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A B S T R A C T   

Background: Peripheral artery disease (PAD) represents the frequently seen circulatory condition 
related to a risk of critical limb ischemia and amputation. Critical lower extremity ischemia may 
require amputation, and the outcomes vary. In this study, we developed an artificial intelligence 
(AI)-driven predictive model for PAD subtypes to assess risk among patients more precisely and 
accurately to predict disease progression. 
Methods: The present retrospective study examined clinical data in PAD patents undergoing lower 
extremity amputation. The data were analyzed using an unsupervised machine learning algorithm 
(UMLA) for subgroup identification and risk stratification. The clustering result accuracy was 
validated by analyzing the follow-up data of clusters. Finally, we built the prediction model with 
binary logistic regression. 
Results: In total, we enrolled 507 cases into this work. Two distinct subgroups, consisting of 
Clusters 1 and 2, were identified by UMLA; those from Cluster 1 showed markedly poorer con-
ditions and prognostic outcomes compared with those from Cluster 2. With regard to the new 
PAD subtype, we established a nomogram with eight predictive factors, including gender, age, 
smoking history, diabetes and coronary heart disease history, albumin levels, endovascular 
intervention, and amputation level. The nomogram could accurately categorize patients into two 
identified clusters, and the area under receiver operating characteristic curve was 0.861 (95 % 
confidence interval: 0.830–0.893). 
Conclusion: In this study, UMLA was used to identify new phenotypic subgroups among PAD cases 
who showed different risks of amputation. Our constructed AI-driven predictive model for PAD 
subtypes showed that it can be used for risk stratification and clinical management with high 
accuracy and reliability.   

1. Introduction 

Peripheral artery disease (PAD) represents the frequently seen circulatory disease that is related to a risk of critical limb ischemia 
and amputation. PAD can result in arterial stenosis and occlusion [1], eventually resulting in chronic limb-threatening ischemia (CLTI) 
[2]. Some studies have reported a high incidence of peripheral arterial ischemic disease, especially in individuals who are over 70 years 
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old [3]; the incidence of the disease is around 15–20 % among Western countries and approximately 15.91 % in China [4,5]. PAD 
represents a major factor causing lower limb amputation, which occupies 40–60 % of total amputated cases [6]. Post-amputation 
complications such as wound infections and poor healing may lead to longer hospital stays or even necessitate a second amputa-
tion. Some patients succumb to sepsis, multiple organ failure, or other complications after amputation [7]. Therefore, medical 
practitioners need to comprehensively evaluate the condition of PAD patients who have undergone lower extremity amputation and 
perform precise risk stratification. 

As artificial intelligence (AI) develops, researchers have used machine learning in diagnosing, classifying and treating illnesses [8]. 
An unsupervised machine learning algorithm (UMLA) is a category of AI in which the model is responsible for learning structures and 
patterns from unlabeled data with no explicit guidance or labeled outcomes [9]. The UMLA is widely used in clinical research because 
it is capable of clustering patients according to corresponding disease features and efficiently classifying heterogeneous cohorts 
precisely and rationally [10]. 

In this study, we applied the UMLA for identifying and clustering pre-operative data from PAD cases who underwent amputation 
surgery and analyzed their post-operative data to categorize PAD into different subtypes. By integrating comprehensive clinical data, 
we established a novel PAD subtype prediction model. This innovative model can accurately classify patients and greatly contributes to 
the personalized and effective clinical management of PAD. 

2. Methods 

2.1. Patients 

The Ethics Committee of The First Affiliated Hospital of Guangxi Medical University (2023-E314–01) approved our study protocols. 
Clinical data were obtained from PAD cases undergoing lower extremity amputation at First Affiliated Hospital of Guangxi Medical 

University between January 2012 and June 2023. Patients below were included: those developing lower extremity PAD who un-
derwent major amputation surgery based on their symptoms, physical signs, ultrasound examination results, contrast-enhanced 
computed tomography, and digital subtraction angiography. The exclusion criteria were as follows: (a) patients who underwent 
amputation due to trauma, malignant tumors, congenital vascular diseases, acute limb ischemia, thromboangiitis obliterans, or 
vasculitis; and (b) patients who had insufficient case information, inadequate follow-up length, or loss-to-follow-up. 

