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Abstract: To avoid time-consuming, costly, and laborious experimental tests that require skilled
personnel, an effort has been made to formulate the depth of wear of fly-ash concrete using a
comparative study of machine learning techniques, namely random forest regression (RFR) and gene
expression programming (GEP). A widespread database comprising 216 experimental records was
constructed from available research. The database includes depth of wear as a response parameter
and nine different explanatory variables, i.e., cement content, fly ash, water content, fine and coarse
aggregate, plasticizer, air-entraining agent, age of concrete, and time of testing. The performance of
the models was judged via statistical metrics. The GEP model gives better performance with R2 and
ρ equals 0.9667 and 0.0501 respectively and meet with the external validation criterion suggested
in the previous literature. The k-fold cross-validation also verifies the accurateness of the model
by evaluating R2, RSE, MAE, and RMSE. The sensitivity analysis of GEP equation indicated that
the time of testing is the influential parameter. The results of this research can help the designers,
practitioners, and researchers to quickly estimate the depth of wear of fly-ash concrete thus shortening
its ecological susceptibilities that push to sustainable and faster construction from the viewpoint of
environmentally friendly waste management.

Keywords: fly-ash; depth of wear (DW); abrasion resistance; artificial intelligence (AI); random forest
regression (RFR); gene expression programming (GEP)

1. Introduction

Concrete is the most widely used construction building material in the world [1]. It
is expected that the annual consumption of concrete lies around 23 trillion kilograms [2].
Ordinary Portland cement (OPC) alone produces extensively carbon dioxide (CO2) and
has a malignant effect on the environment and energy consumption on resources [3].
Moreover, the cement industry is one of the main producers of greenhouse gases (GHG) in
the atmosphere. Researchers have adopted potential ways to mitigate the adverse effect of
traditional concrete on the environment and to make environmentally friendly concrete by
using waste materials [4–8]. These waste materials not only enhance the fresh and hardened
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properties but also give durability as well as enhanced effect to the concrete. Moreover,
their utilization as supplementary in cementations composite gets rid of the disposal issue
in the land [9]. Fly ash (F) is a secondary waste by-product that is generated by using
powered coal as petroleum in thermal plants. Part of the ash during the burning in the
production stage is flown out from the flue chamber to the atmosphere with the emission of
heat and remaining settled at the bottom of the kiln base [10–12]. These residual ashes have
cementations characteristic due to the presence of silica and aluminum content. Their use on
the concrete side reduces shrinkage, improves fracture toughness and frost resistance, and
ultimately enhances the narrow interfacial transition zone between heterogeneous phases.

The concrete strength of the reinforced structure is evaluated by compressive strength
(CS) [13]. However, the durability aspect is also a prerequisite criterion as concrete struc-
tures are vulnerable to damage due to wear and severe environmental conditions [14].
The abrasion resistance is also one of the main aspects and is often perhaps more vital
than the concrete compressive strength when the load acts directly on the surface like
in the construction of floors, industrial enterprises, airport runways, spillways of dam,
hydraulic structures, parking lots, concrete roads, tunnels, among others [15–18]. It occurs
due to wearing, mechanical scraping on the surface of the concrete. Moreover, concrete
and mortar resistance in terms of wear is dependent upon material, load, strength, and
hardness of surface as presented in Figure 1. The concrete abrasion resistance is directly
related to curing time, compressive strength, and material properties irrespective of cement
replacement by filler materials [19,20]. To achieve satisfying abrasion resistance, emphasis
and attention are given on sample preparation. Strong specimen yield better abrasion
resistance which ultimately enhances the durability of concrete [21].

Materials 2022, 15, x FOR PEER REVIEW 2 of 30 
 

 

of traditional concrete on the environment and to make environmentally friendly concrete 
by using waste materials [4–8]. These waste materials not only enhance the fresh and hard-
ened properties but also give durability as well as enhanced effect to the concrete. More-
over, their utilization as supplementary in cementations composite gets rid of the disposal 
issue in the land [9]. Fly ash (F) is a secondary waste by-product that is generated by using 
powered coal as petroleum in thermal plants. Part of the ash during the burning in the 
production stage is flown out from the flue chamber to the atmosphere with the emission 
of heat and remaining settled at the bottom of the kiln base [10–12]. These residual ashes 
have cementations characteristic due to the presence of silica and aluminum content. Their 
use on the concrete side reduces shrinkage, improves fracture toughness and frost re-
sistance, and ultimately enhances the narrow interfacial transition zone between hetero-
geneous phases. 

The concrete strength of the reinforced structure is evaluated by compressive 
strength (CS) [13]. However, the durability aspect is also a prerequisite criterion as con-
crete structures are vulnerable to damage due to wear and severe environmental condi-
tions [14]. The abrasion resistance is also one of the main aspects and is often perhaps 
more vital than the concrete compressive strength when the load acts directly on the sur-
face like in the construction of floors, industrial enterprises, airport runways, spillways of 
dam, hydraulic structures, parking lots, concrete roads, tunnels, among others [15–18]. It 
occurs due to wearing, mechanical scraping on the surface of the concrete. Moreover, con-
crete and mortar resistance in terms of wear is dependent upon material, load, strength, 
and hardness of surface as presented in Figure 1. The concrete abrasion resistance is di-
rectly related to curing time, compressive strength, and material properties irrespective of 
cement replacement by filler materials [19,20]. To achieve satisfying abrasion resistance, 
emphasis and attention are given on sample preparation. Strong specimen yield better 
abrasion resistance which ultimately enhances the durability of concrete [21]. 

 
Figure 1. Parameters affecting abrasion resistance of concrete. 

Zhen et al. [22] studied the abrasion resistance and microstructure of concrete by ce-
ment replacement with filler materials. The author reported maximum enhancement in 
strength with the refinement of pore size which ultimately increases the abrasion re-
sistance of concrete. Jain et al. [23] studied the microstructure and abrasion resistance of 
concrete with shredded plastic waste bags by fine aggregate replacement with percent-
ages. The author reveals a significant decrease in density, compressive strength, flexural 
strength, and workability. However, enhancement in abrasion resistance, energy absorp-
tion, and impact resistance is observed in plastic waste concrete specimens. Adekunle et 
al. [24] investigated the effect of abrasion resistance and compressive strength by varying 
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Zhen et al. [22] studied the abrasion resistance and microstructure of concrete by
cement replacement with filler materials. The author reported maximum enhancement in
strength with the refinement of pore size which ultimately increases the abrasion resistance
of concrete. Jain et al. [23] studied the microstructure and abrasion resistance of concrete
with shredded plastic waste bags by fine aggregate replacement with percentages. The
author reveals a significant decrease in density, compressive strength, flexural strength,
and workability. However, enhancement in abrasion resistance, energy absorption, and
impact resistance is observed in plastic waste concrete specimens. Adekunle et al. [24]
investigated the effect of abrasion resistance and compressive strength by varying exposure
contact, concrete age, and materials constituents. The author observed that compressive
strength is directly related to abrasion resistance. Moreover, fine aggregate by 28.7% by
binder mass show worst performance, whereas coarse aggregate by 45% cement mass
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gives the best performance for compressive strength and abrasion resistance of concrete.
Wang et al. [25] examined the effect of varying dosages of silica fume, PVA fiber and their
combination on compressive strength, tensile strength, abrasion resistance, volume stability,
and drying shrinkage of concrete. Significant enhancement is observed in the mechanical
properties of concrete with abrasion resistance by the addition of silica fume and PVA
fiber. However, the addition of PVA fiber reduces the drying shrinkage and increases the
anti-cracking resistance of concrete and cement pastes. Jain et al. [26] investigated the
fresh and hardened properties of self-compacting concrete SCC by varying granite waste
(GW) as a fine aggregate replacement with different percentages. The author observed
that varying dosages of GW as replacement of fine aggregate has a profound effect on
abrasion resistance and compressive strength of SCC. However, GW with 40% replacement
gives significant enhancement results in overall properties. Yildizel et al. [27] examined
the mechanical properties and abrasion resistance of roller-compacted concrete by the
addition of waste glass fiber (WGF). A different percentage of WGF is added by volume to
evaluate the strength mechanism. However, adding 2% by volume in reinforced concrete
mix yields maximum. Nazari et al. [28] investigated the effect of nano-size particles on
concrete by changing curing temperature. The author concluded that the inclusion of
small size particles in the cement matrix increases the abrasion resistance and compressive
strength of concrete. Similarly, Hui et al. [29] investigated the effect of polypropylene
fibers (PP), nano-silica (SiO2), and nano titanium oxide (TiO2) on the abrasion resistance of
pavement concrete. Significant enhancement is observed in the matrix by the addition of
nano media as compared to PP fibers. Moreover, TiO2 gives a better response against overall
abrasion in the matrix. Chernysheva et al. [30] investigated the effect of scientific pattern
of Thermal-Power-Plant (TPP) waste on the microstructure of gypsum cement binder.
Their findings reveal that combining gypsum-cement binder and TPP waste increases the
physical and mechanical characteristics. Tang et al. [31] examined the fracture behavior
of rubber modified recycled aggregated concrete (RRAC) at varying temperatures (200,
400 and 600) ◦C. The finding of their study shows that the rubber aggregates have greater
unstable fracture toughness than the initial cracking toughness of recycled aggregate
concrete after exposing to elevated temperature. Yunchao et al. [32] studied the mutual
effect silica-fume and nano-silica on the cubic compressive strength, split tensile strength
and stress strain relationship of recycled aggregate concrete. A good pozzolanic activity
of silica fume and nano-silica was reported and 6% silica-fume and 3% nano-silica were
recommended as supplementary cementitious material for recycled aggregate concrete.
Abdul Aziz et al. [16] examined the abrasion and skid resistance of pavement concrete by
utilizing waste PP and palm oil fuel ash (POFA). Specimen with various dosages of PP
and POFA as cement replacement was prepared. The author reveals that the intrusion of
PP fibers in the concrete matrix decreases the compressive strength of the overall matrix
by 17%. However, enhancement in abrasion and skid resistance by 25% is observed as
compared to the control specimen. Moreover, POFA improves the matrix properties due
to the pozzolanic nature in samples. Likewise, the authors [33,34] observed that copper
slag as fine aggregate replacement in concrete improves the slake and abrasion resistance.
Malazdrewicz et al. [20] used ANN algorithm for the prediction of depth of wear of
cementitious matrix with fly ash. The result reveals that ANN give a good linear model
with R2 = 0.997 for testing, R2 = 0.998 for learning and 0.995 for validation. Similarly,
Malazdrewicz et al. [35] employed same technique and achieved a good correlation with
experimental and prediction results.

