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Tumor plasticity refers to tumor cell’s inherent property of transforming one type of

cell to different types of cells. Tumor plasticity is the main cause of tumor relapse,

metastasis and drug resistance. Cancer stem cell (CSC) model embodies the trait of

tumor plasticity. During carcinoma progression, epithelial-mesenchymal transition (EMT)

plays crucial role in the formation of CSCs and vasculogenic mimicry (VM) based on

epithelial-mesenchymal plasticity. And the unique tumor microenvironment (TME) not

only provides suitable niche for CSCs but promotes the building of CSCs and VM that

nourishes tumor tissue together with neoplasm metabolism by affecting tumor plasticity.

Therapeutic strategies targeting tumor plasticity are promising ways to treat malignant

tumor. In this article, we discuss the recent developments of potential drug targets related

to CSCs, EMT, TME, VM, andmetabolic pathways and summarize drugs that target these

areas in clinical trials.

Keywords: tumor plasticity, cancer stem cells, vasculogenic mimicry, extracellular matrix, tumor

microenvironment, targeting

INTRODUCTION

The universal methods for cancer treatment include surgery, radiotherapy, and chemotherapy.
Chemotherapy is the principle modality for the treatment of malignant tumor, especially tumors in
the late stages. Despite significant improvement of cancer chemotherapy in clinical practice, there
are still many obstacles that chemotherapeutic drugsmust overcome: (1) lack of effective treatments
for metastatic tumors; (2) ineffectiveness in killing drug-resistant tumor cells; and (3) lack of new
targets based on the characteristics of neoplasm, such as tumor plasticity.

Tumor plasticity prompts tumor cells to differentiate into a variety of cell types to adapt to
different environment (1). Emerging evidence suggested that tumor plasticity played critical roles
in the emergence of drug resistance and the promotion of tumor growth, invasion and metastasis.
Therefore, there is an urgent need to develop new therapeutic agents to target tumor plasticity.

The cancer stem cells (CSCs) model offers one explanation for tumor plasticity. The CSCs
model revealed that only a minority of tumorigenic cells contribute to tumor growth and
progression. However, there are many other aspects closely related to tumor plasticity. For
example: (1) epithelial-mesenchymal transition (EMT), which contributes to the phenotypic
plasticity and promotes cancer metastasis; (2) tumor microenvironment (TME), which contains
extracellular matrix (ECM) and cells such as fibroblasts, endothelial and immune cells that are
the primary source of signals to and from the tumors; (3) vasculogenic mimicry (VM), which is a
microcirculation that is independent of angiogenesis in aggressive primary and metastatic tumors
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and comprised of non-endothelial cell generated by tumor cells
and ECM; and (4) neoplastic metabolic pathways, that mainly
include glycolysis and oxidative phosphorylation (OXPHOS).
Changes of metabolic pathways between glycolysis and OXPHOS
in cancer cells is prevalent during tumorigenesis and metastasis.
Hence, targeting glycolysis and OXPHOS is essential to wipe out
metabolic plasticity in cancer cells. Here, the potential targets
related to tumor plasticity was summarized in Figure 1. In this
mini review, we summarize the recent advances in anticancer
compounds targeting CSCs, ETM, TEM, VM formation, and
metabolic pathways, which is associated with tumor plasticity.

THERAPEUTIC TARGETING OF CSCS

The concept of CSCs was proposed several decades ago. The
existence of CSCs has been confirmed by lineage tracing and cell
ablation experiments in tumors (2–6). Similar to normal stem
cells, a small subset of CSCs could proliferate and differentiate
into a wide variety of cell types to sustain and promote tumor
growth. The characteristic of tumor plasticity in CSCs is that
CSCs could differentiate in different directions. The CSCs model
provides a new explanation for the metastasis and recurrence
of malignant tumors. CSCs have also been recognized as a
major driver of tumor growth, metastasis and chemotherapeutic
resistance. Therefore, CSCs has become crucial targets for cancer
treatment. The ways to eliminate CSCs mainly consist of two
aspects (7): (1) inhibition of key CSCs signaling pathways,