Both pre-operative and follow-up data were recorded for all patients. Pre-operative data included gender, age, BMI, smoking 
history, presence of comorbidities, whether the patient underwent endovascular intervention or open lower limb revascularization 
before amputation, Rutherford classification, amputation level, and distance to the artery occlusion. We also collected data on pre- 
operative blood test indicators, such as the platelet count, white blood cell count, hemoglobin level, albumin level, D-dimer and C- 
reactive protein (CRP) levels. The follow-up data included intraoperative bleeding, intensive care unit (ICU) stay, hospital stay, the 
occurrence of multiple organ dysfunction syndrome (MODS), septicemia, acute renal failure (ARF), wound infection and operative 
ulcers, whether the patient underwent secondary amputation, and whether the patient died during hospitalization. 

2.2. Construction of PAD subtypes using UMLA 

We used K-means cluster algorithm, an supervised machine learning algorithm for splitting and rearranging a dataset into distinct 
clusters, for clustering PAD cases. The primary objective of using this algorithm is for grouping similar data points and maximizing the 
between-cluster dissimilarity [11]. A scale function was used to normalize the data of the PAD patients via R ‘factoextra’ package [12]. 
In addition, we utilized ‘Fpc’ package to determine the best cluster number (k value) through determining silhouette coefficient (SC) 
[13,14]. SC has been the metric adopted for assessing clustering technique effectiveness in UMLA, which reflects how well each data 
point fits into the assigned cluster by considering cohesion within the cluster and separation from other clusters [15]. SC can be 
calculated using the following equation: 

SC (i)=
b(i) − a(i)

max{a(i), b(i)}

Here, a(i) stands for mean distance from a data point to additional points within an identical cluster, whereas b(i) indicates the shortest 
average distance from data point to points within a different cluster, minimized over clusters. The SC(i) ranges from − 1 to 1, in which 
− 1, 0 and 1 stand for incorrect, overlapping and well-separated and distinct clusters, separately. This metric reflects clustering quality, 
and high values indicate well-defined clusters [16]. 

According to pre-operative data, we categorized UMLA cases as distinct clusters. By analyzing follow-up data between distinct 
clusters, the precision of UMLA clustering was determined, which helped in correctly placing the PAD patients in different subtype 
categories. 

Predictors that exhibited statistical significance were used to conduct binary logistic regression. Also, we used the coefficients from 
the logistic regression model for nomogram construction. Logistic regression coefficients were mapped by the nomogram to the 0–100 
scale for visually representing predicted probabilities. In addition, receiver operating characteristic (ROC) and calibration curve an-
alyses were performed to evaluate nomogram performance. 
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Fig. 1. Work flow and result of unsupervised machine learning. 
(A) Optimal clustering number of the K-means clustering algorithm was determined by Silhouette coefficient (SC). The peak of the curve is the best value for the Silhouette coefficient (Y-axis); the best 
number of clusters was equal to 2 (X–axis). (B) Scatter plots of patients’ clinical data. Scatter points on the graph represent each patient. The K-means algorithm divides patients into two clusters. The red 
scatter represents cluster 1 and the blue scatter represents cluster 2. 
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Table 1 
Pre-operative conditions of the study patients by clusters.  