Concrete is made from heterogeneous materials that include the paste phase and
aggregate phase [36]. Table 1 shows the effect of waste material on properties of concrete.
The abrasion resistance of concrete is time-consuming and is purely based on the surface
test. The heterogeneity of the matrix such as sedimentation of coarse aggregate, porosity of
the upper layer of concrete (mainly composed of cement paste and fine aggregate) and the
ITZ transition zone, chemically and microstructurally different then the bulk binder phase
altogether creates uncertainty of measurements. Moreover, these methods require a field
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sample taken from the site and then used to check the abrasion resistance in the laboratory.
Furthermore, a sample taken from the field sometimes deteriorates during placement due
to unavailability of equipment in the field. For this reason, separate samples are sometimes
created specifically for laboratory purposes. However, they may differ from the element
that needs to be examined in terms of properties. It is also worth noting that the current
methods of testing abrasion resistance do not reflect the real conditions of abrasive wear in
some structures. Their disadvantages include the relatively long duration of research, and
the long time to obtain the results. Generally, physical measures are carried out to obtain
compressive strength and abrasion resistance. This is achieved by testing various cubes
and cylinders with mixed design ratios in the laboratory. Thus, efforts have been made to
predict the strength, elastic modulus, and many properties of the concrete specimen by
using regression and machine learning models. This will not only reduce the uncertainty in
the prediction aspect but will give the required quantities in mix design to give strength.
These supervised machine learning algorithms give an adamant relation and predict the
best model using a set of input variables as illustrated in Table 2.

Table 1. Effect of waste material on properties of concrete.

S.No Waste Material Property Studied Conclusive Remarks Reference

1
Super fine slag (SFS),
nano-SiO2 (NS), fly

ash (FA)

Abrasion resistance
and microstructure

of concrete.

Maximum enhancement in strength with 82%, 73%
and 68% for surface mortar layer and 20%, 16% and

13% for concrete.
[22]

2 Shredded plastic
waste bags

Density, abrasion
resistance, compressive

strength, workability
and flexural strength.

Abrasion resistance, impact resistance and energy
absorption increase. However compressive, flexural

strength decreases.
[23]

3 Crushed granite
coarse aggregate

Compressive strength
and abrasion resistance

Coarse aggregate with 45% by mass content of
cement show better performance as compared to fine

aggregate with 28.7%.
[24]

4 Silica fume and
PVA fiber

Tensile and
compressive strength,

abrasion resistance,
volume stability and

drying shrinkage

Addition of silica fume and PVA fiber shows
enhancement in compressive strength and

abrasion resistance.
[25]

5 Granite waste (GW) Compressive strength
and abrasion resistance

Significant enhancement is observed in compressive
and abrasion resistance of self-compacting concrete. [26]

6 Waste glass fiber (WGF) Mechanical and
abrasion resistance

Addition of 2% WFG yield maximum strength
mechanism of rolled compacted concrete. [27]

7
Nano size particles
(silicon dioxide and
Chromium oxide)

Abrasion resistance
and compressive

strength

Improvement in abrasion resistance is observed in
both cured saturated lime water and in water.

However, sample containing SiO2 show much more
abrasion resistance as compared to other specimens.

[28]

8

Polypropylene fibers
(PP), nano-silica (SiO2),

and nano titanium
oxide (TiO2)

Abrasion resistance of
pavement concrete

Nanoparticles show maximum improvement.
Furthermore, titanium oxide (TiO2) show an overall

enhancement response in specimen of
pavement concrete.

[29]

9
Waste polypropylene

fibers (PP) and palm oil
fuel ash (POFA)

Abrasion and skid
resistance of

pavement concrete

Intrusion of PP show decrease in compressive
strength by 17% with enhancement in abrasion

resistance by 25% is observed.
[16]

10 Copper slag as
fine aggregate Copper slag concrete Improvement is observed by using cooper slag

in concrete. [33]
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Table 2. Machine learning algorithm used by researchers.

S.No Concrete Type Properties Techniques References

1 Normal concrete Compressive strength
Genetic programming [37]

ANN [38]

2 High-performance concrete Compressive strength

Random forest [39]

ANN [40–42]

M5P [43]

Gene expression programming [44]

3 Silica fume concrete Compressive strength

Hybrid ANN [45]

Biogeography-based programming (BBP) [46]

ANN and ANFIS [47]

4 Self-compacting concrete

Modulus of Elasticity Biogeography-based programming (BBP) [48]

Compressive strength Artificial neuron network (ANN) and
gene expression programming (GEP) [49]

5 Recycled aggregate concrete Modulus of Elasticity M5P [50]

6 Concrete filled steel tube Compressive strength GEP [51]

7 High-performance concrete Compressive strength

BANN [52]

GBANN

Adaptive boosting [53]

RF [39]

Gradient tree boosting [54]

8 Recycled aggregate concrete Modulus of Elasticity RF+SVM [55]

9 Corrosion of concrete sewer Microbially induced
concrete corrosion

Bagging/Boosting
MLPNN/RBFNN/CHAID/CART [56]

10 corrosion of concrete sewer Microbially induced
concrete corrosion Ensemble RF [56]

11 RC panels Failure modes GBML [57]

12 Lightweight
self-compacting concrete Compressive strength RF [58]

13 Concrete filled steel tube Bearing capacity Gene expression programming [59]

14 Concrete Containing Waste
Material

Surface Chloride
Concentration

Gene expression programming, Artificial
neural network, Decision tree [60]

15 Concrete with high calcium fly ash Depth of wear of
cement composite Artificial neuron network [20]

16 Concrete Abrasive wear Artificial neuron network and general
linear model [61]

17 Beam reinforced with FRP bars Flexural strength Gene expression programming [62]

18 Fiber concrete beam Shear strength Particle Swarm Optimization [63]

19 Fresh concrete Yield stress and
plastic viscosity

Particle swarm optimization and least
squares support vector machine and [64]

20
Ultra-high performance

propylene-fiberious cementicious
composites (UHPPFCC)

Compressive strength
and impact energy Taguchi approach [65]
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2. Significance of the Study

The main objective of the research is to utilize the GEP (part of machine learning
(ML) technique) with random forest regression (RFR) an ensemble modeling approach
via Anaconda Python to estimate the abrasion resistance (depth of wear) of fly-ash-based
concrete. An RFR that involves a bagging mechanism is used for optimization through
developing 20 sub-models to deliver a higher coefficient of determination (R2). To assess
the suitability of models, the K-fold cross-validation (KFCV) and statistical error metrics
such as root mean square error (RMSE), relative root mean square error (RRMSE), mean
absolute error (MAE), relative squared error (RSE), and performance index (ρ) are used.
The models are also tested via the statistical metrics suggested in the literature. In the end,
the Anaconda Python-based permutation feature analysis is conducted.