FIGURE 1 | Potential drug targets related to tumor plasticity. CSCs, cancer stem cells; EMT, epithelial-mesenchymal transition; TME, tumor microenvironment; TME,

tumor microenvironment; PORCN, porcupine; Smo, smoothened; LGR5, leucine-rich repeat containing G protein-coupled receptor 5; ALDH1, aldehyde

dehydrogenase1; ABCG2, breast cancer-resistant protein; NF-κB, nuclear factor-kappa B; JAK/STAT3, the Janus kinase/signal transducer and activator of tran-ions

3; HIF1α, hypoxia-inducible factor 1α; TNF-α, tumor necrosis factor alpha; TGF-β, transforming growth factor-β; EGFR, epidermal growth factor receptor; PDGFRα,

platelet derived growth factor receptor alpha; ROCK1, Rho kinase1; LKB1, liver kinase B1; mTOR, mammalian target of rapamycin; PKB/Akt, protein kinase B; IL-6,

interleukin-6; PD-1, programmed cell death receptor-1; PD-L1, programmed cell death-ligand 1; HDAC, histone deacetylases inhibitor; PI3K, phosphatidylinositide

3-kinases; MMPs, matrix metalloproteinases; Eck/EphA2, epithelial cell kinase; LKB1, liver kinase B1; PKM2, pyruvate kinase M2; AMPK, AMP-activated

protein kinase.

including Wnt pathway, porcupine (PORCN) pathway and
Hedgehog (Hh) pathway (8, 9); and (2) ablate CSCs by targeting
CSC surface markers, such as CD133, CD44, (leucine-rich repeat
containing G protein-coupled receptor 5) LGR5, (aldehyde
dehydrogenase1) ALDH1, and breast cancer-resistant protein
(BCRP; ABCG2). Table 1 summarizes drugs that target CSCs in
recent clinical trials.

Therapeutic agents targeting Wnt signaling pathway in

clinical trials include porcupine (PORCN) inhibitors, β-catenin
inhibitors and antibodies against Wnt signaling molecules (24).
Among these, PORCN inhibitors gradually became research

focus of antitumor drugs. WNT-974, an orally first-in-class
PORCN inhibitor, is a pyridinyl acetamide derivative that target

Wnt signaling to inhibit the expression of Wnt related genes
and Wnt-dependent LRP6 phosphorylation. WNT-974 showed
significant growth inhibitory effect on Wnt-driven neoplasms,
such as pancreatic cancer and head and neck squamous cell
carcinoma. The pharmacokinetics (PK) and pharmacodynamics
(PD) of WNT974 were tested in patients with advanced cancers
in phase I clinical trial, and the results showed rapid absorption
(median Tmax 1–3 h) and appropriate elimination half-life of 5–
8 h. These clinical data demonstrated that WNT-974 possesses
favorable safety profile and potential antineoplastic activity in
selected populations (25). Currently, WNT-974 is being tested
in a phase I study for the treatment of solid tumors including
colorectal cancer and melanoma (10). In addition, PORCN
inhibitor ETC-159 is in phase I clinical trial for advanced solid
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TABLE 1 | Potential drugs targeting CSCs in clinical trials.

Drug Mechanism of

action

Condition or

disease

Phase References

WNT-974 PORCN inhibitors Colorectal cancer

and melanoma

I (10)

ETC-159 PORCN inhibitors Advanced solid

tumors

I (11, 12)

CGX-1321 PORCN inhibitors Refractory solid

tumors and

advanced

gastrointestinal

cancers

I (13)

RXC-004 PORCN inhibitors Solid tumors I/II (14)

BC-2059 β-catenin inhibitors Desmoid tumors I (15)

E-7386 CREB-binding

protein

(CBP)/β-catenin

interaction inhibitors

Solid tumors I (16)

AL-101 γ-secretase inhibitors Adenoid cystic

carcinoma

II (17)

Vismodegib p-glycoprotein

inhibitors

Breast

cancer-resistant

protein inhibitors

Smo

receptor antagonists

Basal cell

carcinoma, other

cancers

Launched

in 2012

(18)

Sonidegib

phosphate

Smo receptor

antagonists

Basal cell

carcinoma, other

cancers

Launched

in 2015

(19)

