μ)

6η

)}
. (4.12)

Proof Theproof of this theorem refers to “Global Stability ofEndemicEquilibrium”appendix
section. �	

Numerical Simulations and Discussions

A deterministic SVEIRS epidemic model for the transmission dynamics of a disease such as
measles and influenza, subject to a defective (or imperfect) vaccinewith declining natural and
vaccine-induced protection is analyzed, where both pre and post vaccinations are considered
simultaneously in form of control strategies. The model (2.1) can be reduced to an SVEIRS
epidemic model, when there is no pre-vaccination given to the susceptible and all infectious
individuals show symptoms, i.e., φ = 0 and b = 1. If all the individuals obtain permanent
immunity, i.e., r = 0, then system (2.1) is reduced to an SV E I Rmodel. If we considerω = 0
andb = 1, the proposedmodel takes the form SI RS. Further, in the analysis, it is obtained that
the systemhas two equilibriumpoints: disease free and endemic. The disease-free equilibrium
of the system (2.1) is locally as well as globally asymptotically stable forRv ≤ 1. IfRv > 1,
the endemic equilibrium is linearly stable under some certain conditions discussed in the
theorem 4.1. The theorem 4.2 determined the sufficient conditions for nonlinear stability of
E∗. These analytical results of system (2.1) can be validated by performing some numerical
simulation for the following set of parametric values:

c = 0.0067; α = 0.0312; μ = 0.232; b = 0.523; r = 0.25; η = 0.8;
β = 0.03; θ = 0.0543; Π = 0.815; a = 0.09; φ = 0.0842;ω = 0.042;
γ = 0.032; ξ = 0.0321.
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Fig. 5 Variation in E , I and A for R0 > 1 and Rv > 1. a Variation in E with respect to c. b Variation in E
with respect to c and β. c Variation in I with respect to b. d Variation in I with respect to b and η. e Variation
in A with respect to b. f Variation in A with respect to b and η
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Clearly,R0 = 0.00609219 < 1 andRv = 0.129755 < 1. Therefore, in this case, the number
of infected (exposed, infectious, asymptomatic) and recovered individuals become extinct
while susceptible, pre-vaccinated and post-vaccinated individuals will survive and hence the
disease dies out from the population. The corresponding diagram is shown in Fig. 2.

The parameters c, β and b, η have a crucial effect on exposed, infected and asymptomatic
population, respectively of system (2.1), which are responsible for switching of stability
from disease free to endemic equilibrium. The corresponding diagram for the above set of
parameters with different values of c, β and b, η is shown in the Fig. 3 :

On the other hand, if we choose following another set of parameters:

c = 0.25; α = 0.41; μ = 0.5; b = 0.2; r = 0.2; η = 0.6; β = 0.6; θ = 0.08;
Π = 8; a = 0.3; φ = 0.2; ω = 0.5; γ = 0.4; ξ = 0.01,

then R0 = 1.01111 > 1 and Rv = 1.0778 > 1. Unlike the previous case for Rv and R0, in
this situation, all the individuals co-exist and hence, the disease will persist in the population.
The corresponding diagram is shown in Fig. 4.

Similar to the previous case, if we change the value of the parameters like c, β, b, η then
the value of state variables, e.g., E , I and A also vary with respect to time and stability
switches from endemic equilibrium to disease free equilibrium, as shown in Fig. 5.

Since the basic reproduction numberR0 is directly proportional to the successful number
of contacts of asymptomatic individuals to susceptible (i.e., c), so if we make the small
change in c, the value ofR0 changes directly and hence the associated reproduction number
Rv changes rapidly. Therefore, the parameter c plays a key role in the disease outbreak of
the population. But when c is large, the disease eradication becomes a difficult task, since
the associated reproduction numberRv will be greater than unity and hence the disease will
persist in the population. Moreover, the disease spread can be minimized for small value
of c. Therefore, the additional compartment, i.e., asymptomatic (A) is meaning full which
contains all those individuals, which transmit the infection in the population. Hence, the
number of contact of asymptomatic to susceptible c affects the dynamics of the population.
Another most effective parameter in the model system (2.1) is b, which gives the number
of infectious individuals with symptoms. For example, b = 1 gives c = 0, i.e., there are
no such infectious individuals, which can make contact with susceptible. If b = 0, then all
the infectious person belongs to the asymptomatic class. Also, when each infectious persons
belongs to the infectious compartment, the person does not show the asymptotic behavior.

