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Abstract: A dual S-scheme Cu2S_TiO2_WO3 heterostructure was constructed by sol–gel method
using a two-step procedure. Due to the synthesis parameters and annealing treatment the het-
erostructure is characterized by sulfur deficit and oxygen excess allowing the passivation of oxygen
vacancies. The photocatalytic activity was evaluated under UV and UV–Vis irradiation scenarios
using S-MCh as reference pollutant. The heterostructure is composed on orthorhombic Cu2S, anatase
TiO2 and monoclinic WO3 with crystallite sizes varying from 65.2 Å for Cu2S to 97.1 Å for WO3.
The heterostructure exhibit a dense morphology with pellets and particle-like morphology closely
combined in a relatively compact assembly. The surface elemental composition indicate that the
heterostructure maintain a similar atomic ratio as established during the synthesis with a slight sulfur
deficit due to the annealing treatments. The results indicate that the three-component heterostructure
have higher photocatalytic efficiency (61%) comparing with two-component heterostructure or bare
components. Moreover, Cu2S_TiO2_WO3 exhibit a superior constant rate (0.114 s−1) due to the high
concentration of photogenerated charge carriers, efficient charge separation and migration.

Keywords: herbicide; s-metolachlor; wastewater; photocatalysis; semiconductors; S-scheme mechanism

1. Introduction

Aquatic contamination with recalcitrant organic compounds released by industrial,
agricultural, and transportation activities represent a serious threat to human health and
life quality. Pesticide compounds including herbicides, insecticides, and fungicides have
large contamination potential due to their continuous use in agricultural area and long
term persistency in the ecological system [1–3]. The agricultural accumulation of organic
compounds, such as S-metolachlor, cyprodinil, iprodione, tebuconazole, etc., in sediment
and biota, are sources of serious environmental pollution [4,5]. Finding new and sustain-
able pathways for water decontamination represent an important target for the future of
agriculture and wastewater plants. Photocatalytic technologies use the light energy as
driving force to induce organic pollutant oxidation. The use of mono-component photocat-
alysts such as TiO2 [6], WO3 [7], SnO2 [8], Cu2S [9], CuO [10], or NiO [11] presents several
disadvantages: (i) limited light absorption range, (ii) fast charge carriers recombination,
and (iii) reduced chemical stability.

The photocatalytic process is based on three major steps: (1) the electron/hole pairs
formation during irradiation due to the semiconductors absorption of photons with energy
(hv) equal to or above their bandgap (Eg); (2) the separation and diffusion of photogen-
erated carriers under the action of the internal electric field; (3) formation of oxidative
and super-oxidative species due to the surfaces reactions induced by the photogenerated
electrons and holes [12–14]. TiO2 and WO3 have band gap values of 3.2 eV and 2.8 eV,
which means that they are mostly active in the UV spectra. The charge carriers are photo-
generated when the photons energy are equal or higher than the band gap value. Cu2S is
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photoactivated in Vis spectra due to his band gap value which may vary between 1.2 eV
and 2.0 eV, depending on the stoichiometric composition. When coupled, the band gap
values shift in order to generate a build in electric field required for charge carriers mobility
through the heterostructure. Traditional heterojunctions (such as type-II heterojunctions,
p-n junction) typically produce unfavorable losses of the photogenerated charges, while the
Z-scheme heterostructure represent the starting point on the development of S-scheme het-
erostructure [15,16]. If compared with Z-scheme heterostructure, the S-scheme efficiently
use the build-in electric field in order to reduce the migration distance of photogener-
ated electrons and holes based on the synergetic interface between the semiconductor
components [17,18].