3. Description of Collected Experimental Data

The data points used for modelling the abrasion resistance of concrete have been taken
from published research work [20] (See Appendix A1). The performance and reliability
of the model depend on the total number of instances used for modelling. The database
includes total 216 experimental test results with depth of wear (DW_mm) as response
parameter and nine different explanatory variables, i.e., cement content C (kg/m3), fly-
ash F (kg/m3), water content W (kg/m3), fine aggregate FA (kg/m3) coarse aggregate
CA (kg/m3), plasticizer P (kg/m3), air-entraining agent (AE_kg·mL/m3), age of concrete
(A_days), and time of testing (T_min). The interdependency of the selected variables needs
to be checked to avoid complications in the interpretation of the model. This problem of
correlation between selected variables is referred to as multicollinearity. To counter this
problem, the coefficient of correlation between two explanatory variables must be less than
0.8 [66]. It can be seen in Table 3 that the correlation coefficient (negative and positive) of
all selected variables is significantly less than 0.8. This dictates that no multicollinearity
problem between the selected variables and can be effectively used for the development
of a generalized model. All the chosen variables greatly influence the abrasion resistance
of concrete.

Table 3. Coefficient of correlation for explanatory variables.

C F W FA CA P AE A T DW

C 1
F −0.787 1
W −0.525 0.461 1
FA 0.754 −0.645 −0.732 1
CA 0.774 −0.666 −0.689 0.750 1
P −0.379 0.282 0.750 −0.727 −0.729 1

AE −0.524 0.532 −0.136 −0.174 −0.362 −0.161 1
A 0 0 0 0 0 0 0 1
T 0 0 0 0 0 0 0 0 1

DW −0.032 0.032 0.046 −0.022 −0.039 −0.052 −0.005 −0.191 0.737 1

Python Based Programming for Presenting Data

For a more significant illustration of the data an Anaconda-based python program-
ming, version 3.70 was utilized. The effective performance of the model depends on the
distribution of the explanatory variables [67]. A Python measure was used to check the
distribution of selected variables and to choose the optimum dosage and their influential im-
pact on the abrasion resistance of concrete. Figure 2 illustrates the contour plot that shows
the relation between the chosen variables and their distribution. The relative maximum
spread of the data set to abrasion resistance is represented by the rectangular segment of the
graph. The maximum contour lines depict the high density of every selected variable to the
abrasion resistance of concrete. Their frequencies are appropriately higher. It must be noted,
that a good model can be obtained if explanatory variables have high frequencies [68,69].
Thus, these variables can be taken for the accurate and effective prediction of the abrasion
resistance. For a more meaningful interpretation of the selected data set, the statistic of
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response and explanatory variables is presented in Table 4. That makes the explanation of
the data very easy. It includes the distribution shape (kurtosis and skewness), center of data
points (median, mean, and mode), extremes of data points (minimum and maximum), and
spread of the data (standard deviation). The data for a particular variable is right-tailed
(positive skewness) if a high concentration of data is to the left of the mean and left tailed
(negative skewness) if a high concentration of data is to the right of the mean. Moreover, it
is exactly zero for asymmetrical shape. The kurtosis dictates the flatness or peakedness of
the data in relation to normal distribution. The leptokurtic or positive kurtosis dictates that
the data is more peaked than the normal distribution and platykurtic or negative kurtosis
shows that the data is flatter than the normal distribution. Generally, the acceptable range
of skewness and kurtosis is −3 to +3 and −10 to +10 respectively [70]. The development of
an effective, reliable, and accurate model is greatly dependent on the variables [71].
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Table 4. Statistic of response and explanatory parameters.

Parameters Kurtosis Skewness Mean Median Mode Minimum Maximum SD

Explanatory

C (kg/m3) −0.97 −0.54 346.17 351.50 398.00 259.00 398.00 49.64
F (kg/m3) −1.03 0.59 47.00 35.50 0.00 0.00 139.00 52.23
W (kg/m3) −1.35 0.03 130.67 131.00 123.00 123.00 139.00 5.60
FA (kg/m3) −1.43 0.15 695.67 694.00 715.00 677.00 715.00 14.00
CA (kg/m3) −1.55 0.49 1210.67 1194.50 1259.00 1172.00 1264.00 37.62
P (kg·L/m3) −1.51 0.00 2.80 2.80 2.70 2.70 2.90 0.08

AE (kg·mL/m3) −0.55 0.78 325.00 315.00 280.00 270.00 420.00 50.70
A (days) −1.51 0.61 161.33 91.00 28.00 28.00 365.00 146.63
T (min) −1.22 0.00 32.50 32.50 5.00 5.00 60.00 17.30

Response

DW (mm) −0.89 0.11 1.00 1.03 1.50 0.05 2.42 0.56

4. Research Methodology

Various researchers utilized machine learning methods in different fields to forecast
and comprehend the properties and behavior of the materials. In this study, two different
machine learning techniques namely; random forest regression (RFR) technique and gene
expression programming (GEP) are used to estimate the abrasion resistance of concrete.
These methods are chosen because of their effectiveness and robustness in predicting
outcomes in related works, as well as their position as the leading data mining techniques.

4.1. Random Forest Regression Approach

Shapire et al. [72] and Breiman et al. [73] introduced two different ensemble learning
methodologies known as boosting and bagging of classification trees respectively. In
boosting methodology, the consecutive trees are used to give additional weightage to the
nodes that has been predicted incorrectly by previous trees. In last, the weighted vote is
selected for estimation of output. While in bagging methodology, the consecutive trees
are independent on the previous predictor. Every tree is constructed independently via
bootstrap samples of data, and finally, the majority vote is chosen for estimation of outcome.

Brieman [74] proposed a modified bagging technique known as random forest re-
gression (RFR). It can be used as both a classification and regression technique. In RFR,
an additional layer of randomness is added for the bagging mechanism. While creating
trees via a bootstrap sample of data, RFR alters the way of regression trees as compared to
standard trees. In RFR, every node is divided via the finest predictor from a subclass of
predictors picked at random at that node. RFR seems like a counterintuitive approach that
gives an outburst performance as compared to support vector machine (SVM) and neural
networks (NN) and is vulnerable to overfitting [74]. Furthermore, RFR quite easy to use in
that it only has two hyper-parameters (the variables in the random sample set at nodes and
the trees in the forest) and is generally insensitive to their values. In the recent decade, a lot
of researchers used RFR for the prediction of different properties of concrete [69,75]. The
following steps are involved in the RFR algorithm;

1. For each tree, two-third of the whole data is selected at random, known as bagging.
Variables for prediction are selected at random, and the best split on such variables is
used for dividing the nodes.

2. The out-of-bag (OOB) error is calculated for all trees via the one-third data. The OBB
error is aggregated from every tree to measure the ultimate rate of OBB error.