Patidegib Smo receptor

antagonists

Sarcoma,

basal cell

carcinoma

III (20, 21)

Taladegib Smo receptor

antagonists

Adenocarcinoma,

solid tumors

I/II (22, 23)

tumors, CGX-1321 is in phase I clinical trials for advanced
gastrointestinal cancers and RXC-004 is in phase I/II clinical
trials for the treatment of solid tumors (11–14). Through the
inhibition of β-catenin, Tegavivint (BC-2059), an anthraquinone
derivative and E-7386 are both being evaluated in phase I clinical
trials to treat symptomatic or progressive unresectable desmoid
tumors and solid tumors (15, 16).

The small-molecule inhibitors and macromolecule
monoclonal antibodies (mAbs) including γ-secretase inhibitors
and mAbs to NOTCH receptors have been tested in clinical
trials. A small-molecule inhibitor of γ-secretase, which is a key
enzyme in NOTCH signaling pathway, AL-101 with favorable
in vitro potency and oxidative metabolic stability, is in phase
II clinical development for the treatment of adenoid cystic
carcinoma bearing NOTCH activated mutations (17). On the
other hand, among the therapeutic molecules targeting Hh
pathway, smoothened (Smo) receptor antagonists are the most
promising molecules (26). A novel small-molecule inhibitor
or antagonist of Smo, Sonidegib phosphate was launched
in 2015 for the treatment of advanced basal cell carcinoma
(BCC). Sonidegib phosphate exhibited excellent therapeutic

TABLE 2 | Potential drugs targeting CSC surface marker in clinical trials.

Drug Mechanism of

action

Condition or

disease

Phase References

P5 Anti-CD49e/CD29

(integrin α5β1)

Non-small cell lung

cancer (NSCLC)

III (32)

ALM-201 Microtubule inhibitors

(binds CD44)

Advanced ovarian

cancer and other

solid tumors

I (33)

RO-

5429083

Anti-CD44 Acute myeloid

leukemia

I (34)

RG-7356 Anti-CD44 Acute myeloid

leukemia

I (35)

AMC-303 CD44 Antigen Exon 6

(CD44v6) inhibitors

Advanced or

metastatic malignant

solid tumors of

epithelial origin

I/II (36)

CX-2009 Tubulin

polymerization

inhibitors

Anti-ALCAM (CD166)

Solid tumors I/II (37)

Chrysin ABCG2 inhibitors Chronic lymphocytic

leukemia (CLL)

II (38)

effect (roughly 35–60% response rates of patients) in patients
with locally advanced, unresectable and metastatic BCC, with
high disease control rates and clinical benefit (19, 27). Recent
advances in the development of Hh signaling inhibitors include
Vismodegib (18), which is launched in 2012 for the treatment
of patients with advanced BCC; Patidegib, which is in phase
III clinical trial for reducing the incidence of BCC (20, 21) and
Taladegib, which is in phase I/II clinical trial) for the treatment
of patients with recurrent, advanced solid tumors (22, 23).

Because of the highly plasticity of CSCs in tumors, the
identification and eradication of CSCs are difficult. Generally,
their identification depends on cell surface markers. CD34,
CD44, and CD133 are common examples of CSC-specific surface
markers (28). CSC surface markers can mediate adhesion of
the cells. A cell surface membrane protein CD133, which was
first discovered in hematopoietic stem and progenitor cells,
is considered to be one of the common surface markers in
multiple stem cells (29). Others like ALDH1 and ABCG2 also
play significant roles in the regulation of CSCs (30, 31). Because
CSCs drive cancer development, a number of agents targeting the
biomarkers of CSCs have been developed (Table 2).