Hence, it is concluded that the pre-vaccination rate φ, control the associated reproduction
number Rv . If we increase the value to φ near about unity from the negative direction, then
Rv may be less than or equal to one and if we take φ near about zero from the positive
direction, then Rv may be greater than unity. If Rv > 1, then the disease will persist in the
population (which will depend on the selection of other parameters). The parameters b, φ and
c can also control the outbreaks of disease, which are directly related to the asymptomatic
compartment. Hence, the consideration of asymptomatic compartment is most important in
transmission of several infectious diseases such as measles and influenza, which represents
the more realistic situation in the region of consideration.

Acknowledgements We are very thankful to the anonymous referees and the editor in chief for their careful
reading, constructive criticisms, helpful comments, and valuable suggestions, which have helped us to improve
the quality of this work significantly.
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Appendix A: Existence of Endemic Equilibrium

There exists a unique endemic equilibrium E∗(S∗, V ∗
1 , V ∗

2 , E∗, I ∗, A∗, R∗), for the model
system (2.1), where

E∗ = (α + μ)I ∗

bη
, A∗ = R0 I ∗

c
, R∗ = (αc + γR0)I ∗

c(r + μ)
,

V ∗
1 = Πφ

(a + μ)
, S∗ = (ξ + η + μ)(α + μ)(1 + I ∗)

bηβ(1 + R0)
and

V ∗
2 = ω(ξ + η + μ)(α + μ)(1 + I ∗) + ξβ(α + μ)(1 + R0)I ∗

bηβ(θ + μ)(1 + R0)
.

Since E∗ = Π

μ
− (S∗ + V ∗

1 + V ∗
2 + I ∗ + A∗ + R∗).

Substituting the values of E∗, S∗, V ∗
1 , V ∗

2 , A∗ and R∗ in the above equation, we get

(α + μ)I ∗

bη
= Π

μ
−

(
(ξ + η + μ)(α + μ)(1 + I ∗)

bηβ(1 + R0)
+ Πφ

(a + μ)

+ ω(ξ + η + μ)(α + μ)(1 + I ∗) + ξβ(α + μ)(1 + R0)I ∗

bηβ(θ + μ)(1 + R0)
+ I ∗

+R0 I ∗

c
+ (αc + γR0)I ∗

c(r + μ)

)
.

= Π

μ
−

(
(ξ + η + μ)(α + μ)

bηβ(1 + R0)
+ Πφ

(a + μ)
+ ω(ξ + η + μ)(α + μ)

bηβ(θ + μ)(1 + R0)

+
(

(ξ + η + μ)(α + μ)

bηβ(1 + R0)
+ ω(ξ + η + μ)(α + μ) + ξβ(α + μ)(1 + R0)

bβη(θ + μ)(1 + R0)

+ (r + μ)(c + R0) + (αc + γR0)

c(r + μ)

)
I ∗

)
.

This gives,

I ∗
(

(α + μ)

bη
+ ξc(α + μ)(r + μ) + bη(θ + μ)((r + μ)(c + R0) + (αc + γR0))

bcη(θ + μ)(r + μ)

+ (ξ + η + μ)(α + μ)(ω + θ + μ)

bηβ(θ + μ)(1 + R0)

)

= Π

μ
−

(
(ξ + η + μ)(α + μ)(ω + θ + μ)

bηβ(θ + μ)(1 + R0)
+ Πφ

(a + μ)

)
.

Hence, we get

I ∗ = c(r + μ)(α + μ)(ξ + η + μ)(ω + θ + μ)(Rv − 1)

P ,

where

P = βc(α + μ)(1 + R0)(r + μ)(ξ + θ + μ) + c(r + μ)(ξ + η + μ)(α + μ)(ω + θ + μ)

+bηβ(1 + R0)(θ + μ)(c(r + μ) + R0(r + μ) + (αc + γR0)) > 0.