3. Each tree in the forest generates a regression and the model chooses the trees with
the most votes from the forest. Votes can be either 1’s/0’s. A prediction probability is
identified as the percentage of 1’s received.
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4.2. Gene Expression Programming

The gene expression programming (GEP) is an extended version of genetic program-
ming (GP) and genetic algorithm (GA), which works on the selection of population chro-
mosomes and evaluates them according to the selected fitness condition, and performs
the genetic alteration using one or more genetic operators. It is the type of evolutionary
algorithm which executes both the fixed-length linear chromosomes replicated from GA
and representation of expression parse trees like the structure of different shapes and sizes
from GP [75]. The Karva language is used as a programming medium which is similar to
list processing (LISP) language. The flow diagram illustrated in Figure 3a covers the main
phases involved in the execution of the GEP algorithm. The presented process is recurred
many times until the refined solution is acquired [76]. The ETs in GEP illustrate different
complications which include constants, functions, operators, and variables. A single ET is
composed of a root node, functional node, and terminal node. The mathematical expression
for the ET presented in Figure 3b has two genes with multiplication as a linking function
and can be written as Equations (1)–(3).

Gene 1 = 3

√
a
b
+ a (1)

Gene 2 = log(a× b) (2)

Prediction = Gene 1× Gene 2 (3)
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To expand and evaluate the fitness efficiently, the random portion of the parent tree
is substituted with another arbitrarily selected portion, known as crossover as illustrated
in Figure 3c. The crossover has two off-springs, both include the genetics of their parents.
Figure 3d shows the mutation takes place at a node where an arbitrary component of the
parent tree is substituted by a newly created component or part of the parent tree [77].

The research revealed several advantages of GEP in comparison with other classical
regression techniques. Classical regression techniques use some pre-defined functions
while GEP reflects the initial non-linearity without considering the pre-defined functions.
Therefore, GEP is considered to be more efficient than other regression approaches and
neural networks for modeling and obtaining mathematical relations for experimental
research of multivariate problems [78]. There is no specific procedure for achieving the best
result with a given set of parameters to optimize the accuracy. This adds to the complexity
and execution time of the model development. To avoid this problem, this study used the
most effective parameter values in GEP to obtain the most reliable and less complicated
relationship. The selection of such effective hyper-parameters depends on the suggestion in
previous research and the hit and trial process. To increase accuracy and to achieve the best
model, initially, the lowest parameter level referring to one gene was utilized, afterward,
different parameters were assessed to train the model. In GEP different linking functions
are available like subtraction, multiplication, addition, and division. To resolve a problem,
choose one gene chromosome, and then continue with the modeling by increasing the head
size. Even so, the number of genes can be increased considerably and a function can be
chosen to connect the branches of the expression trees [78].

The complex nature of the model cannot be assessed. In addition, the difficulty of a
model increases as the number of inputs increases. Regarding this, the higher the genes,
the higher will be the model complexity. Increases of other parameters value have a
similar effect on the outcome. One cannot exactly define the complexity. Another source
of complexity is the creation of a new generation to achieve a higher-level regression and
more suitable fitness when training the data sets. The hyper-parameter tuning of GEP
algorithmic space is based on the recommendations in previous research and the hit and
trial process [78]. The GEP algorithmic space involves the following steps;

1. Choosing a fitness function allowing the GEP to achieve an optimum solution by itself.
Here, a fitness function equals to 1000 was used [79].

2. Choosing a set of terminals that involve the explanatory variables considered for the
prediction of response. This study uses nine different explanatory variables for the
prediction of wear depth of concrete (explained in Section 3).

3. Choosing the set of functions. To get a simple GEP equation, this research uses four
basic arithmetical functions, i.e., +,−,×, and /.

4. Choosing the architecture of chromosomes, i.e., the genes, head size, and linking
function. To avoid complexity, in this research three genes with head size equal to ten
and addition as a linking function were utilized.

5. Choosing the set of genetic operators. A mixture of crossover, mutation, and transpo-
sition was used as a genetic operator.

4.3. K-Fold Cross-Validation (KFCV) and Statistical Metrics

K-fold cross-validation (KFCV) algorithm is as part of Jack’s knife test that is usually
used to reduce the biases in a random sampling of the training set and hold out data set
and to avoid the overfitting complexity. It splits the whole data set into k-subsets of data.
1-subset is hold-out for testing and the rest k-1 subsets are used to train the model [80].
Kohavi’s [81] research indicated that the stratified ten-fold validation produces accurate
variance and is best for the optimum computational time. This study uses the same ten-
fold to assess and validate the performance of the model. The entire data is split up into
ten different subsets. In all ten generations of model creation and validation, it selects
a different subset of data for training while testing of the model is executed with other
subsets of data. As can be seen in Figure 4, the test subset is used to confirm prediction
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performance of the model. The model performance is then interpreted as the mean accuracy
obtained by the 10 models over the process of 10 validation rounds.
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For estimating the efficacy of the model in more detail, the different statistical metrics
are also utilized. These statistical measures include coefficient of determination (R2), root
man square error (RMSE), relative root mean square (RRMSE), mean absolute error (MAE),
relative squared error (RSE), and performance index (ρ). The mathematical relationship for
stated chosen statistical measures is mentioned in Equations (4)–(9).

R2 = 1−
∑m

j=1

(
pj − tj

)2

∑m
j=1
(
tj − t

) (4)

RMSE =

√√√√∑m
j=1

(
tj − pj

)2

n
(5)

RRMSE =
1
|t|

√√√√∑m
j=1

(
tj − pj

)2

n
(6)

MAE =
∑m

j=1

∣∣∣tj − pj

∣∣∣
n

(7)

RSE =
∑m

j=1

(
pj − tj

)2

∑m
j=1
(
t− tj

)2 (8)

ρ =
RRMSE

1 +
√

R2
(9)

In the mentioned equations, the tj and pj shows the jth targeted and predicted outcome
respectively. While the tj and pi are the mean values of targeted and predicted outcome
for jth domain respectively. Additionally, m denotes the total number of instances used in
modelling perspective. For a best and accurate model, higher can be the R2 and lower the
statistical errors. The R2 enumerate the linear dependency between explanatory variables
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and outcome [82]. For a stronger correlation between targeted and predicted values, the
R2 can be greater than 0.8 [83]. As R2 is insensitive towards division and multiplication of
outcome to a constant, so it cannot be used exclusively as a metric of the overall efficacy of
model [84]. Both, the MAE and RMSE enumerate the magnitude of the average error and
have their own importance. In RMSE, the error values are squared before the calculation
of average and therefore useful in interpretation of larger error. While MAE assigns low
weightage to larger error values. A high RMSE represents that the large number predicted
outcomes have high error and must be eliminated. Despotovic et al. [85] categorize the
model as excellent and good if the RRMSE values is between 0 to 0.11 and 0.11 to 0.20
respectively. The values of ρ must fall between 0 to infinity. Gandomi et al. [86] recom-
mended that for a good model the ρ can be less than 0.2. It is noteworthy to mention that ρ
simultaneously covers both the factors, i.e., RRMSE and R. Hence, for a superior perfor-
mance of the model, the value of ρ must be near to 0. Furthermore, this study also considers
different statistical measures for the validation of the established model as suggested in the
literature (see Table 5).

Table 5. Statistical metrics suggested in literature.

Equations Condition Recommended by

k =
∑m

j=1(tj×pj)
t2

j

0.85 < k < 1.15 [87]

k′ = ∑m
j=1(tj×pj)

p2
j

0.85 < k′ < 1.15 [87]

Rm = R2 ×
(

1−
√∣∣R2 − R2

0

∣∣) Rm > 0.5 [88]

where

R2
o = 1−

∑m
j=1

(
pj−to

j

)2

∑m
j=1

(
pj−po

j

)2 ; to
j = k× pj

R2
o
∼= 1

R′o2 = 1−
∑m

j=1

(
tj−po

j

)2

∑m
j=1

(
tj−to

j

)2 ; po
j = k′ × tj

R′o2 ∼= 1

5. Result and Discusion

To create an AI based model, the initial and the foremost step is the selection explana-
tory variable which effectively and significantly explain the abrasion resistance of concrete.
The input variables considered for the explanation of depth of wear in concrete are given
in Equation (10).

f (WD_mm) = (C, F, W, FA, CA, P, AE, A, T) (10)

where, C: cement content (kg/m3), F: fly-ash (kg/m3), W: water content (kg/m3), FA: fine
aggregate (kg/m3), CA: coarse aggregate (kg/m3), P: plasticizer (kg/m3), AE: air entraining
agent (kg·mL/m3), A: age of concrete (days), and T: time of testing (min).