A novel mAb P5, which targets CD49e/CD29, is currently
being tested in phase III clinical trials to evaluate its anti-
tumor effect, but there are only a few reports about its progress
of new clinical trials (32). As a FK506 binding protein like
(FKBPL) peptide derivative, ALM-201 can bind to CD44 and
inhibit cancer related pathways, such as DLL4/NOTCH signal
pathway as well as inhibit cell migration, tubule formation and
angiogenesis. ALM-201 showed an excellent safety profile and
acceptable PK in patients with advanced solid tumors in a phase I
dose-escalation study (39). This candidate is currently in phase I
clinical trials for the treatment of patients with advanced ovarian
cancer and other solid tumors (33). RO-5429083 and RG-7356
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are both humanized monoclonal antibodies against extracellular
domain of CD44 which had been used in phase I clinical studies
for the treatment of acute myeloid leukemia and solid tumors
(34, 35). In addition, AMC-303, a high specific inhibitor of
CD44v6, was evaluated as monotherapy to treat patients with
advanced epithelial tumors. AMC-303 was proved to be well-
tolerated with a favorable PK profile (t1/2 of 4–7 h, CL of 40–
60 mL/h/kg) (40). At present, AMC-303 is in phase I/II clinical
trials to treat patients with advanced or metastatic malignant
solid tumors of epithelial origin (36). A probody drug conjugate
CX-2009 against CD166 is in phase I/II clinical development
for the treatment of adult patients with metastatic or locally
advanced unresectable solid tumors (37). Furthermore, a recent
research reported that chrysin, which is an ABCG2 inhibitor,
could enhance sorafenib mediated inhibition of cell viability by
sustained phosphorylation of ERK1/2 (41). And chrysin is being
used in phase II clinical trials to treat CLL (38).

THERAPEUTIC TARGETING OF EMT

The conversion of cells from epithelial phenotype into
mesenchymal phenotype is a critical transformation for
embryonic development and during cancer progression.
Through EMT process, tumor cells can acquire the ability to
disarm anti-tumor defenses in the body, resist apoptosis and
antineoplastic drugs, spread through the body and expand the
population of tumor cells (42). At the same time, EMT may play
an important role in generating CSCs (43). Hence, EMT is an
important target for inhibiting tumor metastasis and reducing
drug resistance. Various approaches can be used to target the
EMT process: (1) targeting the inducing signals in EMT process;
(2) reversing EMT to reduce tumor cell aggressiveness; and (3)
killing the cells in EMT-like state (44). As one of the key factors
of tumor invasion, metastasis and drug resistance, EMT is a
promising target for oncotherapy. The following summarized
the progress of potential drugs targeting EMT-related signals
(Table 3).

Modulators of transcription factors, such as nuclear factor-
kappa B (NF-κB) and signaling transducer and activator of
transcription 3 (STAT3) have made progress in clinical trials (59,
60).Denosumab, which is a macromolecule of humanized mAbs
to receptor activator of NF-κB ligand (RANKL), was originally
approved to treat and prevent postmenopausal osteoporosis in
2010 (45). Denosumab prevents RANKL binding to RANK, and
blocks the development of osteoclasts, leading to restraining
the resorption of bone. So far, phase III clinical studies have
been ongoing for evaluating its therapeutic effect on metastatic
non-small cell lung cancer (NSCLC) together with other
chemotherapeutics. TK-006 is another anti-RANKL antibody in
early clinical development for the treatment of patients with
bone metastases caused by breast cancer through hypodermic
injection (46). In addition, WO-1066 is a JAK/STAT3 (the
Janus kinase/signal transducer and activator of tran-ions 3)
signaling pathway and programmed cell death-ligand 1 (PD-L1)
inhibitor, which is derived from the JAK2 inhibitor AG490. In
2019, the compound was granted an orphan drug designation

TABLE 3 | Potential drugs targeting EMT-related modulators in clinical trials.

Drug Mechanism of

action

Condition or

disease

Phase References

Denosumab Receptor activator

of NF-κB ligands

(RANKL)

Tenosynovial giant

cell tumor

Launched

in 2013

(45)

TK-006 Anti-TNFSF11

(RANKL)

Breast

cancer-related

bone metastases

I (46)

WO-1066 STAT3 inhibitors,

anti-PD-L1, Janus

kinase (JAK)

inhibitors

Melanoma, brain

cancer

I (47, 48)

DSP-0337 STAT3 inhibitor Solid tumors I (49)

Danvatirsen STAT3 expression

inhibitors

Solid tumors II (50, 51)

OPB-

111077

STAT3 ligands Solid tumors II (52)