The S-scheme heterostructure consists of two or more semiconductors with suitable
position of the energy bands. The driving force responsible of the charge migration is
represented by the internal electric field established between the heterostructure com-
ponents [19,20]. The photogenerated charges are separated in space, based on the semi-
conductors potential: the holes are located in the conduction band (CB) of the reduction
photocatalyst and the electrons are in the valence band (VB) of the oxidation photocatalyst,
respectively [21,22]. The photocatalytic reactions generating the (super)oxidative (•OH,
•O2

−) species are initiated by the photogenerated holes and electrons. Therefore, efficient
S-scheme heterostructure is highly desirable, in order to promote the charge migration and
to sustain favorable charge potentials [23,24]. Until now, several S-scheme heterostructures
such as SnFe2O4/ZnFe2O4 [25], TiO2/W18O49 [26], NiO/BiOI [27], BiVO4@MoS2 [28],
WO3/CdIn2S4 [29], CdS/UiO-66 [30] were tested for dyes or pharmaceutical active com-
pounds removal. The SnFe2O4/ZnFe2O4 show enhanced Vis light absorbance and direct
S-scheme path of charge separation and transfer. After 60 min of 300 W Vis light irradiation
the NiO/BiOI exhibited 90% Rhodamine B photocatalytic removal.

Herein, we report for the first time the photocatalytic removal of S-MCh herbicide
using a dual S-scheme heterostructure and two irradiation scenarios. The composition and
morphology was investigated and correlated with the photocatalytic properties and energy
band diagram. The dual S-scheme mechanism facilitates the photogenerated charge carriers
migration and the efficient use of redox potential to induce pollutant degradation. Com-
pared with Z-scheme mechanism, the S-scheme heterostructure use the build-in electric
field to mitigate the charge transmission distance due to the synergic semiconductors inter-
face. The S-scheme mechanism is able to use more efficiently the photogenerated charge
carriers based on the charge density difference between the heterostructure components.
The kinetic evaluation indicates a higher oxidation reaction rate for the three-component
heterostructure compared with two-components or single component photocatalysts.

2. Materials and Methods
2.1. Photocatalyst Materials
2.1.1. Preparation of Mono-Component Photocatalysts

Two powder components were prepared using sol–gel technique:

(i) Cu2S was prepared by mixing 0.2 mol of copper nitrate (Cu(NO3)2, 99.9%, Scharlau,
Barcelona, Spain) aqueous solution with 0.5 mol of sodium thiosulfate (Na2S2O3,
99.9%, Scharlau) aqueous solution. After 15 min of stirring the gel was formed and
kept 3 h undisturbed to achieve the complete precipitation. The precipitate was
centrifuged and thermally treated at 120 ◦C in a ceramic capsule in sulfured (Sulfur,
99%, Sigma Aldrich, Munich, Germany) atmosphere.

(ii) WO3 was obtained by dissolving tungsten hexachloride (WCl6, 99.4%, Acros Organics,
Geel, Belgium) in a mixture of ethanol (100%, Sigma Aldrich) and 2-propanol (100%,
Sigma Aldrich). After 120 min of stirring a light yellow alcoholic solution was
obtained. Then, 0.15 mol of natrium hydroxide (99.98%, Honeywell, Charlotte, NC,
USA) was added drop by drop and the gel was formed. After precipitation and
centrifugation the resulting powder was annealed for 8 h at 500 ◦C.
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The TiO2 powder was purchased (99.99%, Scharlau, Barcelona, Spain) and used
without any purification procedures.

2.1.2. Preparation of Multi-Component Photocatalysts

Three bi-component and one three-component heterostructures were prepared by
sol–gel technique:

(i) Cu2S_TiO2 sample was obtained using the same procedure as described for Cu2S,
with the single modification that TiO2 powder was dispersed into copper nitrate
solution, considering the Cu:Ti atomic ratio of 1:1. The final powder was thermally
treated at 150 ◦C for 2 h.

(ii) Cu2S_WO3 sample was obtained following the procedure described for Cu2S. The
WO3 powder already prepared was added into copper nitrate solution, considering the
Cu:W atomic ratio of 1:1. The final powder was thermally treated at 150 ◦C for 1.5 h.