Characteristic cluster p-value 

Overall, N = 507 1, N = 298 2, N = 209 

Age    <0.001 
Mean ± SD 64 ± 17 69 ± 14 57 ± 17  
Median (IQR) 66 (52, 77) 71 (61, 80) 56 (44, 70)  

BMI    0.637 
Mean ± SD 22.6 ± 3.8 22.6 ± 3.6 22.7 ± 4.0  
Median (IQR) 22.4 (20.1, 24.5) 22.4 (20.0, 24.3) 22.5 (20.3, 24.8)  

Rutherford category    0.235 
Mean ± SD 5.01 ± 0.74 4.99 ± 0.62 5.03 ± 0.89  
Median (IQR) 5.00 (5.00, 6.00) 5.00 (5.00, 5.00) 5.00 (4.00, 6.00)  

Hemoglobin(g/L)    0.216 
Mean ± SD 114 ± 39 118 ± 45 109 ± 27  
Median (IQR) 111 (90, 127) 111 (90, 130) 111 (90, 124)  

White blood cell(10^9/L)    0.396 
Mean ± SD 10.9 ± 5.8 11.0 ± 6.2 10.8 ± 5.1  
Median (IQR) 9.5 (6.5, 13.6) 9.3 (6.4, 13.6) 9.6 (6.6, 13.7)  

CRP(mg/L)    0.123 
Mean ± SD 83 ± 61 85 ± 61 79 ± 61  
Median (IQR) 66 (40, 120) 66 (46, 101) 61 (35, 129)  

Platelet(10^9/L)    0.720 
Mean ± SD 335 ± 162 337 ± 163 331 ± 160  
Median (IQR) 322 (214, 432) 325 (217, 436) 321 (213, 428)  

D-dimer(mg/L)    0.571 
Mean ± SD 532 ± 882 470 ± 349 620 ± 1306  
Median (IQR) 430 (235, 621) 424 (231, 588) 445 (249, 667)  

Albumin(g/L)    <0.001 
Mean ± SD 31 ± 7 30 ± 7 33 ± 8  
Median (IQR) 31 (26, 36) 30 (26, 34) 32 (28, 39)  

Amputation distance (cm)    0.053 
Mean ± SD 31 ± 18 32 ± 18 29 ± 18  
Median (IQR) 25 (20, 40) 25 (20, 40) 25 (20, 40)  

Gender    <0.001 
Female 174 (34.3 %) 70 (23.5 %) 104 (49.8 %)  
Male 333 (65.7 %) 228 (76.5 %) 105 (50.2 %)  

Smoking    <0.001 
No 237 (46.8 %) 103 (34.6 %) 134 (64.1 %)  
Yes 270 (53.3 %) 195 (65.4 %) 75 (35.9 %)  

Diabetes    <0.001 
No 316 (62.3 %) 163 (54.7 %) 153 (73.2 %)  
1 191 (37.7 %) 135 (45.3 %) 56 (26.8 %)  

Hypertension    0.165 
No 354 (69.8 %) 201 (67.5 %) 153 (73.2 %)  
Yes 153 (30.2 %) 97 (32.6 %) 56 (26.8 %)  

CD    0.390 
No 441 (87.0 %) 256 (85.9 %) 185 (88.5 %)  
Yes 66 (13.0 %) 42 (14.1 %) 24 (11.5 %)  

CKD    0.944 
No 436 (86.0 %) 256 (85.9 %) 180 (86.1 %)  
Yes 71 (14.0 %) 42 (14.1 %) 29 (13.9 %)  

CAD    0.001 
No 371 (73.2 %) 202 (67.8 %) 169 (80.9 %)  
Yes 136 (26.8 %) 96 (32.2 %) 40 (19.1 %)  

Endovascular therapy    <0.001 
No 298 (58.8 %) 200 (67.1 %) 98 (46.9 %)  
Yes 209 (41.2 %) 98 (32.9 %) 111 (53.1 %)  

Amputation level    <0.001 
Above knee 182 (35.9 %) 86 (28.9 %) 96 (45.9 %)  
Below knee 210 (41.4 %) 135 (45.3 %) 75 (35.9 %)  
Ankle 115 (22.7 %) 77 (25.8 %) 38 (18.2 %)  

Revascularization    0.003 
No 454 (89.5 %) 277 (93.0 %) 177 (84.7 %)  
Yes 53 (10.5 %) 21 (7.0 %) 32 (15.3 %)  