Napabucasin STAT3 inhibitors Colorectal

carcinoma,

pancreatic cancer

III (53, 54)

PEGPH20 HIF1α inhibitors Metastatic breast

cancer

I/II (55, 56)

CRLX-101 HIF1α inhibitors,

DNA Topoisomerase

I inhibitors

peritoneum cancer II (57, 58)

in the U.S. for treating glioblastoma. Currently, the candidate
is in phase I clinical trials for patients with melanoma or
glioblastoma multiforme with brain metastases (47, 48). DSP-

0337, Danvatirsen and OPB-111077, all inhibit STAT3 and are
in phase I or II clinical trials to assess their therapeutic efficacy in
solid tumors (49–52).

Hypoxia-inducible factor 1α (HIF1α) and β-catenin also
regulate the expression of other transcription factors related
to EMT (61, 62). PEGPH20 (PEGylated recombinant human
hyaluronidase PH20), which enzymatically degrades hyaluronic
acid (HA), is currently being evaluated in phase II and III trials. It
shows promising efficacy in preclinical and early clinical studies
in the treatment of metastatic pancreatic carcinoma and other
malignant tumors (55, 56). CRLX-101 was proved to be a potent
topoisomerase 1 and HIF1α inhibitor, which is a nanoparticle
composed of CPT conjugated to a biocompatible copolymer of
cyclodextrin and polyethylene glycol (PEG). Currently, CRLX101
is being evaluated in phase II clinical trials for several tumor
types (58).

THERAPEUTIC TARGETING OF TME

Studies have shown that epigenetic changes of tumor cells
caused by TME play a prominent role in tumor progression
and invasion (1, 63). Tumor cells usually adapt to the changing
external environment through changing the plasticity of tumor
cells to meet the demand of tumor development. The research
of relationship between TME and tumor plasticity is making
progress in recent years (64). TME is composed of a complex
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mixture of ECM and various cells including cancer associated
fibroblasts (CAFs) (65), cancer associated macrophages (CAMs)
(66) and endothelial progenitor cells (EPCs) (67). Many
components in ECM contribute to tumor growth. TME has
become one of the key targets in tumor treatment due to its
special pathophysiological characteristics and physicochemical
properties (Table 4).

Tumor necrosis factor alpha (TNF-α) could promote tumor
growth via a PKCa- and AP-1-dependent pathway (90).

TABLE 4 | Potential drugs targeting TME in clinical trials.

Drug Mechanism of

action

Condition or

disease

Phase References

Avadomide

hydrochloride

TNF-α production

inhibitor and

cereblon inhibitors

Solid tumors I/II (68)

NIS-793 Anti-TGF-β Solid tumors I (69)

AVID-200 TGF-β inhibitors Solid tumors I (70)

SAR-

439459

Anti-TGF-β Solid tumors I (71)

Fresolimumab Anti-TGF-β Lung cancer I/II (72)

Simotinib

hydrochloride

EGFR inhibitors Lung cancer I (73)

Amcasertib PDGFRα inhibitors Hepatocellular

carcinoma,

cholangiocarcinoma

II (74)

Olaratumab Anti-CD140a

(PDGFRα)

Soft tissue sarcoma Launched

in

2016

(75)

Cerdulatinib JAK and Syk kinase

inhibitors

Hematologic

cancers

II (76)

AZD-8055 mTORC1/2

inhibitors

Solid tumors I (77)

BI-860585 mTORC1/2

inhibitors

Solid tumors I (78)

DCBCI-

0901

mTORC1/2

inhibitors

Phosphatidylinositol

3-Kinase alpha

(PI3Kα) inhibitors

Solid tumors I (79)

LXI-15029 mTORC1/2

inhibitors

Solid tumors I (80)

ABI-009 mTOR inhibitors Metastatic cancer II (81)

Sapanisertib mTORC1/2

inhibitors

Endometrial cancer II (82)

GSK-

690693

Akt kinases 1

inhibitors

Lymphoma, solid

tumors

I (83)

ARQ-751 pan-Akt inhibitors Solid tumors I (84)

TAS-117 PKB/Akt inhibitors Solid tumors II (85)

Ipatasertib PKB/Akt inhibitors Prostate cancer III (86)