(iii) TiO2_WO3 sample was prepared as using a similar procedure as presented for WO3,
and the TiO2 power was dispersed into tungsten hexachloride solution. The uniform
TiO2 distribution was assured by adding polyethylene glycol (99%, Scharlau) and the
Ti:W atomic ratio was 1:1. The annealing treatment was done at 500 ◦C for 5 h.

(iv) Cu2S_TiO2_WO3 sample was synthesized by adding TiO2_WO3 powder, previously
obtained, into copper nitrate solution and the mixture was stirred for 2 h. The Cu:Ti:W
atomic ratio was 1:1:1. Then, 0.7 mol of sodium thiosulfate (Na2S2O3, 99.9%, Scharlau)
was added drop by drop under continuous stirring. The precipitate was centrifuged
and thermally treated at 150 ◦C for 2 h.

2.2. Photocatalytic Activity

The photocatalytic activity was tested using a closed reactor able to produce light
irradiation from the top and lateral sides, which increase the radiation uniformity during
the experiments. The reactor chamber use ventilation engines and thermocouples in order
to preserve constant temperature (25 ◦C) and humidity (60%). Two kind of radiation
sources were used (single or combined): 18W UVa black tubes (T8, 3Lx flux intensity,
λUVa,max = 365 nm, range 310–390 nm, Philips) and 18W Vis cold tubes (TL-D Super 80/865,
flux intensity 28Lx, λVis,max = 565 nm, range 400–700 nm, Philips). Two irradiation scenarios
where verified and the corresponding total irradiance is presented in Table 1.

Table 1. Irradiation scenarios for the photocatalytic applications.

Irradiation Sources UV Radiation Sources
(310–390 Nm)

Vis Radiation Sources
(400–800 Nm) Total Irradiance (W/M2)

UVa light, 18 W 8 0 16.3
UVa–Vis light, 18 W 4 4 24.9

S-Metholachlor (S-MCh) herbicide was used as reference pollutant molecule, due
to his reluctance to traditional wastewater treatments procedures as well as his toxicity
and accumulation potential into the biota. High concentrations of S-MCh may induce
cytotoxicity and genotoxicity effect localized in human lymphocytes. The photocatalytic
experiments were done using 30 mg/L S-MCh aqueous solution and the photocatalyst
dosage was 30 mg/50 mL. Quart recipients were considered due to high UV transmittance.
The total time of experiment was 10 h: 2 h in dark to reach the absorption equilibrium and
8 h under irradiation. The pollutant concentration was measured hourly and compared
with the UV–Vis is calibration curve (274 nm is the S-MCh absorption wavelength). Fi-
nally, the photocatalytic efficiency was calculated considering the initial (C0) and final (C)
concentrations based on the following Equation (1):

η =

[
(C0 − C)

C0

]
· 100 (1)
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2.3. Characterization Instruments

The presence of crystalline structure was evaluated using X-ray diffraction (XRD,
Bruker, Model D8 Discover, Karlsruhe, Germany) with 0.003 degree scan step locked-
couple technique and 0.015 s/step. The morphology characterizations were done with
scanning electron microscopy (SEM, Hitachi model S–3400 N type 121 II, Tokyo, Japan)
in high vacuum regime for mono-component samples and with field emission scanning
electron microscopy (FESEM, SU8010, Fukuoka, Japan) operated at an accelerated voltage
of 25 kV for multi-component samples. The light intensity and total irradiance values
inside the photoreactor were measured using a class A high precision pyranometer (SR11,
Hukselflux, Berlin, Germany). The optical properties as well as the photocatalytic activ-
ity were investigated using UV–Vis spectrometry (Perkin Elmer Lambda 950, Waltham,
MA, USA).