Hence, the endemic equilibrium point E∗ = (S∗, V ∗
1 , V ∗

2 , E∗, I ∗, A∗, R∗) exists only if
Rv > 1.
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Appendix B: Local Stability of the Endemic Equilibrium

To find the local stability of endemic equilibrium E∗, we consider the following positive
definite function,

Z = 1

2
s21 + q1

2
v21 + q2

2
v22 + q3

2
e21 + q4

2
i21 + q5

2
a21 + q6

2
r21 ,

where q1, q2, q3, q4, q5, q6 are positive constants to be chosen appropriately and s, v1, v2,
e, i , a, r are the small perturbations in S, V1, V2, E , I , A, R respectively. Therefore, we can
write S = S∗ + s1, V1 = V ∗

1 + v1, V2 = V ∗
2 + v2, E = E∗ + e1, I = I ∗ + i1, A = A∗ + a1,

and R = R∗ + r1. Now, differentiating ‘Z’ with respect to time ‘t’, we get

dZ

dt
= s1

ds1
dt

+ q1v1
dv1

dt
+ q2v2

dv2

dt
+ q3e1

de1
dt

+ q4i1
di1
dt

+ q5a1
da1
dt

+ q6r1
dr1
dt

.

Now, using the linearized system of model (2.1) corresponding to endemic equilibrium point
E∗, we get
dZ

dt
= s1

(
av1 − βS∗(1 − cA∗)

(1 + I ∗)2
i1 − βcS∗

(1 + I ∗)
a1 − β(I ∗ + cA∗)

(1 + I ∗)
s1 + θv2 + rr1 − (ω + μ)s1

)

+q1v1 (−(a + μ)v1) + q2v2 (ωs1 + ξe1 − (θ + μ)v2)

+q3e1

(
βS∗(1 − cA∗)

(1 + I ∗)2
i1 + βcS∗

(1 + I ∗)
a1 + β(I ∗ + cA∗)

(1 + I ∗)
s1 − (ξ + η + μ)e1

)

+q4i1 ((bη)e1 − (α + μ)i1) + q5a1 ((1 − b)ηe1 − (γ + μ)a1)

+q6r1 (αi1 + γ a1 − (r + μ)r1) .

This implies that,

dZ

dt
= −

(
β(I ∗ + cA∗)

(1 + I ∗)
+ (ω + μ)

)
s21 − q1(a + μ)v21 − q2(θ + μ)v22 − q3(ξ+η+μ)e21

−q4(α + μ)i21 − q5(γ + μ)a21 − q6(r + μ)r21 + (a)s1v1 + (θ)s1v2 + q2(ω)s1v2

+q3

(
β(I ∗ + cA∗)

(1 + I ∗)

)
s1e1 −

(
βS∗(1 − cA∗)

(1 + I ∗)2

)
s1i1 −

(
βcS∗

(1 + I ∗)

)
s1a1+(r)r1s1

+q2(ξ)v2e1 + q3

(
βS∗(1 − cA∗)

(1 + I ∗)2

)
e1i1 + q4(bη)e1i1 + q3

(
βcS∗

(1 + I ∗)

)
e1a1

+q5((1 − b)η)e1a1 + q6(α)i1r1 + q6(γ )a1r1.

Let q3 = bη, q4 = βS∗(1 − cA∗)
(1 + I ∗)2

= l2, q5 = βcS∗

(1 + I ∗)
= l3 and l1 = β(I ∗ + cA∗)

(1 + I ∗)
.

Then the above equation reduces to

dZ

dt
= −(l1 + ω + μ)s21 − q1(a + μ)v21 − q2(θ + μ)v22 − bη(ξ + η + μ)e21 − l2(α + μ)i21

−l3(γ + μ)a21 − q6(r + μ)r21 + (a)v1s1 + (θ)s1v2 + q2(ω)s1v2 + (bηl1)e1s1

−(l2)s1i1 − (l3)a1s1 + (r)r1s1 + q2(ξ)v2e1 + 2(l2bη)e1i1 + (l3η)e1a1 + q6(α)i1r1

+q6(γ )a1r1.