Amputation distance: distance between amputation level and artery occlusion; BMI: Body mass index; CAD: Coronary artery disease; CD:Cerebro-
vascular disease; CKD: Chronic kidney disease; CRP: C-reactive protein; Endovascular therapy: It comprises minimally invasive procedures performed 
within blood vessels to restore blood flow and treat vascular diseases; Revascularization: open lower limb revascularization; Rutherford category: It 
classifies the severity of PAD into stages, ranging from asymptomatic (category 0) to major tissue loss (category 6). 
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2.3. Statistical analysis 

R4.2.1 software and IBM SPSS 26.0 were utilized in the statistical analysis. Clinical results were indicated by mean (SD) and median 
(P25, P75). Student’s t-test, chi-square test and Mann-Whitney U test were adopted according to different data types. P < 0.05 stood for 
significant difference. 

3. Results 

3.1. UMLA results 

From January 2012 to June 2023, our center treated a total of 3881 patients with CLTI, 618 of whom underwent major amputations 
(15.9 %). In line with our eligibility criteria, we enrolled altogether 507 cases into this work. The UMLA was used to cluster the pre- 
operative data of PAD amputees. Typically, the best cluster number for K-means algorithm is shown in Fig. 1A. The peak of the curve in 
the figure indicates the optimal value of SC, suggesting that the best cluster number was two. K-means algorithm efficiently clustered 
pre-operative variables as two groups (Fig. 1B). The clustering results of the pre-operative data are presented in Table 1. There was a 
significant difference in gender distribution in both clusters (p < 0.001), and males occupied an increased percentage in Cluster 1 
(76.5 %) compared with in Cluster 2 (50.2 %). A significantly greater number of cases from Cluster 1 compared with Cluster 2 were 
older, smokers, and diabetic (p < 0.001). Pre-operative albumin levels and the proportion of patients who underwent pre-operative 
endovascular intervention and open lower limb revascularization markedly decreased among patients in Cluster 1 compared with 
Cluster 2 (p < 0.001). The incidence of coronary heart disease markedly decreased in Cluster 1 relative to Cluster 2 (p = 0.001). 
Additionally, patients who had undergone above-knee amputation showed a markedly increased proportion in Cluster 2, representing 
45.9 % of the total. Conversely, Cluster 1 had a greater percentage of patients who underwent below-knee amputation or ankle 
disarticulation, accounting for 45.3 % and 25.8 %, respectively (p < 0.001). 

3.2. Comparison of follow-up data between the clusters 

The differences in follow-up data between Cluster 1 and Cluster 2 are presented in Table 2. Patients in Cluster 1 had significantly 

Table 2 
Post-operative followed-up conditions of patients in two clusters.  

Characteristic cluster p-value 

Overall, N = 507 1, N = 298 2, N = 209 

Bleeding volum(ml)    <0.001 
Mean ± SD 238 ± 286 302 ± 314 147 ± 210  
Median (IQR) 100 (30, 300) 250 (50, 500) 50 (25, 250)  

ICU stays(day)    0.016 
Mean ± SD 4.0 ± 11.7 5.7 ± 14.8 1.6 ± 3.3  
Median (IQR) 0.0 (0.0, 4.0) 0.0 (0.0, 5.8) 0.0 (0.0, 1.0)  

Hospital stays(day)    <0.001 
Mean ± SD 21 ± 29 27 ± 36 12 ± 9  
Median (IQR) 12 (8, 18) 14 (12, 30) 7 (7, 16)  

MODS    0.127 
No 493 (97.2 %) 287 (96.3 %) 206 (98.6 %)  
Yes 14 (2.8 %) 11 (3.7 %) 3 (1.4 %)  

ARF    0.045 
No 490 (96.7 %) 284 (95.3 %) 206 (98.6 %)  
Yes 17 (3.4 %) 14 (4.7 %) 3 (1.4 %)  

Infection    <0.001 
No 408 (80.5 %) 221 (74.2 %) 187 (89.5 %)  
Yes 99 (19.5 %) 77 (25.8 %) 22 (10.5 %)  

