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Abstract
Cholera infections caused by the gamma-proteobacterium  haveVibrio cholerae 
ravaged human populations for centuries, and cholera pandemics have
afflicted every corner of the globe. Fortunately, interventions such as oral
rehydration therapy, antibiotics/antimicrobials, and vaccines have saved
countless people afflicted with cholera, and new interventions such as
probiotics and phage therapy are being developed as promising approaches to
treat even more cholera infections. Although current therapies are mostly
effective and can reduce disease transmission, cholera outbreaks remain
deadly, as was seen during recent outbreaks in Haiti, Ethiopia, and Yemen.
This is due to significant underlying political and socioeconomic complications,
including shortages of vaccines and clean food and water and a lack of health
surveillance. In this review, we highlight the strengths and weaknesses of
current cholera therapies, discuss emerging technologies, and argue that a
multi-pronged, flexible approach is needed to continue to reduce the worldwide
burden of cholera.
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Introduction
For centuries, cholera has wreaked havoc on developing  
countries with poor infrastructure, sanitation, and access to  
clean drinking water. Cholera also flourishes when normal 
societal function is disrupted, such as during natural disasters  
like the 2010 earthquake in Haiti1 or the current refugee crisis 
in Yemen2. Vibrio cholerae, the etiological agent of cholera, is a  
Gram-negative, rod-shaped pathogen that can cycle between  
two distinct environments—persistence in brackish-water ponds 
and infection of the human gut—and it transmits from the  
environmental reservoirs to the human host via contami-
nated food or water. V. cholerae is highly sensitive to the 
low pH of the stomach and thus the infectious dose for this  
bacterium is high at greater than 108 organisms3. Those cells 
that survive the stomach acid eventually colonize the intestinal  
tract. The toxin co-regulated pilus (TCP) aids in coloniza-
tion by promoting bacterial microcolony formation. V. cholerae 
then secretes cholera toxin (CT), which disrupts normal ion 
transport of the gut epithelium, inducing the massive water  
efflux into the intestine which leads to debilitating diarrhea 
and vomiting4. Transitioning between biofilm formation and  
motility during infection is also a key component of V. cholerae  
colonization5.

Out of more than 200 serogroups of V. cholerae, only the  
serogroups O1 and O139 have been the causative agent of  

current epidemics, and O1 V. cholerae is the major infectious  
agent2. Overall, owing to a lack of TCP or CT, non-O1/non-
O139 biotypes do not cause cholera, but there are cases where  
they do instigate diarrheal symptoms6. The O1 and O139 strains 
are prevalent in several endemic regions, including Yemen, 
parts of Africa, Southeast Asia, and Haiti2,7–12. Serogroups are  
subclassified into two major biotypes. The first six pandemics  
of V. cholerae from the years 1817 to 1921 were caused 
by the classical biotype, whereas the seventh and current  
pandemic that started in 1961 was caused by the El Tor  
biotype13. Virtually all modern-day cholera is caused by El Tor, 
and environmental sampling identifies only El Tor, suggesting  
that classical biotypes are no longer prevalent. The El Tor  
biotype can be grouped into the serotypes Ogawa and Inaba, 
which are the most prevalent serotypes that are causing the  
pandemics2,14,15, and these are used in contemporary vaccines 
like Shanchol and Euvichol16. Even with modern-day  
treatments, it is estimated that there are over 3 million cases of  
cholera with more than 100,000 deaths annually16–18. The World 
Health Organization (WHO) public database of annual epidemic 
cholera cases provides outbreak updates and a summary of  
worldwide infections19.

The objective of this review is to describe the current strategies 
of oral rehydration therapy (ORT), antibiotics, and vaccination 
which are used to treat and prevent cholera. (See Figure 1 for  

Figure 1. The five strategies to treat cholera. This diagram summarizes the strengths and weaknesses of five different cholera treatments 
discussed in this review. By considering the strengths and weaknesses of the current therapies and leveraging the diversity of resources 
and new technologies, a multi-pronged approach could well improve the chances of success in combating cholera infections worldwide and 
potentially establish cost-effective, pre-emptive solutions more quickly than conventional methods of treatment.

Page 2 of 8

F1000Research 2019, 8(F1000 Faculty Rev):589 Last updated: 30 APR 2019



an overview.) We also highlight novel emerging approaches 
to treat and prevent cholera—such as probiotic treatment and 
phage therapy—that have shown success in laboratory conditions 
but are not yet used in human populations. Because cholera  
outbreaks often are linked to poor infrastructure, lack of 
access to clean water, or societal disruptions, our view is that a  
multi-pronged, flexible strategy is needed to combat these 
infections, and each of these treatment strategies can meet a  
specific need to reduce the burden of cholera (Figure 1).

Oral rehydration therapy
ORT has a long and interesting history in the field of medicine 
as a therapeutic to treat acute diarrheal infection. Based on prior 
knowledge that glucose was essential to facilitate absorption of 
water from the gut7,20, the idea of ORT was first attempted in 1964, 
when US Navy Capt. Robert Phillips used oral glucose saline to 
successfully treat cholera in two patients in the Philippines21.  
ORT has since become the most widely used quintessential  
cholera treatment. Prior to ORT, cholera infections had a  
mortality rate of more than 50%. However, ORT has treated  
infection in millions of individuals and saved millions of lives 
by replacing lost fluids and electrolytes during infection7,20. 
This treatment strategy relies on the fact that cholera is a self- 
limiting infection. Thus, if the patient can survive the massive 
fluid loss elicited by CT, the infection ultimately will resolve  
within a few days. ORT has reduced the mortality rate of  
cholera by more than 97%, and more than 99% of patients on 
ORT survive V. cholerae infections14,22. Because V. cholerae  
infections cause the intestinal epithelial cells to lose copious 
amounts of essential electrolytes, conventional ORT prescribed 
by the WHO contains several vital ions (sodium, chloride, and  
potassium) and a carbon source (glucose).