5.1. Random Forest Regression

An ensemble bagging technique namely random forest regression (RFR) is employed
for optimization of R2. In ensemble bagging approach every record is used at least once
that improves the overall performance of the model. Twenty sub-models are generated
for n-estimator ranging from 10 to 200 with an increment of 10. It can be seen in Figure 5
that the overall efficacy of the model is considerably enhanced. The RFR yields minimum,
maximum and mean value of R2 as 0.9311, 0.9523 and 0.9391 respectively (See Figure 5a).
For a generalized and reliable model, the slope of the regression line and R2 must be near
to 1, while for an ideal scenario, this must approach to one [89]. The 7th sub-model with
n-estimator equals to 70 gives an outburst performance with R2 equals to 0.9523 and slope
of the regression line equals to 0.8973 (See Figure 5b). Thus, the results of predicted wear
depth are strongly correlated with their targeted outcomes.

The absolute error plot between actual and RFR predicted outcome of 7th sub-model
can be seen in Figure 5c. The model accurately captured the targeted outcome and the
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error values are running near the axis. The minimum, maximum and mean error values
are recorded as 0.0022 mm, 0.4460 mm and 0.0851 mm. Furthermore, the occurrence of
maximum error is rare.
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5.2. Development of GEP Based Empirical Equation

To get an empirical equation for finding the wear depth, GEP algorithm of the estab-
lished model is presented as expression trees (ETs) in Figure 6. It can be seen that four
basic arithmetical functions, i.e., +,−,× and / are used in Sub ET’s. These ETs in GEP
algorithm uses different indicator like d’s and c’s for explanatory variables and constant
values respectively. Where; d0: cement content, d1: fly-ash, d2: water content, d3: fine
aggregate, d4: coarse aggregate, d5: plasticizer, d6: air entraining agent, d7: age of concrete,
d8: time of testing. The ultimate expression for wear depth is shown in Equation (11)
which is extracted by decoding the Sub ET-1 (G1), Sub ET-2 (G2), and Sub ET-3 (G3) that are
represented as Equations (12)–(14).

DW (mm) = G1 × G2 × G3 (11)

where
G1 = CA + AE + W + A + F + 80.77 (12)

G2 = T ×
((

10.72× (AE + F)
−20.45 + A− C

)
+ FA

)
(13)

G3 =

(
P

((CA×W) + (2× A))× (A + C + F− 9.25)

)
(14)
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5.3. Performance of GEP Model

Figure 7a illustrates the comparison between the targeted and GEP predicted values of
DW for the training subset. It can be clearly seen in the Figure 7a that the established GEP
model holds a strong correlation between targeted and predicted outcomes as noticeable
through the slope of 0.9679 and R2 equals to 0.9625 for training subset. Both the regression
line slope and R2 are close to 1 [89]. In addition, the absolute error distribution between
actual and GEP predicted outcome can be seen in Figure 7b. The error runs near the
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axis and considerably reduced. The minimum, maximum and mean absolute error are
0.00005 mm, 0.0396 mm and 0.0775 mm. Which describes that the developed GEP model
have a robust performance.
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5.4. K-Fold Cross Validation (KFCV)

The evaluation of the models based on regression line slope and coefficient of deter-
mination is inadequate to generate and determine the optimal performance. Therefore, to
analyze the robustness of the model, it was tested by K-Fold cross validation technique
different statistical error checks. It is necessary for the accurate evaluation of the model,
that the desired accuracy is achieved. The K-fold cross validation (KFCV) is implemented
to ensure that prediction models are accurate and reliable. K-fold algorithm shuffles the
data randomly to assess the accuracy of the model by minimizing the biasness in arbitrary
sampling. The 10-fold CV is performed to check the reliability and generality of the model
performance [75]. The entire data is split up into ten different subsets. In all ten generations
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of model creation and validation, it selects a different subset of data for training while
testing of the model is executed with other subsets of data. In the end the average accuracy
is calculated in term of statistical metrics.

The detailed results of KFCV via the statistical metrics considered are presented in
Table 6. It can be seen from Figure 8a that both the GEP and RFR models have higher mean
R2, i.e., 0.9021 and 0.8972. It shows a strong correlation between explanatory variables and
response parameter. Although the variation is noticed, i.e., the maximum and minimum
value of R2 are 0.9953 and 0.8436 for GEP model respectively; while 0.9764 and 0.8446
for RFR model. Moreover, the results of KFCV are also evaluated through different error
parameters like MSE, RMSE and MAE. As shown in Figure 8b,c the mean value of MAE,
RMSE and MSE for GEP model is 0.11282 mm, 0.15474 mm and 0.02584 mm respectively;
and 0.1145 mm, 0.17816 mm, and 0.03292 mm respectively for RFR model. The lesser values
of error statistics dictate the accurateness and generalization of the models.

Table 6. Summary of statistical metrics considered in K-Fold cross validation.

K-Fold
RFR Model GEP Model

R2 MAE (mm) RMSE (mm) MSE (mm) R2 MAE (mm) RMSE (mm) MSE (mm)

1 0.9186 0.13195 0.20130 0.00169 0.9354 0.05727 0.09130 0.00916
2 0.8693 0.15670 0.19173 0.07457 0.8592 0.12950 0.17166 0.02429
3 0.9393 0.12563 0.19590 0.03876 0.8436 0.13900 0.19770 0.03682
4 0.9764 0.10530 0.21984 0.05693 0.8656 0.14264 0.20269 0.04257
5 0.8654 0.18059 0.19959 0.00561 0.9198 0.13376 0.18250 0.03881
6 0.8892 0.01179 0.10130 0.01567 0.9953 0.03065 0.05653 0.00172
7 0.8544 0.13570 0.20250 0.01342 0.9174 0.11553 0.14255 0.01520
8 0.8446 0.19063 0.21056 0.06876 0.8762 0.15620 0.17543 0.03204
9 0.9065 0.04580 0.09640 0.05016 0.8575 0.10068 0.16461 0.02551

10 0.9085 0.06039 0.16246 0.00364 0.9509 0.12297 0.16246 0.03225

Maximum 0.9764 0.19063 0.21984 0.07457 0.9953 0.15620 0.20269 0.04257
Minimum 0.8446 0.01179 0.09640 0.00169 0.8436 0.03065 0.05653 0.00172

Mean 0.8972 0.11445 0.17816 0.03292 0.9021 0.11282 0.15474 0.02584
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The statistical error checks are also exercised to assess the performance of the models.
The values of these checks, for the estimation of wear depth are summarized in Table 7.
For both the model, RMSE, MAE, and RSE are considerably lower which signifies the
accurateness and generalization capacity of models. The MAE for RF and GEP model are
0.08511 mm and 0.07361 respectively. Which are lower than RMSE values satisfying the
analysis criteria stated in Section 4.3. Based on the RRMSE, GEP model shows an excellent
performance as it is lesser than 0.11, i.e., 0.09473 while for RF model RRMSE is 0.13420 that
falls between 0.11 and 0.22. Hence, the RF model can be categorized as good. The results of
performance index ρ for both the model lesser than 0.2 and close to 0, representing that the
projected models are reliable and have the capacity to accurately predict the outcome.
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Table 7. Summary of statistical error checks and performance index.

Developed
Models R2 MAE (mm) RMSE (mm) RRMSE RSE (mm) Sigma

GEP 0.9667 0.07361 0.10631 0.09947 0.033263 0.050157
RFR 0.9523 0.08511 0.13420 0.13420 0.05062 0.067919

The values of the statistical metrics for the external validation of the models recom-
mended by different authors are listed in Table 8. For both models, the k and k’ are closer
to 1 satisfying the criteria recommended by Golbraikh and Tropsha [87]. The Rm for both
models is also greater than 0.5 and fulfil the recommended criteria by Roy and Roy [88].
Thus, both models are valid having a robust performance and are not a simple correlation
between explanatory variables and response parameter.

Table 8. Summary of Statistical metrics suggested in literature.