Operative ulcer    <0.001 
No 434 (85.6 %) 234 (78.5 %) 200 (95.7 %)  
Yes 73 (14.4 %) 64 (21.5 %) 9 (4.3 %)  

Secondary amputation    <0.001 
No 442 (87.2 %) 241 (80.9 %) 201 (96.2 %)  
Yes 65 (12.8 %) 57 (19.1 %) 8 (3.8 %)  

Death in hospital    0.015 
No 487 (96.1 %) 281 (94.3 %) 206 (98.6 %)  
Yes 20 (3.9 %) 17 (5.7 %) 3 (1.4 %)  

Septicemia    0.178 
No 494 (97.4 %) 288 (96.6 %) 206 (98.6 %)  
Yes 13 (2.6 %) 10 (3.2 %) 3 (1.4 %)  

ARF: Acute renal failure, it refers to a sudden decline in kidney function, resulting in an inability to maintain fluid, electrolyte, and acid-base balance; 
ICU: Intensive care unit; MODS: multiple organ dysfunction syndrome, it is a serious, life-threatening condition characterized by progressive failure of 
two or more organ systems. Septicemia: A serious bloodstream infection characterized by the presence of bacteria or their toxins in the blood. 
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greater blood loss, a longer duration of hospitalization, greater rates of surgical site infection and ulcer occurrence, and greater rates of 
secondary amputation relative to those of Cluster 2 patients (p < 0.001). Cluster 1 patients also had a longer intensive care unit stay 
and had greater renal failure and in-hospital mortality rates than those of Cluster 2 (p < 0.05). Consequently, Cluster 1 patients showed 
poorer conditions and prognostic outcomes compared with Cluster 2. Differences in the follow-up data between both clusters showed 
that UMLA clustering was accurate. We found that the UMLA accurately classified PAD patients who underwent amputation into two 
groups. The prognosis of the disease differed between the groups according to patient preoperative clinical data. 

3.3. Prediction model establishment for new PAD subtypes 

Our results indicated that UMLA accurately divided PAD patients into clusters with different prognoses. Next, the pre-operative 
variables that were significantly different between the two clusters were subjected to logistic regression. As a result, gender, age, 
smoking history, diabetes and coronary heart disease history, pre-operative albumin levels, amputation level, and presence/absence of 
endovascular intervention were independent clustering predictors for PAD patients in Cluster 1, i.e., the group with a poorer prognosis 
(p < 0.05) (Table 3). Based on logistic regression results, we constructed a forest plot (Fig. 2A) and constructed a nomogram in which 
the eight risk factors were incorporated (Fig. 2B). The area under ROC curve (AUC) was 0.861 (95 % confidence interval: 0.830–0.893) 
(Fig. 2C). The calibration curve verified the probability of the actual and predicted nomograms, yielding a brier score of 0.148 
(Fig. 2D). Supplementary Table 1 provides additional details on various performance indicators of the predictive model. These results 
indicated that the novel prediction model for PAD subtype accurately predicted adverse outcome probabilities in PAD patients who 
underwent amputation. 

4. Discussion 

4.1. Clinical value of AI-based predictive model for new PAD subtypes 

As post-amputation prognosis of PAD patients is complex, risk assessment is required to provide personalized treatment and make 
better surgical decisions for these patients. In our study, UMLA was used to classify pre-operative data obtained from PAD patients into 
two clusters. Subsequent analysis of the follow-up data revealed that Cluster 1 cases showed poorer clinical conditions compared with 
Cluster 2 counterparts. According to the logistic regression results, we developed the predictive model for identifying patients at 
greater risk of disease progression and adverse prognosis. The predictive performance of the model was excellent, which indicated that 
artificial intelligence could be used to make prognostic predictions in individuals who have undergone amputation due to PAD. 

One of the primary novelties of our study is the utilization of unsupervised machine-learning techniques to identify distinct patient 
subtypes within the PAD population undergoing amputation. Traditionally, risk stratification in this patient cohort has been based on 
clinical judgment and established risk factors. However, our approach offers a data-driven methodology for identifying high-risk 
individuals probably benefiting from targeted interventions and closer monitoring. 