Now, dZ
dt will be a negative definite function provided that the following inequalities are

satisfied,
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a2 <
4q1(a + μ)(l1 + ω + μ)

7
(B.1)

θ2 <
4q2(θ + μ)(l1 + ω + μ)

21
(B.2)

q2(ω
2 + ξ2) <

(
4(l1 + ω + μ) + 7bη(ξ + η + μ)

21

)
(θ + μ) (B.3)

bηl21 <
(l1 + ω + μ)(ξ + η + μ)

7
(B.4)

l2 <

(
2(l1 + ω + μ)

21
+ (ξ + η + μ)

24bη

)
(α + μ) (B.5)

l3 <

(
2(l1 + ω + μ)

21
+ b(ξ + η + μ)

6η

)
(γ + μ) (B.6)

r2 <
4q6(r + μ)(l1 + ω + μ)

21
(B.7)

q6α
2 <

4l2(α + μ)(r + μ)

9
(B.8)

q6γ
2 <

4l3(γ + μ)(r + μ)

9
(B.9)

We can select q1 and q2 from inequality (B.1) and (B.3) respectively, i.e., q1 =
7a2

2(a + μ)(l1 + ω + μ)
and q2 =

(
4(l1 + ω + μ) + 7bη(ξ + η + μ)

21

)
· (θ + μ)

4(ω2 + ξ2)
.

Hence, inequality (B.2) reduces to

θ2 <
(θ + μ)2(l1 + ω + μ)

441(ω2 + ξ2)
(4(l1 + ω + μ) + 7bη(ξ + η + μ)). (B.10)

Inequalities (B.5) and (B.8) gives,

q6α
2 <

4(α + μ)2(r + μ)

9

(
2(l1 + ω + μ)

21
+ (ξ + η + μ)

24bη

)
. (B.11)

Similarly, inequalities (B.6) and (B.9), gives

q6γ
2 <

4(γ + μ)2(r + μ)

9

(
2(l1 + ω + μ)

21
+ b(ξ + η + μ)

6η

)
. (B.12)

From inequalities (B.11) and (B.12), we have

q6 < min

{
4(α + μ)2(r + μ)

9α2

(
2(l1 + ω + μ)

21
+ (ξ + η + μ)

24bη

)
,

4(γ + μ)2(r + μ)

9γ 2

(
2(l1 + ω + μ)

21
+ b(ξ + η + μ)

6η

)}
. (B.13)

Hence, we can select q6 from above inequality such that (4.8) holds.
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Appendix C: Global Stability of Endemic Equilibrium

To obtain the global stability of endemic equilibrium, we consider the following positive
definite function

V = 1

2
(S − S∗)2 + p1

2
(V1 − V ∗

1 )2 + p2
2

(V2 − V ∗
2 )2 + p3

2
(E − E∗)2 + p4

2
(I − I ∗)2

+ p5
2

(A − A∗)2 + p6
2

(R − R∗)2,

where p1, p2, p3, p4, p5 and p6 are positive constants to be chosen appropriately. Now,
differentiating ‘V’ with respect to ‘t’ along the solution of model (2.1) and after simple
algebraic manipulations, we get

dV

dt
< −(ω + μ)(S − S∗)2 − β I ∗(S − S∗)2

(1 + I ∗)
− βμcA∗ I ∗(S − S∗)2

(μ + Π)(1 + I ∗)
− p1(a + μ)(V1 − V ∗

1 )2

−p2(θ + μ)(V2 − V ∗
2 )2 − p3(ξ + η + μ)(E − E∗)2 − p4(α + μ)(I − I ∗)2

−p5(γ + μ)(A − A∗)2 − p6(r + μ)(R − R∗)2 + a(S − S∗)(V1 − V ∗
1 )