3. Results and Discussions
3.1. Composition and Morphology

The evaluation of crystalline structure presented in Figure 1 indicates that TiO2 has
maintained the anatase structure (ICCD 83-0951) and crystallites size (Table 2), as received
from the manufacturer, regardless the chemical and thermal treatments followed during the
heterostructures development. The crystallite sizes were calculated based on the Scherrer
formula, Equation (2):

D =
0.9λ

β cos θ
(2)

where β is the observed angular width at half maximum intensity (FWHM) of the peak,
λ is the X-ray wavelength (1.5406 Å for CuKα1), and θ is the Bragg’s angle.
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Table 2. Average crystallite size values calculated using the Scherrer formula.

Samples Code Crystallite Size (Å)

Cu2S TiO2 WO3

Cu2S_TiO2 64 82 -
Cu2S_WO3 79 - 103
TiO2_WO3 - 81 96

Cu2S_TiO2_WO3 65 83 97
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The anatase TiO2 structure is considered as more photosensitive compared with rutile
and brookite, and suitable for photocatalytic applications. Cu2S exhibit orthorhombic
structure (djurleite, ICCD 20-0365) and the crystallite size was influenced by the insertion
of metal oxides during the sol–gel procedure. The presence of TiO2 favors the formation of
smaller Cu2S crystallites size, while WO3 induce an increase of the copper sulfide crystallite
sizes [31]. This behavior was previously presented by other researchers [32,33] in relation
with similar materials. The insertion of metal oxides particles during the Cu2S development
will act as preferential nucleation sites. Using larger metal oxide crystallites size will favor
the grow process, which is no longer restricted by space limitation [34]. Contrary, if the
nucleation sites are based on smaller metal oxides crystallites these will also limits the Cu2S
crystallite grow rate [35]. The similar crystallites size values obtained for copper sulfide
in Cu2S_TiO2 and Cu2S_TiO2_WO3 samples is an indicator of the preferential Cu2S grow
on TiO2 during the formation of three-component heterostructure. WO3 with monoclinic
structure (ICCD 83-0951) show a similar behavior as Cu2S, and the crystallite size decrease
in the presence of TiO2 during the sol–gel synthesis.

The morphological analyses presented in Figure 2 indicate that both mono and multi-
components samples are composed on particles with irregular shape and sizes. The mono-
component samples contain smaller particles, which have the tendency to form larger
aggregates. The average value of mono-component particles was 0.5 µm for Cu2S, 30 nm
for TiO2 and 0.2 µm for WO3. The bi-component heterostructures containing Cu2S exhibit
pellets and particle-like structures closely combined in a relatively compact assembly.
The TiO2_WO3 sample has a higher homogeneity due to use of polyethylene glycol (PG)
additive which favor the uniform distribution of particles and decrease the aggregates size.
A similar observation was made by Dudita M. [36], showing that the dispersive component
of the PG can significantly decrease the aggregates formation. However, the PG removal
procedure requires higher annealing temperature, in order to avoid carbon contamination,
which is not suitable for samples containing Cu2S. Finally, the Cu2S_TiO2_WO3 sample
morphology indicates a uniform distribution of Cu2S on the TiO2_WO3 assembly.
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(e).Cu2S_WO3, (f) TiO2_WO3, and (g) Cu2S_TiO2_WO3.

The EDS analysis was undertaken during the morphological investigations, in order
to observe the elemental surface composition and the values are presented in Table 3. The
results indicate that the atomic ratio between the metals was preserved as presented in the
synthesis method. Small deviations of the atomic ratio for Cu2S_WO3 and Cu2S_TiO2_WO3
may be attributed to the non-uniform distribution at the sample surface. Additionally,
the qualitative results were compared with theoretical sulfur and oxygen content, cal-
culated based on the stoichiometric compounds identified during the X-ray diffraction
investigations. The values indicate a similar tendency of sulfur deficit and oxygen excess.
The results are consistent with other studies [37,38], showing that the heterostructures
submitted to annealing in air may lose sulfur and develop higher oxygen content. During
the annealing treatment part of the oxygen vacancy formed during the synthesis procedure
will be passivated as presented in Equation (3).