In healthcare, identifying patient heterogeneity is crucial. The UMLA is utilized for identifying patient subgroups and can help in 
the administration of personalized and targeted treatment [17]. For example, COVID-19 symptom were investigated for their 

Table 3 
Results of Univariate and Multivariate Logistic regression.  

Characteristic Univariable Multivariable 

OR 95 % CI p-value OR 95 % CI p-value 

Gender 
Female – –  – –  
Male 3.23 2.20, 4.72 <0.001 2.43 1.41, 4.18 0.001 

Age 1.05 1.04, 1.06 <0.001 1.07 1.05, 1.09 <0.001 
Smoking 

No – –  – –  
Yes 3.38 2.34, 4.90 <0.001 4.85 2.74, 8.59 <0.001 

Diabetes 
No – –  – –  
Yes 2.26 1.54, 3.31 <0.001 2.31 1.41, 3.79 <0.001 

CAD 
No – –  – –  
Yes 2.01 1.32, 3.06 0.001 2.12 1.23, 3.64 0.007 

Albumin 0.94 0.92, 0.97 <0.001 0.94 0.91, 0.97 <0.001 
Endovascular therapy 

No – –  – –  
Yes 0.43 0.30, 0.62 <0.001 0.46 0.29, 0.74 0.001 

Amputation level 
Above knee – –  – –  
Below knee 2.01 1.34, 3.01 <0.001 2.29 1.36, 3.84 0.002 
Ankle 2.26 1.39, 3.68 <0.001 4.24 2.24, 8.02 <0.001 

CAD: Coronary artery disease. 
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longitudinal trajectories using unsupervised machine learning among healthcare workers; the findings of that study provided insights 
into the disease progression of non-hospitalized patients [18]. Similarly, Demanse et al. used the UMLA to identify clinical phenotypes 
in an osteoarthritis initiative database. Using this method, they understood and categorized patients more effectively [19]. Our study 
contributes to suggesting the effect of machine learning on personalized medicine. By leveraging advanced analytical techniques, we 
can enhance risk stratification and guide tailored interventions for patients with PAD undergoing amputation. This approach holds 
promise for improving patient outcomes and optimizing resource allocation in healthcare settings. 

The application of our artificial intelligence (AI)-driven model in clinical practice might aid in the management of PAD. For PAD 
amputees at high risk, our model suggests that a tailored strategy involving intensive monitoring and stronger clinical interventions 
needs to be implemented. The personalized approach aims to delay disease progression and mitigate the risk of severe complications, 
such as infections, ulcers, and secondary amputation. This targeted intervention approach supports the principles of precision med-
icine, which emphasizes individualized care based on specific risk profiles. 

4.2. Risk factors related to dismal prognostic outcome following amputation for PAD 

We identified male gender, advanced age, smoking history, a medical history of diabetes and coronary artery disease, low pre- 
operative albumin levels, below-knee amputation, ankle disarticulation, and a lack of pre-operative endovascular intervention to 
open occluded blood vessels as high-risk factors related to dismal prognostic outcome of PAD patients. 

PAD shows an increasing incidence with age, and those who are 70 years old or older have a significantly greater incidence than 
those under 70 years old. The probability of poor prognosis in patients ≥70 years increases by 2.206 folds relative to those <70 years 
[20]. Some researchers have suggested that diabetics are associated with an increased PAD risk. The probability of intermittent 

Fig. 2. Construction and validation of the predictive model. 
(A)Forest plot of the pre-operative variables. (B) Nomogram for prediction model. (C) AUC of the nomogram. (D) Calibration curves for predictive 
model. 
AUC: Area under curve; CI: Confidence interval; CAD: Coronary artery disease; ROC: Receiver operating characteristic. 