+θ(S − S∗)(V2 − V ∗
2 ) + p2ω(S − S∗)(V2 − V ∗

2 ) + β I ∗(S − S∗)(E − E∗)
(1 + I ∗)

p3

+βcΠ(S − S∗)(E − E∗)
μ(1 + I ∗)

p3 + βcA∗ I ∗(S − S∗)(E − E∗)
(1 + I ∗)

p3 − βμcS∗(A − A∗)(S − S∗)
(μ + Π)(1 + I ∗)

+r(S − S∗)(R − R∗) + p2ξ(V2 − V ∗
2 )(E − E∗) + βΠ(I − I ∗)(E − E∗)

μ(1 + I ∗)
p3

+βcS∗(A − A∗)(E − E∗)
(1 + I ∗)

p3 + βcΠ I ∗(A − A∗)(E − E∗)
μ(1 + I ∗)

p3 + p4bη(E − E∗)(I − I ∗)

+p5(1 − b)η(E − E∗)(A − A∗) + p6α(I − I ∗)(R − R∗) + p6γ (R − R∗)(A − A∗)

+βcA∗S∗(S − S∗)(I − I ∗)
(1 + I ∗)

− βcμA∗S∗(I − I ∗)(E − E∗)
(μ + Π)(1 + I ∗)

p3.

For simplicity to analyze this equation we can remove first two terms from the equation.
Hence, we obtain

dV

dt
< −βμcA∗ I ∗(S − S∗)2

(μ + Π)(1 + I ∗)
− p1(a + μ)(V1 − V ∗

1 )2 − p2(θ + μ)(V2 − V ∗
2 )2

−p3(ξ + η + μ)(E − E∗)2 − p4(α + μ)(I − I ∗)2 − p5(γ + μ)(A − A∗)2

−p6(r + μ)(R − R∗)2 + a(S − S∗)(V1 − V ∗
1 ) + θ(S − S∗)(V2 − V ∗

2 )

+p2ω(S − S∗)(V2 − V ∗
2 ) + β I ∗(S − S∗)(E − E∗)

(1 + I ∗)
p3 + βcΠ(S − S∗)(E − E∗)

μ(1 + I ∗)
p3

+βcA∗ I ∗(S − S∗)(E − E∗)
(1 + I ∗)

p3 − βμcS∗(A − A∗)(S − S∗)
(μ + Π)(1 + I ∗)

+ r(S − S∗)(R − R∗)

+p2ξ(V2 − V ∗
2 )(E − E∗) + βΠ(I − I ∗)(E − E∗)

μ(1 + I ∗)
p3 + βcS∗(A − A∗)(E − E∗)

(1 + I ∗)
p3

+βcΠ I ∗(A − A∗)(E − E∗)
μ(1 + I ∗)

p3 + p4bη(E − E∗)(I − I ∗)

+p5(1 − b)η(E − E∗)(A − A∗) + p6α(I − I ∗)(R − R∗) + p6γ (R − R∗)(A − A∗)

+βcA∗S∗(S − S∗)(I − I ∗)
(1 + I ∗)

− βcμA∗S∗(I − I ∗)(E − E∗)
(μ + Π)(1 + I ∗)

p3.
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Now, dV
dt will be a negative definite function provided that the following inequalities are

satisfied,

θ2 <
4p2βμcA∗ I ∗(θ + μ)

27(μ + Π)(1 + I ∗)
(C.1)

a2 <
4p1βμcA∗ I ∗(a + μ)

9(μ + Π)(1 + I ∗)
(C.2)

p2ω
2 <

4βμcA∗ I ∗(θ + μ)

27(μ + Π)(1 + I ∗)
(C.3)

p3β I ∗

(1 + I ∗)
<

2μcA∗(ξ + η + μ)

45(μ + Π)
(C.4)

p3βcΠ2

μ2(1 + I ∗)
<

2μA∗ I ∗(ξ + η + μ)

45(μ + Π)
(C.5)

p3βcA∗ I ∗

(1 + I ∗)
<

2μ(ξ + η + μ)

45(μ + Π)
(C.6)

βμcS∗2

(μ + Π)(1 + I ∗)
<

4p5A∗ I ∗(γ + μ)