V ′′O +
1
2

O2 → Ox
O + 2h• (3)
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Table 3. Average atomic composition at the heterostructure surface (EDS).

Scheme
Elemental Composition (% at)

Cu Ti W O Oth
1 S Sth

1

Cu2S_TiO2 23.7 22.6 - 45.4 45.2 8.3 11.8
Cu2S_WO3 14.2 - 16.7 62.5 50.1 6.6 7.1
TiO2_WO3 - 13.8 12.1 74.1 63.9 - -

Cu2S_TiO2_WO3 14.3 9.8 9.6 59.9 48.4 6.4 7.1
1 Theoretic content calculated based on the stoichiometry.

3.2. Photocatalytic Properties and Mechanism

The photocatalytic activity of the mono-component and multi-component samples was
tested using two irradiation scenarios: UVa (Figure 3a) and combined UVa–Vis (Figure 3b).
In all cases the S-MCh herbicide concentration was 30 mg/L and photocatalyst dosage
was 30 mg/50 mL. As expected, under UV irradiation the samples containing TiO2 ex-
hibit higher photocatalytic efficiency. The lowest photocatalytic efficiency (11.9%) was
recorded for Cu2S sample which absorb mostly in Vis spectra. However, small photocat-
alytic efficiency differences where observed by comparing the Cu2S_TiO2_WO3 (36.6%)
and TiO2_WO3 (30.8%) heterostructures, which means that the Cu2S contribution in UVa
scenario is rather limited. This observation is valid for bi-component heterostructures
containing Cu2S coupled with a TiO2 or WO3, where the photocatalytic efficiency increase
with few percentage than that of mono-component samples. The combined UVa–Vis sce-
nario brings the advantage of Cu2S component, which have a significant contribution in
both bi and three-component heterostructures. The photocatalytic efficiency increase with
additional 10% for Cu2S_TiO2 and Cu2S_WO3, comparing with UV scenario. The highest
increase was observed for three-component heterostructure which reach 61.08% photocat-
alytic turnover rate, after 8 h of irradiation. These results are significant considering that
S-MCh is considered to be a reluctant molecule towards photocatalytic decomposition due
to the structural stability induced by the aromatic cycle and functional groups [39,40]. The
formation of bi-products with pollutant potential cannot be excluded as partial oxidation
may induce the development of carboxylic acids. Bare Cu2S, TiO2 and WO3 have lower
photocatalytic efficiency due to the spectral absorption limitation and faster recombination
charge. The experiments made without catalyst indicate a low S-MCh decomposition rate
of 1.9% under UVa irradiation and 1.7% under UVa–Vis irradiations. The S-MCh ability of
self-degradation in both irradiation scenarios is negligible.
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The influence of photocatalysts composition and light irradiation scenario was further
correlated with the kinetic investigation, based on the simplified Langmuir–Hinshelwood
mathematical Equation (4) and the results are presented in Figure 4 and Table 4.

ln
C
C0

= −kt (4)
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The kinetic data help to better understand the influence of the heterostructure compo-
sition on the photocatalytic activity. Under UVa irradiation the photocatalytic activity of
Cu2S_TiO2_WO3 heterostructure is 1.2x faster than TiO2_WO3, 2.1x faster than Cu2S_WO3,
and 1.5x faster than Cu2S_TiO2 bi-component samples. The differences increase signifi-
cantly under UVa–Vis irradiation where the three-component sample photocatalytic activity
is 2.5x faster than TiO2_WO3, 2.7x faster than Cu2S_WO3, and 2.4x faster than Cu2S_TiO2
photocatalysts. It is worth noting that the differences between the constant rates of the
bi-component heterostructures decrease in the combined irradiation scenario which con-
firms the contribution of Cu2S on the overall photocatalytic efficiency [41]. The kinetic
evaluation made on bare Cu2S indicate that this component is 2x more active in UV–Vis
scenario compared with UV, while TiO2 and WO3 exhibits small changes.