Siltuximab Anti-IL6 Multiple myeloma II (87)

Sintilimab Anti-PD-1 Lymphoma,

Hodgkin’s

Launched

in

2019

(88)

Avelumab Anti-PD-L1 Bladder and kidney

cancer

Launched

in

2017

(89)

Avadomide (CC-122) is a small molecule drug that inhibits
both TNF-α and cereblon E3 ligase. The first-in-human phase I
study, which evaluated the safety and clinical therapeutic effect
of avadomide in patients with advanced solid tumors and others,
showed acceptable safety and favorable pharmacokinetics (68).
Avadomide is currently being evaluated in advanced melanoma
in combination with Nivolumab. Transforming growth factor-
β (TGF-β) signaling pathway is related to EMT in cancer cells
(91). Therapeutic agents modulating the expression of TGF-β
that are monoclonal antibodies include: NIS-793 (a humanized
anti-TGF-β monoclonal antibody), AVID-200 (a recombinant
inhibitor of TGF-β1 and TGF-β3), SAR-439459 (targeting
transforming TGF-β) and fresolimumab (a pan-specific human
anti-TGF-β monoclonal antibody). Among these therapeutic
agents, fresolimumab is able to neutralize all human isoforms
of transforming TGF-β and being evaluated in phase I/II trials
(72, 92).

Epidermal growth factor receptor (EGFR) regulates ECM
and promotes cancer invasion (93). A small EGFR inhibitor
Simotinib is used in phase I study to treat NSCLC (73).
Platelet derived growth factor receptor alpha (PDGFRα), which
contributes to fibroblast reprograming toward CAFs, plays a
significant role in colorectal carcinogenesis (94). Amcasertib,
a PDGFRα inhibitor and cancer stemness kinase inhibitor, is
used to treat hepatocellular carcinoma and cholangiocarcinoma
in phase II trials (74). Different from Amcasertib, Lartruvo(R)
(olaratumab) is a fully humanized monoclonal antibody to
neutralize PDGFRα. It was first launched in the U.S. for front-line
treatment with doxorubicin in adults with soft tissue sarcoma in
2016 (75).

Some signaling pathways are also critical in cancer
development. Janus kinase 1 (JAK1)/Rho kinase1 (ROCK1)
signaling could promote fibroblast-dependent carcinoma cell
invasion (95). Cerdulatinib is a small-molecule anti-cancer drug
targeting JAK and syk kinase for the treatment of hematologic
cancers (76). Liver kinase B1 (LKB1)/mammalian target of
rapamycin (mTOR) signaling axis regulates ECM stiffness
and participates in lung adenocarcinoma progression (96).
Potential drugs such as AZD-8055, BI-860585, DCBCI-

0901, LXI-15029, and ABI-009 are in early clinical stage
for various cancers (77–81). Sapanisertib is an orally and
highly selective ATP-competitive inhibitor of mTORC1/2 and
demonstrates satisfactory anticancer activity. The phase II study
of sapanisertib in metastatic castration resistant prostate cancer
was not entirely satisfactory likely because of dose reductions
secondary to toxicity (82). In addition, abnormal expression
of protein kinase B (PKB/Akt) is related to many cancers (97).
GSK-690693 (83), ARQ-751 (84), and TAS-117 (85) that can
effectively treat solid tumors through inhibiting PKB/Akt are
being evaluated in phase I and II clinical studies. Ipatasertib
has been combined with other antitumor drugs to treat prostate
cancer and breast cancer and is undergoing an investigation in a
phase III clinical trial (86).

With the exception of targets above, interleukin-6 (IL-6)
showed high expression in prostate cancer (98). Siltuximab,
a chimeric monoclonal antibody, was first launched in 2014
to treat HIV-negative and Human Herpes Virus-8 negative
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multicentric Castleman’s disease. Its tight binding to IL-6 inhibits
IL-6 bioactivity and thus causes apoptosis of tumor cell. Recently,
a phase II clinical trial of siltuximab was conducted for the
treatment of multiple myeloma (87). Others like immunity-
related programmed cell death receptor-1 (PD-1) and PD-L1
inhibitors show satisfied antitumor effects by restoring antitumor
immunity. Sintilimab is a fully human IgG4 mAb, which blocks
the interaction of PD-1 with PD-L1 and PL-L2 (88). It was
firstly approved in China to treat classical Hodgkin’s lymphoma.
Avelumab, an anti-PD-L1 antibody, was approved by the FDA
in 2019 for first-line treatment of advanced renal cell carcinoma
together with axitinib (89).