Suggested Metric RFR Model GEP Model

k 0.97635 0.99213
k′ 1.0107 1.0000

Rm 0.74995 0.791307
R2

o 0.9975 0.999715
R′o2 0.9491 0.96597

Furthermore, the influence of considered explanatory variables on depth of wear is
analyzed through permutation feature analysis using python. As shown in Figure 9 the
considered explanatory variables have an immense impact on the estimation of wear depth
of concrete following the order: T (34.16%) > A (14.22%) > C (12.13%) > AE (9.914%) > W
(8.834%) > F (6.551%) > P (5.221%) > FA (4.985%) > CA (3.986%). Thus, every explanatory
variable is important in estimating the wear depth of concrete. Moreover, cement, age of
specimen and time of testing are the most influential parameters that affect the abrasion as
well as compressive strength of concrete.

Materials 2022, 15, x FOR PEER REVIEW 21 of 30 
 

 

 
Figure 9. Importance of explanatory variables on the wear depth of concrete. 

6. Limitation and Recommendation for Future Study 
In spite of the fact that the research included a detailed analysis supported by an 

enormous data of experimental records collected from literature and an extensive algo-
rithm is applied with evaluation, the limitations and constraints of the research should be 
discussed. The performance and reliability of the model depends on the total number of 
instances used for modelling. As stated by Frank and Todeschini [89], the ratio between 
the number of records to the number of explanatory variables must equal to 3 and prefer-
ably more than 5 [89]. This research works satisfies recommended criteria. Though, the 
number of experimental records equal to 216 is an uncertain limitation of the research. It 
is worth mentioning that this research is limited to estimate abrasion resistance of concrete 
and consider nine different explanatory variables. It should be extended to predict other 
mechanical properties of concrete like tensile strength, toughness, corrosion and durabil-
ity by using a huge data base that consider extensive number of explanatory variables. 
Additionally, the performance of concrete to elevated temperature should be estimated. 

Furthermore, other machine learning techniques, such as support vector machine 
(SVM), particle swarm optimization (PSO), back tracking search algorithm (BSA), cuckoo 
search algorithm (CSA), AdaBoost and gradient boosting and evolutionary algorithm like 
multi-expression programming (MEP) be used. However, this study does not only con-
centrate on algorithmic-based methods, but also on programming based on GEP, indicat-
ing the diversity of this research. The multi-stage genetic programming technique can also 
be used to obtain extreme accuracy in both actual and predicted results. It is also sug-
gested to develop models for concrete modified with various pozzolanic materials like 
bagasse ash and rice husk ash. Moreover, the models can be executed for the concrete 
incorporating the effect of various fibers such as glass fibers, jute fibers, nylon fibers, steel 
fibers and polypropylene fibers. 

7. Conclusions 
In this research, a machine learning technique namely gene expression programming 

(GEP) and an ensemble algorithm known as random forest regression (RFR) along with 

Figure 9. Importance of explanatory variables on the wear depth of concrete.



Materials 2022, 15, 58 20 of 28

6. Limitation and Recommendation for Future Study

In spite of the fact that the research included a detailed analysis supported by an enor-
mous data of experimental records collected from literature and an extensive algorithm is
applied with evaluation, the limitations and constraints of the research should be discussed.
The performance and reliability of the model depends on the total number of instances
used for modelling. As stated by Frank and Todeschini [89], the ratio between the number
of records to the number of explanatory variables must equal to 3 and preferably more
than 5 [89]. This research works satisfies recommended criteria. Though, the number of
experimental records equal to 216 is an uncertain limitation of the research. It is worth men-
tioning that this research is limited to estimate abrasion resistance of concrete and consider
nine different explanatory variables. It should be extended to predict other mechanical
properties of concrete like tensile strength, toughness, corrosion and durability by using a
huge data base that consider extensive number of explanatory variables. Additionally, the
performance of concrete to elevated temperature should be estimated.

Furthermore, other machine learning techniques, such as support vector machine
(SVM), particle swarm optimization (PSO), back tracking search algorithm (BSA), cuckoo
search algorithm (CSA), AdaBoost and gradient boosting and evolutionary algorithm like
multi-expression programming (MEP) be used. However, this study does not only concen-
trate on algorithmic-based methods, but also on programming based on GEP, indicating
the diversity of this research. The multi-stage genetic programming technique can also be
used to obtain extreme accuracy in both actual and predicted results. It is also suggested to
develop models for concrete modified with various pozzolanic materials like bagasse ash
and rice husk ash. Moreover, the models can be executed for the concrete incorporating
the effect of various fibers such as glass fibers, jute fibers, nylon fibers, steel fibers and
polypropylene fibers.

7. Conclusions

In this research, a machine learning technique namely gene expression programming
(GEP) and an ensemble algorithm known as random forest regression (RFR) along with
K-fold cross validation (KFCV) algorithm are operated to determine the depth of wear
(DW) of fly-ash based concrete by utilizing 216 experimental records.

• The results disclose that the RFR and GEP model can precisely and accurately estimate
the DW exclusive of any prior assumption. Moreover, the DW estimation from GEP
model is better than RFR based model. GEP technique delivers a simplified formula of
DW with considerably greater accuracy between experimental and predicted outcome.
This shows the diverse nature of GEP technique as it has space for non-linear and
linear data.

• The performance of both models was testified via statistical metrics like R2, MAE,
RMSE, RSE, RRMSE and performance index (ρ). The analysis of all metrics reveals
that both the models deliver an outburst performance. The R2 of RFR and GEP model
comes out to be 0.9523 and 0.9667 respectively. Since the ρ of predicted DW by RFR
and GEP are lesser than 0.2 that is 0.0679 and 0.0501, respectively; so, both models can
be categorized as good models. The models also meet the external validation criterion
suggested in the previous literature.

• The validation via KFCV reveals that the model’s variables are highly correlated and
accurate having a minimal error statistic between predicted DW and experimental re-
sults.

• The sensitivity analysis via GEP based formulation shows that the considered explana-
tory variables have an immense impact on the estimation of wear depth of concrete
following the order: T (34.16%) > A (14.22%) > C (12.13%) > AE (9.914%) > W (8.834%)
> F (6.551%) > P (5.221%) > FA (4.985%) > CA (3.986%).

• The simplified mathematical expression delivered by GEP algorithm for predicting
the DW of fly-ash based concrete are much simpler. The established GEP equation is
recommended to be utilized in the routine-based design practices rather than perform-
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ing time-consuming and laborious experimental tests. It is noteworthy to mark that
the projected equation is generally capable to predict the DW within the vast range
of explanatory variables exercised during formulation. In addition, the results can be
used to check the applicability of different mix design ratio of fly-ash concrete. The
site engineer can design the required mix ratio keeping the cost of concrete as low as
required with little or no help from the consultants.

According to the conclusions of the current study, it is valuable to mention that the
artificial techniques (AI) are greatly robust and accessible tools to resolve the problems
involving the complicated mechanism mostly in materials engineering. The simple mathe-
matical expression can be generalized to new fresh data. Thus, it can lead to construction
of sustainable structures that uses a hazardous material like fly-ash, which results in lower
consumption of energy and lesser cost of construction.

Author Contributions: M.A.K.—conceptualization, writing the original draft, data curation, mod-
elling, visualization; F.F.—writing the original draft, modelling, project administration; M.F.J.—
writing the original draft, editing; A.Z.—writing the original draft, editing; F.A.—review, writing the
original draft, editing; K.A.O.—writing the original draft, supervision, funding acquisition; S.M.—
writing the original draft, formal analysis; M.M.—writing revised draft, investigation. All authors
have read and agreed to the published version of the manuscript.

Funding: This research was funded by the Faculty of Civil Engineering of Cracow University
of Technology.

Institutional Review Board Statement: Not applicable.

Informed Consent Statement: Not applicable.

Data Availability Statement: The data presented in this article are available within the article.

Acknowledgments: The authors are tankful to National University of Science and Technology
(NUST); Cracow University of Technology; and CECOS University of IT and Emerging Sciences for
providing a conducive research environment. The authors would also like to thank Marta Dudek
from Cracow University of Technology for technical support.

Conflicts of Interest: The authors declare no conflict of interest.

Appendix A

Table A1. Database of experimental results.