The L-H model (Equation (5)) proposed by Turchi and Ollis [42] was used to evaluate
the influence of photon absorption based on both UV and UV–Vis irradiation scenarios.

r = −dC
dt

=
krKSC

1 + KSC
(5)

where C represents the S-MCh concentration (mol·L−1), kr correspond to the apparent
reaction rate constant (mol·L−1·min−1), the apparent adsorption constant is represented
by Ks (L·mol−1) and the S-MCh removal rate is given by r (mol·L−1·min−1). It is useful
to describe the apparent rate constant k (min−1) as kr·Ks which is a specific term for each
heterostructure photocatalytic activity. The kr depends on the light radiation parameters
and allows changing the Equation (5), accordingly:

1
r
=

1
krKS

· 1
C
+

1
kr

(6)
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Table 4. Kinetic data corresponding to S-MCh photocatalytic removal.

Kinetic Data
Cu2S TiO2 WO3 Cu2S_TiO2 Cu2S_WO3 TiO2_WO3 Cu2S_TiO2_WO3

K [S−1] R2 K [S−1] R2 K [S−1] R2 K [S−1] R2 K [S−1] R2 K [S−1] R2 K [S−1] R2

UV 0.0148 0.9958 0.0316 0.9964 0.0235 0.9992 0.0346 0.9971 0.0256 0.9984 0.0435 0.9966 0.0540 0.9977
UV–Vis 0.0243 0.9962 0.0334 0.9961 0.0237 0.9972 0.0469 0.9949 0.0419 0.9967 0.0448 0.9964 0.1140 0.9899
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The results obtained based on the linear plot 1/C vs. 1/r, considering the (1/kr) inter-
cept and (/krKS) slope are presented in Table 5. The mathematical model indicators show
that L-H fits well with the experimental photocatalytic results obtained under UV–Vis irra-
diation. Similar results were obtained in UV scenario for TiO2_WO3 and Cu2S_TiO2_WO3
samples. These conditions allows that the apparent reaction rates have the same order of
magnitude with the apparent adsorption constant, while for the Cu2S_TiO2 and Cu2S_WO3
heterostructures, there is one order of magnitude difference. There are similar reports in
the literature [43,44], indicating the correspondence between the light irradiation spec-
tra and the energy bands of the heterostructure composition which contributes to the
photogeneration of electrons and holes and the conversion to oxidative species.

Table 5. Heterostructures kinetic parameters for both radiation scenarios based on Equation (6).

Photocatalyst, Pollutant kr·108

(Mol·L−1·Min−1)
Ks·102

(Mol·L−1)

Cu2S_TiO2, UVa 1.63 624
Cu2S_TiO2, UVa–Vis 2.94 1682

Cu2S_WO3, UVa 1.42 556
Cu2S_WO3, UVa–Vis 2.98 1625

TiO2_WO3, UVa 2.68 1044
TiO2_WO3,UVa–Vis 2.73 1592

Cu2S_TiO2_WO3, UVa 3.19 1788
Cu2S_TiO2_WO3, UVa–Vis 5.26 2389

In order to evaluate the heterostructures mechanism, the components band energies
(Figure 5) are necessary to provide additional information regarding the potential compati-
bility between them. The band energy diagram was developed based on the experimental
band gap values (Figure 5b,c), corresponding to each heterostructure component and the
bands energy potential were evaluated in good agreement with the methodology presented
in literature [45,46]. The shift of band gap values in heterostructure may be possible due to
the internal energy field. The procedure use the following Equations (7)–(10) to determine
the energy band position based on the semiconductor electronegativity (χsemiconductor), en-
ergy of free electrons vs. hydrogen (Ee), band gap energy (Eg), absolute cationic electroneg-
ativity (χcation), and specific cationic electronegativity χcation(P.u.) where P.u. represent the
Pauling units.