VM RELATED TARGETS AND
THERAPEUTIC AGENTS

VM refers to a tumor microcirculation pattern that tumor cells
aggregate, migrate and remodel to form a vascular-like structure
based on the adhesion of ECM. VM differs from traditional
endothelial tumor angiogenesis and plays a crucial role in tumor
invasion and spreading. It is worth noting that there is an
obvious increase of EMT-related regulators and transcription
factors in VM, which indicates the crucial rule of EMT in VM
formation (99). VM has been observed in a broad range of tumor
types such as prostate cancer, malignant glioma, and melanoma
(100). Currently, certain mechanism of VM formation remains
matters of frenetic investigation and the mechanism of VM
formation mainly include TME, EMT, tumor plasticity, RNA,
and other regulators (100). Because VM is important for tumor
progression, targeted therapies related to VM could also be a
promising antitumor strategy to reducing tumor plasticity.

The major signaling molecules participating in VM formation
and promising drugs are summarized in Table 5. Histone
deacetylases inhibitor (HDACi) inhibits key molecule MMP-2 in
PI3K-MMPs-Ln-5γ2 signaling pathway to block VM formation
(112). Panobinostat lactate, which is lunched in 2015, is a first-
line HDAC inhibitor applied in combination with bortezomib
and dexamethasone to the treatment of multiple myeloma
(113). Panobinostat lactate is not only a HDAC inhibitor
but also a pan-deacetylase inhibitor. The pharmacokinetics of
panobinostat lactate is affected by some factors such as hepatic
impairment. HDAC inhibitor romidepsin, which is launched in
2010, could cause cell cycle arrest, differentiation and apoptosis
in various cancer cells and is used for the treatment of cutaneous
T-cell lymphoma (103). OKI-179 and remetinostat are HDAC
inhibitors in early clinical development (101, 102).

Phosphatidylinositide 3-kinases (PI3K) participate in VM
formation by activating matrix metalloproteinases (MMPs)
(114). The PI3Kα/δ inhibitor copanlisib hydrochloride was
launched in 2017 as a treatment for relapsed follicular lymphoma
in patients receiving two or more prior therapy regimens (110).
Copanlisib characterizes low risk of PK-related pharmacological
interaction due to reduced oxidation metabolism and unchanged
excretion of copanlisib. Other PI3K inhibitors in clinical trials
include MEN-1611 (phase I for breast cancer), HMPL-689
(phase I for B-cell lymphoma), Gedatolisib (phase II for acute
myeloid leukemia and solid tumors), GDC-0980 (phase II for

prostate cancer) and Buparlisib (phase III in patients with head
and neck squamous cell carcinoma, HNSCC) (105–109).

VE-cadherin mediates the activities of epithelial cell
kinase (Eck/EphA2) to affect the formation of VM (115).
EphA2 interacts with cell membrane surface ligands by
phosphorylation and regulates the extracellular expression
of protein kinases ERK and focal adhesion kinase FAK to
activate PI3K (116, 117). SiRNA-EphA2-DOPC is a small
interfering RNA targeting EphA2 loaded in neutral 1,2-
dioleoyl-sn-glycero-3-phosphocholin (DOPC) liposomes (111).
SiRNA-EphA2-DOPC reaches to tumor site by interacting with
endothelial cells of tumor vasculature. As an EphA2 inhibitor,
siRNA-EphA2-DOPC is in early clinical investigations to treat
recurrent and advanced solid tumors.

THERAPEUTIC TARGETING OF
NEOPLASM METABOLIC PATHWAYS

Cancer cells reprogram metabolic pathways by oncogenic
mutations, result in enhanced demand of nutrient uptake to
supply anabolic metabolism. Not only must energy production
and consumption processes in cancer cells be balanced to

TABLE 5 | Potential drugs targeting VM in clinical trials.