Sr.No. Cement
(kg/m3)

Fly Ash
(kg/m3)

Water
(kg/m3)

Fine Ag-
gregate
(kg/m3)

Coarse
Aggregate

(kg/m3)

Plasticizer
(kg/m3)

Air En-
training
(g/m3)

Age
(Days)

Time of
Testing
(mins)

Depth
of Wear

(mm)

1 398 0 123 715 1259 2.7 280 28 5 0.11
2 398 0 123 715 1259 2.7 280 28 10 0.26
3 398 0 123 715 1259 2.7 280 28 15 0.64
4 398 0 123 715 1259 2.7 280 28 20 1.04
5 398 0 123 715 1259 2.7 280 28 25 1.17
6 398 0 123 715 1259 2.7 280 28 30 1.45
7 398 0 123 715 1259 2.7 280 28 35 1.65
8 398 0 123 715 1259 2.7 280 28 40 1.88
9 398 0 123 715 1259 2.7 280 28 45 1.99

10 398 0 123 715 1259 2.7 280 28 50 2.17
11 398 0 123 715 1259 2.7 280 28 55 2.28
12 398 0 123 715 1259 2.7 280 28 60 2.42
13 397 0 125 712 1264 2.7 330 28 5 0.1
14 397 0 125 712 1264 2.7 330 28 10 0.26
15 397 0 125 712 1264 2.7 330 28 15 0.41
16 397 0 125 712 1264 2.7 330 28 20 0.63
17 397 0 125 712 1264 2.7 330 28 25 0.75
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Table A1. Cont.

Sr.No. Cement
(kg/m3)

Fly Ash
(kg/m3)

Water
(kg/m3)

Fine Ag-
gregate
(kg/m3)

Coarse
Aggregate

(kg/m3)

Plasticizer
(kg/m3)

Air En-
training
(g/m3)

Age
(Days)

Time of
Testing
(mins)

Depth
of Wear

(mm)

18 397 0 125 712 1264 2.7 330 28 30 0.88
19 397 0 125 712 1264 2.7 330 28 35 1.04
20 397 0 125 712 1264 2.7 330 28 40 1.21
21 397 0 125 712 1264 2.7 330 28 45 1.33
22 397 0 125 712 1264 2.7 330 28 50 1.5
23 397 0 125 712 1264 2.7 330 28 55 1.67
24 397 0 125 712 1264 2.7 330 28 60 1.85
25 375 0 135 682 1182 2.9 270 28 5 0.23
26 375 0 135 682 1182 2.9 270 28 10 0.46
27 375 0 135 682 1182 2.9 270 28 15 0.69
28 375 0 135 682 1182 2.9 270 28 20 0.82
29 375 0 135 682 1182 2.9 270 28 25 1.01
30 375 0 135 682 1182 2.9 270 28 30 1.11
31 375 0 135 682 1182 2.9 270 28 35 1.28
32 375 0 135 682 1182 2.9 270 28 40 1.39
33 375 0 135 682 1182 2.9 270 28 45 1.57
34 375 0 135 682 1182 2.9 270 28 50 1.75
35 375 0 135 682 1182 2.9 270 28 55 1.89
36 375 0 135 682 1182 2.9 270 28 60 2.06
37 328 72 139 695 1207 2.9 300 28 5 0.14
38 328 72 139 695 1207 2.9 300 28 10 0.36
39 328 72 139 695 1207 2.9 300 28 15 0.52
40 328 72 139 695 1207 2.9 300 28 20 0.7
41 328 72 139 695 1207 2.9 300 28 25 0.92
42 328 72 139 695 1207 2.9 300 28 30 1.08
43 328 72 139 695 1207 2.9 300 28 35 1.24
44 328 72 139 695 1207 2.9 300 28 40 1.39
45 328 72 139 695 1207 2.9 300 28 45 1.62
46 328 72 139 695 1207 2.9 300 28 50 1.78
47 328 72 139 695 1207 2.9 300 28 55 1.96
48 328 72 139 695 1207 2.9 300 28 60 2.16
49 259 139 133 677 1172 2.8 350 28 5 0.14
50 259 139 133 677 1172 2.8 350 28 10 0.34
51 259 139 133 677 1172 2.8 350 28 15 0.5
52 259 139 133 677 1172 2.8 350 28 20 0.66
53 259 139 133 677 1172 2.8 350 28 25 0.85
54 259 139 133 677 1172 2.8 350 28 30 1.02
55 259 139 133 677 1172 2.8 350 28 35 1.18
56 259 139 133 677 1172 2.8 350 28 40 1.33
57 259 139 133 677 1172 2.8 350 28 45 1.5
58 259 139 133 677 1172 2.8 350 28 50 1.74
59 259 139 133 677 1172 2.8 350 28 55 1.88
60 259 139 133 677 1172 2.8 350 28 60 2.05
61 320 71 129 693 1180 2.8 420 28 5 0.18
62 320 71 129 693 1180 2.8 420 28 10 0.32
63 320 71 129 693 1180 2.8 420 28 15 0.54
64 320 71 129 693 1180 2.8 420 28 20 0.64
65 320 71 129 693 1180 2.8 420 28 25 0.9
66 320 71 129 693 1180 2.8 420 28 30 1.03
67 320 71 129 693 1180 2.8 420 28 35 1.18
68 320 71 129 693 1180 2.8 420 28 40 1.33
69 320 71 129 693 1180 2.8 420 28 45 1.49
70 320 71 129 693 1180 2.8 420 28 50 1.65
71 320 71 129 693 1180 2.8 420 28 55 1.8
72 320 71 129 693 1180 2.8 420 28 60 1.95
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Table A1. Cont.

Sr.No. Cement
(kg/m3)

Fly Ash
(kg/m3)

Water
(kg/m3)

Fine Ag-
gregate
(kg/m3)

Coarse
Aggregate

(kg/m3)

Plasticizer
(kg/m3)

Air En-
training
(g/m3)

Age
(Days)

Time of
Testing
(mins)

Depth
of Wear

(mm)

73 398 0 123 715 1259 2.7 280 91 5 0.08
74 398 0 123 715 1259 2.7 280 91 10 0.23
75 398 0 123 715 1259 2.7 280 91 15 0.43
76 398 0 123 715 1259 2.7 280 91 20 0.55
77 398 0 123 715 1259 2.7 280 91 25 0.72
78 398 0 123 715 1259 2.7 280 91 30 0.94
79 398 0 123 715 1259 2.7 280 91 35 1.13
80 398 0 123 715 1259 2.7 280 91 40 1.27
81 398 0 123 715 1259 2.7 280 91 45 1.37
82 398 0 123 715 1259 2.7 280 91 50 1.5
83 398 0 123 715 1259 2.7 280 91 55 1.64
84 398 0 123 715 1259 2.7 280 91 60 1.8
85 397 0 125 712 1264 2.7 330 91 5 0.08
86 397 0 125 712 1264 2.7 330 91 10 0.23
87 397 0 125 712 1264 2.7 330 91 15 0.45
88 397 0 125 712 1264 2.7 330 91 20 0.62
89 397 0 125 712 1264 2.7 330 91 25 0.75
90 397 0 125 712 1264 2.7 330 91 30 0.9
91 397 0 125 712 1264 2.7 330 91 35 1.03
92 397 0 125 712 1264 2.7 330 91 40 1.12
93 397 0 125 712 1264 2.7 330 91 45 1.27
94 397 0 125 712 1264 2.7 330 91 50 1.41
95 397 0 125 712 1264 2.7 330 91 55 1.5
96 397 0 125 712 1264 2.7 330 91 60 1.63
97 375 0 135 682 1182 2.9 270 91 5 0.14
98 375 0 135 682 1182 2.9 270 91 10 0.29
99 375 0 135 682 1182 2.9 270 91 15 0.49
100 375 0 135 682 1182 2.9 270 91 20 0.75
101 375 0 135 682 1182 2.9 270 91 25 0.96
102 375 0 135 682 1182 2.9 270 91 30 1.1
103 375 0 135 682 1182 2.9 270 91 35 1.24
104 375 0 135 682 1182 2.9 270 91 40 1.39
105 375 0 135 682 1182 2.9 270 91 45 1.46
106 375 0 135 682 1182 2.9 270 91 50 1.58
107 375 0 135 682 1182 2.9 270 91 55 1.68
108 375 0 135 682 1182 2.9 270 91 60 1.77
109 328 72 139 695 1207 2.9 300 91 5 0.06
110 328 72 139 695 1207 2.9 300 91 10 0.26
111 328 72 139 695 1207 2.9 300 91 15 0.41
112 328 72 139 695 1207 2.9 300 91 20 0.62
113 328 72 139 695 1207 2.9 300 91 25 0.79
114 328 72 139 695 1207 2.9 300 91 30 0.94
115 328 72 139 695 1207 2.9 300 91 35 1.11
116 328 72 139 695 1207 2.9 300 91 40 1.27
117 328 72 139 695 1207 2.9 300 91 45 1.44
118 328 72 139 695 1207 2.9 300 91 50 1.53
119 328 72 139 695 1207 2.9 300 91 55 1.65
120 328 72 139 695 1207 2.9 300 91 60 1.75
121 259 139 133 677 1172 2.8 350 91 5 0.05
122 259 139 133 677 1172 2.8 350 91 10 0.17
123 259 139 133 677 1172 2.8 350 91 15 0.35
124 259 139 133 677 1172 2.8 350 91 20 0.53
125 259 139 133 677 1172 2.8 350 91 25 0.76
126 259 139 133 677 1172 2.8 350 91 30 0.9
127 259 139 133 677 1172 2.8 350 91 35 1.04
128 259 139 133 677 1172 2.8 350 91 40 1.18
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Table A1. Cont.