Y. Ma et al.                                                                                                                                                                                                             



Heliyon 10 (2024) e34602

8

claudication in diabetic patients is 2–3 times greater than that in non-diabetic individuals [21]. Diabetes primarily affects arteries 
below the knees and increases the risks of lower limb ischemic ulcers, amputation, or even death; therefore, diabetes deteriorates 
outcomes for PAD patients [22]. Smokers have a two-fold increased PAD risk compared with non-smokers [23]. Although quitting 
smoking reduces AD risk, according to one community-based cohort study, the risk for ex-smokers can reach the level of risk for 
non-smokers after 30 years [24]. 

Several studies on PAD and multiple vascular diseases have been conducted. Multiple vascular diseases, including PAD, occur in 
atherosclerotic patients and affect diverse vascular beds. According to certain studies evaluating novel antithrombotic or lipid- 
lowering therapeutic techniques for preventing adverse cardiovascular events, patients with multi-vascular diseases had a greater 
risk than those without such diseases. The combined risk of PAD and myocardial infarction for major adverse cardiovascular events 
was the highest, and the 2.5-year risk was 14.9 %. PAD patients without myocardial infarction were associated with a greater major 
adverse cardiovascular event risk (10.3 %) compared with non-PAD myocardial infarction cases (7.6 %) [25]. Patients with PAD and 
concomitant conditions like coronary artery disease have an increased risk of developing systemic arterial sclerosis, which significantly 
increases the cardiovascular event risk. Coronary artery disease can increase amputation risk due to both intraoperative and 
post-operative complications. Thus, it has severe adverse effects on patient prognosis [26]. 

With advancements in medical expertise and equipment, the application of endovascular interventions for PAD patients has 
become popular because these interventions are minimally invasive, safe, and efficacious and facilitate rapid recovery [27]. 
Thrombolysis, balloon dilation, stent implantation, intraluminal rotational cutting, arterial dilation, and reconstruction represent 
common endovascular intervention methods [28]. Endovascular intervention can be used for efficiently expanding and reconstructing 
narrowed or occluded vessels. Thus, it can accelerate blood circulation, greatly enhance vascular patency, and considerably decrease 
the mortality and amputation rates for patients [29]. Due to improvements in technology and equipment, interventional treatment for 
PAD has advanced significantly; specifically, post-operative success rates and short-term efficacy have greatly improved [30]. 

To summarize, in this study, we showed that factors like age, sex, smoking history, diabetes and coronary artery disease history, 
pre-operative ALB levels, amputation level, and whether endovascular intervention to open occluded blood vessels is conducted 
significantly affect the prognosis of PAD amputees. Our findings highlighted the need to comprehensively consider these risk factors 
while developing individualized treatment plans for improving disease outcome and reducing complications in patients. 

Currently, the association between the amputation level and post-amputation prognosis remains controversial. A notable finding in 
our study was the significantly worse prognosis observed in patients who underwent below-knee amputation and ankle disarticulation 
than in those who underwent above-knee amputation. Patients with higher amputation levels often experience a lack of tissue viability, 
necessitating more extensive amputation procedures. Conversely, those who undergo lower-level amputations may face an increased 
risk of non-healing complications stemming from inadequate blood perfusion in distal diseased arteries [31]. Despite the common 
practice of lowering amputation levels to enhance the post-amputation quality of life, our results underscore the critical importance of 
considering vascular patency. Vascular occlusion directly influences post-operative healing in amputees, with compromised blood flow 
leading to delayed wound healing, ulceration, infection, and the need for secondary amputation [32]. Thus, while striving to optimize 
the quality of life for amputees, clinicians must carefully weigh the benefits of lower amputation levels against the risk of vascular 
complications to mitigate adverse outcomes. 

4.3. Limitations 

This study had certain limitations. First, as the study had a retrospective design, we could not eliminate selection bias. Second, all 
data were obtained from one individual center; consequently, multicenter studies are needed for external validation and for optimizing 
the prediction model. 

5. Conclusion 

UMLA was used to identify new PAD phenotypes among patients showing different risks of amputation. Our constructed AI-driven 
predictive model for PAD subtypes showed that it can be used for risk stratification and clinical management with high accuracy and 
reliability. 
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