45
(C.7)

r2 <
4p6βμcA∗ I ∗(r + μ)

27(μ + Π)(1 + I ∗)
(C.8)

p2ξ
2 <

2p3(ξ + η + μ)(θ + μ)

15
(C.9)

p3β2Π2

μ2(1 + I ∗)2
<

2p4(α + μ)(ξ + η + μ)

25
(C.10)

p3β2c2S∗2

(1 + I ∗)2
<

2p5(γ + μ)(ξ + η + μ)

25
(C.11)

p3β2c2Π2 I ∗2

μ2(1 + I ∗)2
<

2p5(γ + μ)(ξ + η + μ)

25
(C.12)

p4b
2η2 <

2p3(α + μ)(ξ + η + μ)

25
(C.13)

p5(1 − b)2η2 <
2p3(γ + μ)(ξ + η + μ)

25
(C.14)

p6α
2 <

4p4(α + μ)(r + μ)

15
(C.15)

p6γ
2 <

4p5(γ + μ)(r + μ)

15
(C.16)

β2μ2c2A∗2S∗2 p3
(μ + Π)2(1 + I ∗)2

<
2p4(α + μ)(ξ + η + μ)

25
(C.17)

βcA∗S∗2

(1 + I ∗)
<

4μI ∗ p4(α + μ)

45(μ + Π)
(C.18)

From inequalities (C.2) and (C.3) we can select p1 and p2 respectively such that p1 =
9a2(μ+Π)(1+I ∗)
2βμcA∗ I ∗(a+μ)

and p2 = βμcA∗ I ∗(θ + μ)

27ω2(μ + Π)(1 + I ∗)
. So, inequality (C.1), gives

θ2 <
4(βμcA∗ I ∗)2(θ + μ)2

(27)2ω2(μ + Π)2(1 + I ∗)2
(C.19)
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From inequalities (C.4), (C.5) and (C.6) we can select p3, such that (4.10) holds.

In particular, if we take p3 = μcA∗(1 + I ∗)(ξ + η + μ)

45β I ∗(μ + Π)
, then from inequalities (C.13)

and (C.14), we can select p4 and p5 respectively such that

p4 = μcA∗(α + μ)(1 + I ∗)(ξ + η + μ)2

25 × 45b2η2β I ∗(μ + Π)
and p5 = μcA∗(γ + μ)(1 + I ∗)(ξ + η + μ)2

25 × 45β I ∗(μ + Π)(1 − b)2η2
.

Now, using the value of p5 in (C.7), p2 & p3 in (C.9), p3 & p4 in (C.10) and p3 & p5 in
both (C.11) and (C.12), then respectively we have

β2S∗2

(1 + I ∗)
<

4A∗2(γ + μ)2(1 + I ∗)(ξ + η + μ)2

25 × (45)2(1 − b)2η2
, (C.20)

β2ξ2 I ∗2

27ω2(1 + I ∗)
<

2(ξ + η + μ)2(1 + I ∗)
15 × 45

, (C.21)

β2Π2

μ2(1 + I ∗)
<

2(α + μ)2(1 + I ∗)(ξ + η + μ)2

(25)2b2η2
, (C.22)

β2c2S∗2

(1 + I ∗)
<

2(γ + μ)2(1 + I ∗)(ξ + η + μ)2

(25)2(1 − b)2η2
, (C.23)

β2c2Π2 I ∗2

μ2(1 + I ∗)
<

2(γ + μ)2(1 + I ∗)(ξ + η + μ)2

(25)2(1 − b)2η2
. (C.24)

From (C.15) and (C.16), we obtain

p6 <
4μcA∗(α + μ)2(ξ + η + μ)2(r + μ)(1 + I ∗)

15 × 25 × 45β I ∗α2b2η2(μ + Π)
, (C.25)

p6 <
4μcA∗(γ + μ)2(ξ + η + μ)2(r + μ)(1 + I ∗)

15 × 25 × 45β I ∗γ 2η2(μ + Π)(1 − b)2
, (C.26)

respectively. Hence, we can select p6 such that the inequality (4.12) holds.
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