Drug Mechanism of

action

Condition or

disease

Phase References

OKI-179 HDAC inhibitors Solid tumor I (101)

Remetinostat HDAC inhibitors Cutaneous T-cell

lymphoma

II (102)

Romidepsin HDAC inhibitors Cutaneous T-cell

lymphoma,

peripheral T-cell

lymphoma

Launched

in 2010

(103)

Panobinostat

lactate

HDAC inhibitors Multiple myeloma Launched

in 2015

(104)

MEN-1611 PI3K inhibitors Breast cancer I (105)

HMPL-689 PI3Kδ inhibitors B-cell lymphoma I (106)

Gedatolisib PI3K/mTOR

inhibitors

Acute myeloid

leukemia, solid

tumors

II (107)

GDC-0980 PI3K/mTOR

inhibitors

Prostate cancer II (108)

Buparlisib PI3K inhibitors HNSCC III (109)

Copanlisib

hydrochloride

PI3K inhibitors Lymphoma Launched

in 2017

(110)

siRNA-

EphA2-DOPC

EphA2 inhibitors Solid tumors I (111)

TABLE 6 | Potential drugs targeting neoplasm metabolic pathways in clinical trials.

Drug Mechanism of

action

Condition or

disease

Phase References

Dimethylamino-

micheliolide

PKM2 activators Solid tumors I (121)

Acadesine AMPK activators Multiple myeloma

therapy

I/II (122)
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sustain tumor growth, but also cancer cells have to adapt to the
changes in nutrition and oxygen supply caused by their rapid
growth. Hence, malignant cells exhibit metabolic flexibility for
them to exist and develop. Different from normal cells, cancer
cells are more dependent on anaerobic glycolysis even in a
sufficient oxygen supply environment, called Warburg effect
(118). HIF-1α is crucial for anaerobic glycolysis under oxygen
free conditions. Tumor suppressor liver kinase B1 (LKB1)
regulates HIF-1α-dependent metabolic reprogramming (119).
Recent studies have shown that Pyruvate kinase M2 (PKM2)
plays a crucial part in the plasticity of cancer metabolism,
and up regulation of PKM2 leads to oxidative metabolism
(120). Dimethylaminomicheliolide (DMAMCL), a PKM2
activator, is a prodrug of micheliolide (MCL) that suppresses
tumor growth and targets CSCs in the form of guaianolide
sesquiterpene lactone. Dimethylaminomicheliolide could
inhibit inflammation and tumor growth by releasing MCL into
plasma. Early clinical trial using Dimethylaminomicheliolide

for patients with solid tumors is being conducted (Table 6) (121).
In addition to this, oxidative phosphorylation plays an

important role in cancer metabolism. Oxidative phosphorylation
is mainly regulated by AMP-activated protein kinase (AMPK)
(123). As an AMPK activator, acadesine increases the availability
of adenosine in tissues under ischemic conditions and shows
antitumor activity. Acadesine causes B cells apoptosis selectively
in chronic lymphocytic leukemia (CLL) and phase I/II studies are
being tested for sieving out the best methods for the treatment of

resistant/refractory B-cell chronic lymphocytic leukemia (122).

Metabolic plasticity of cancer triggers the adaptive “metabolic
switch” needed for cancer development. Mechanism of metabolic
switch provides insights into therapies, which could be used to
target cancer development.

CONCLUSIONS

Tumor plasticity provides new explanation for the mechanisms
of drug resistance, metastasis and recurrence of neoplasm.
Interfering tumor plasticity is becoming strategies to
treat malignant tumors. The drugs in clinical trials that
targeting tumor plasticity are still on intense research.
However, targeted therapy also has some limitations that
most drugs could only be effective on a small part of
tumors of genetic transformation and engender drug
resistance after a period of time of taking drugs. How to
find effective multi-targeted inhibitors or combine with
traditional chemotherapeutic drugs and other therapeutics like
photodynamic or photothermal therapy become particularly
important. The quest for new therapeutic targets toward
tumor plasticity continues to be a great impetus to promote
cancer treatment.
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