Sr.No. Cement
(kg/m3)

Fly Ash
(kg/m3)

Water
(kg/m3)

Fine Ag-
gregate
(kg/m3)

Coarse
Aggregate

(kg/m3)

Plasticizer
(kg/m3)

Air En-
training
(g/m3)

Age
(Days)

Time of
Testing
(mins)

Depth
of Wear

(mm)

129 259 139 133 677 1172 2.8 350 91 45 1.31
130 259 139 133 677 1172 2.8 350 91 50 1.48
131 259 139 133 677 1172 2.8 350 91 55 1.64
132 259 139 133 677 1172 2.8 350 91 60 1.7
133 320 71 129 693 1180 2.8 420 91 5 0.1
134 320 71 129 693 1180 2.8 420 91 10 0.27
135 320 71 129 693 1180 2.8 420 91 15 0.53
136 320 71 129 693 1180 2.8 420 91 20 0.64
137 320 71 129 693 1180 2.8 420 91 25 0.82
138 320 71 129 693 1180 2.8 420 91 30 0.99
139 320 71 129 693 1180 2.8 420 91 35 1.1
140 320 71 129 693 1180 2.8 420 91 40 1.26
141 320 71 129 693 1180 2.8 420 91 45 1.39
142 320 71 129 693 1180 2.8 420 91 50 1.5
143 320 71 129 693 1180 2.8 420 91 55 1.59
144 320 71 129 693 1180 2.8 420 91 60 1.71
145 398 0 123 715 1259 2.7 280 365 5 0.07
146 398 0 123 715 1259 2.7 280 365 10 0.19
147 398 0 123 715 1259 2.7 280 365 15 0.28
148 398 0 123 715 1259 2.7 280 365 20 0.37
149 398 0 123 715 1259 2.7 280 365 25 0.42
150 398 0 123 715 1259 2.7 280 365 30 0.56
151 398 0 123 715 1259 2.7 280 365 35 0.71
152 398 0 123 715 1259 2.7 280 365 40 0.84
153 398 0 123 715 1259 2.7 280 365 45 1.08
154 398 0 123 715 1259 2.7 280 365 50 1.19
155 398 0 123 715 1259 2.7 280 365 55 1.17
156 398 0 123 715 1259 2.7 280 365 60 1.44
157 397 0 125 712 1264 2.7 330 365 5 0.08
158 397 0 125 712 1264 2.7 330 365 10 0.24
159 397 0 125 712 1264 2.7 330 365 15 0.35
160 397 0 125 712 1264 2.7 330 365 20 0.49
161 397 0 125 712 1264 2.7 330 365 25 0.63
162 397 0 125 712 1264 2.7 330 365 30 0.76
163 397 0 125 712 1264 2.7 330 365 35 0.85
164 397 0 125 712 1264 2.7 330 365 40 0.96
165 397 0 125 712 1264 2.7 330 365 45 1.04
166 397 0 125 712 1264 2.7 330 365 50 1.17
167 397 0 125 712 1264 2.7 330 365 55 1.28
168 397 0 125 712 1264 2.7 330 365 60 1.36
169 375 0 135 682 1182 2.9 270 365 5 0.14
170 375 0 135 682 1182 2.9 270 365 10 0.22
171 375 0 135 682 1182 2.9 270 365 15 0.18
172 375 0 135 682 1182 2.9 270 365 20 0.4
173 375 0 135 682 1182 2.9 270 365 25 0.57
174 375 0 135 682 1182 2.9 270 365 30 0.64
175 375 0 135 682 1182 2.9 270 365 35 0.73
176 375 0 135 682 1182 2.9 270 365 40 0.78
177 375 0 135 682 1182 2.9 270 365 45 1.04
178 375 0 135 682 1182 2.9 270 365 50 1.11
179 375 0 135 682 1182 2.9 270 365 55 1.26
180 375 0 135 682 1182 2.9 270 365 60 1.43
181 328 72 139 695 1207 2.9 300 365 5 0.11
182 328 72 139 695 1207 2.9 300 365 10 0.35
183 328 72 139 695 1207 2.9 300 365 15 0.48
184 328 72 139 695 1207 2.9 300 365 20 0.6
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Table A1. Cont.

Sr.No. Cement
(kg/m3)

Fly Ash
(kg/m3)

Water
(kg/m3)

Fine Ag-
gregate
(kg/m3)

Coarse
Aggregate

(kg/m3)

Plasticizer
(kg/m3)

Air En-
training
(g/m3)

Age
(Days)

Time of
Testing
(mins)

Depth
of Wear

(mm)

185 328 72 139 695 1207 2.9 300 365 25 0.81
186 328 72 139 695 1207 2.9 300 365 30 0.93
187 328 72 139 695 1207 2.9 300 365 35 1.11
188 328 72 139 695 1207 2.9 300 365 40 1.3
189 328 72 139 695 1207 2.9 300 365 45 1.57
190 328 72 139 695 1207 2.9 300 365 50 1.71
191 328 72 139 695 1207 2.9 300 365 55 1.84
192 328 72 139 695 1207 2.9 300 365 60 1.94
193 259 139 133 677 1172 2.8 350 365 5 0.18
194 259 139 133 677 1172 2.8 350 365 10 0.47
195 259 139 133 677 1172 2.8 350 365 15 0.46
196 259 139 133 677 1172 2.8 350 365 20 0.62
197 259 139 133 677 1172 2.8 350 365 25 0.73
198 259 139 133 677 1172 2.8 350 365 30 0.9
199 259 139 133 677 1172 2.8 350 365 35 1.03
200 259 139 133 677 1172 2.8 350 365 40 1.19
201 259 139 133 677 1172 2.8 350 365 45 1.22
202 259 139 133 677 1172 2.8 350 365 50 1.37
203 259 139 133 677 1172 2.8 350 365 55 1.49
204 259 139 133 677 1172 2.8 350 365 60 1.5
205 320 71 129 693 1180 2.8 420 365 5 0.11
206 320 71 129 693 1180 2.8 420 365 10 0.28
207 320 71 129 693 1180 2.8 420 365 15 0.41
208 320 71 129 693 1180 2.8 420 365 20 0.65
209 320 71 129 693 1180 2.8 420 365 25 0.85
210 320 71 129 693 1180 2.8 420 365 30 1.02
211 320 71 129 693 1180 2.8 420 365 35 1.18
212 320 71 129 693 1180 2.8 420 365 40 1.24
213 320 71 129 693 1180 2.8 420 365 45 1.35
214 320 71 129 693 1180 2.8 420 365 50 1.49
215 320 71 129 693 1180 2.8 420 365 55 1.67
216 320 71 129 693 1180 2.8 420 365 60 1.81
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