EVB = χsemiconductor − Ee + 0.5Eg (7)

ECB = EVB − Eg (8)

χsemiconductor(eV) = 0.45 · χcation(eV) + 3.36 (9)

χcation(eV) =
χcation(P.u) + 0.206

0.336
(10)

The bands energy diagram represents an S-scheme charge transfer mechanism corre-
sponding to the heterostructures semiconductor components. Under light excitation the
photogenerated electrons from the Cu2S conduction band (−0.4 eV) will migrate to TiO2
conduction band (Cu2S_TiO2 and Cu2S_TiO2_WO3) and further on WO3 conduction band
(+0.4 eV). However, the electrons from TiO2 and WO3 conduction bands (CB) cannot be
involved in •O−2 generation, and the holes from Cu2S valence band (+0.92 eV) cannot
produce •OH, owing to their potential. Consequently, some of those charges which are
not useful for photocatalytic reaction will recombine [47,48]. The useful electrons from the
Cu2S valence band (−0.4 eV), as well as the holes from TiO2 (+2.9 eV) and WO3 (+3.1 eV)
valence bands, have a stronger redox ability and are efficiently separated by the electric
field in the charged space region. Under the combined drift and diffusion effect, the pho-
togenerated charges will migrate through the heterostructure components, [49,50]. The
higher photocatalytic efficiency exhibited by Cu2S_TiO2_WO3 is explained by the synergic
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activity of a dual S-scheme mechanism between the Cu2S/TiO2 and TiO2/WO3, respec-
tively. The band gap values of each components shift, allowing the formation of a collective
heterostructure band gap. The Tauc plot presented in Figure 5e indicate a band gap value
of 1.45 eV for Cu2S_TiO2_WO3 heterostructure, confirming the absorbance in both UV
and Vis light spectra. Therefore, the development of S-scheme heterostructure systems
could efficiently promote the photoexcited charge carriers separation which determine the
increase of (super)oxidative species concentration acting on S-MCh photocatalytic removal.
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4. Conclusions

A dual Cu2S_TiO2_WO3 S-scheme heterostructure was prepared by sol-gel technique
and the photocatalytic properties where tested and compared with other samples. The
heterostructure is composed on orthorhombic Cu2S, anatase TiO2 and monoclinic WO3,
with crystallite sizes varying from 65.2 Å for Cu2S to 97.1 Å for WO3. The heterostructure
exhibit a dense morphology with pellets and particle-like morphology closely combined,
in a relatively compact assembly. The surface elemental composition indicate that the
heterostructure maintain a similar atomic ratio as established during the synthesis, with a
slight sulfur deficit and oxygen excess due to the annealing treatments.

The photocatalytic activity toward S-MCh herbicide removal was evaluated using
UVa and UVa–Vis irradiation scenarios. The results indicate a superior photocatalytic
activity of Cu2S_TiO2_WO3, compared with Cu2S_TiO2, Cu2S_WO3, TiO2_WO3 or bare
components. Under UVa–Vis irradiation the Cu2S_TiO2_WO3 heterostructure reach 61%
photocatalytic efficiency with a constant rate of 0.1140 s−1 (2.5× faster than TiO2_WO3
and 2.7× faster than Cu2S_WO3). The higher photocatalytic activity of Cu2S_TiO2_WO3
sample was attributed to the formation of dual S-scheme mechanism, allowing the increase
of photogenerated charge carrier concentration, efficient charge separation and migration.

Future studies will be dedicated to the improvement of the photocatalytic efficiency
using two approaches: (1) the optimization of heterostructure components ratio in order to
increase the concentration of oxidative species, and (2) the replacement of one components
in order to maximize the photons conversion during the photocatalytic activity. Both
ways will preserve the S-mechanisms which seems to be the most favorable for resilient
organic pollutants molecules. Additionally, HPLC studies will be included to investigate
the formation of potential pollutant bi-products during the photocatalytic activity.
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