Though effective, the constituents of ORT have been studied 
and modified since its inception. Glucose, one of the com-
ponents of ORT, can increase the production of CT, the main 
cause of the severe symptoms associated with the disease7. 
Kühn et al. established that a rice- or starch-based ORT would  
circumvent this dilemma7. Glucose stimulates Na+ absorption  
faster than rice starch in the small intestine, so it was possible  
that a glucose-based ORT would be shorter and more cost- 
effective. However, even with the slower Na+ absorption rate, the 
rice-based ORT reduced stool volumes by 36% compared with 
glucose ORT23. Recently, the rice-based ORT was successfully  
field-tested to treat cholera in Haiti7. Concomitantly, starch-
based ORT is resistant to metabolic degradation in the small  
intestine, persisting longer than glucose20,23, and it does not  
significantly induce CT production7. A starch-based ORT has 
the additional benefit of stimulating the synthesis of short-chain  
fatty acids (SCFAs) that can lessen the occurrences of diarrhea 
by activating the retention of ions by colonic epithelial cells.  
These SCFAs are produced from starch through fermentation 
of carbohydrates which are not rapidly absorbed or degraded in  
the small intestine by the colonic microbiome20. Moreover,  
since glucose increases ion absorption in the small intestine, 
these two additives could have a synergistic effect at lessening  
cholera symptoms20. Though not yet endorsed by the WHO, 
these alternative carbon-based ORTs exhibit potential benefits to 

treat cholera and could supplant glucose-based ORT as the major  
treatment for cholera.

Although modifying the ORT ingredients to achieve optimal 
Na+ and water absorption in the intestines reduces symptoms,  
there remain cases where ORT could not keep the cholera 
symptoms in check. For instance, severe dehydration requires  
intravenous rehydration. Because ORT is not 100% effective,  
concurrent treatments such as antibiotics/antimicrobials23–25 
and vaccination26 may be necessary to sustain the reductions in  
cholera symptoms, as will be discussed in the next two sections.

Antibiotics/Antimicrobials
The objective of antibiotics to treat cholera infections is to 
reduce both (1) the time and severity of the illness and (2) the  
transmission to other individuals. Acute infection with severe  
dehydration is treated with ORT and antibiotics to produce  
synergistic efficacy10–12,16. Effective antibiotics to treat cholera  
are doxycycline, azithromycin, and tetracycline. Administration 
of multiple doses of 12.5 mg tetracycline for 3 days can  
reduce the duration of symptoms in adults from 4 to 2 days 
and average stool volume from 21 L to 8 L23. A single dose of 
doxycycline (300 mg for adults and 6 mg for children) is as  
effective as multiple doses of tetracycline2,24. On the other  
hand, an analysis of significantly more trials with indirect  
comparisons of tetracycline to doxycycline found that patients 
who received tetracycline had a shorter duration of diarrhea 
(by 1 day) while the stool volume reduction was significantly  
higher17. Likewise, a single dose of 20 mg azithromycin can 
stop diarrheal symptoms in less than 48 hours—24 hours earlier 
than with ciprofloxacin25—and decrease vomiting frequency 
while allowing passage of an average of 36 stools with volumes  
averaging about 5 L2,24. Azithromycin is recommended for 
pregnant women and young children whereas tetracycline is 
suitable for adults. They are both more advantageous than  
ciprofloxacin and erythromycin1,11,12.

One drawback to antibiotic therapy is that V. cholerae O1 and  
O139 strains have developed resistance to most of the antibi-
otics that are used. For example, ciprofloxacin, a type of fluo-
roquinolone that was commonly used in the early 1990s because 
of its long half-life and high in vitro activity, was ineffective in 
multiple countries with a high burden of cholera infection, such 
as Haiti and Bangladesh24,27. This is because O1 and O139 are 
also resistant to nalidixic acid, which has a mechanism similar 
to that of ciprofloxacin, and this mechanism confers cross- 
resistance to ciprofloxacin24,27. Strains resistant to tetracycline 
were isolated in several developing countries like Bangladesh, 
India, Thailand, and Northern Vietnam2,14,25, and based on 
sequencing analysis, the resistance to tetracycline is plasmid- 
mediated, suggesting that it could continue to rapidly spread  
in V. cholerae populations25,27. To avoid the development of resist-
ance to these agents, Khan et al. recommended taking these 
medications only when the resistant strains are not prevalent27.  
Furthermore, V. cholerae is evolving new genetic mechanisms 
to confer resistance to these drugs. Models that predict the  
emergence of new pandemic strains in heavy-burden, developing 
countries may be useful for planning future antibiotic treatment 
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strategies, including proper drug allocation, and for elucidating the 
epidemiology of drug-resistant outbreak strains10.

Although these classes of antibiotics can achieve positive  
therapeutic effects, it is important to consider the adverse side 
effects of these treatments. Hypersensitivity reactions are the 
most common life-threatening side effect of antibiotic treatment  
of cholera, whereas the irregular cardiac rhythm condition is 
common only in ciprofloxacin and azithromycin24. ORT and  
antibiotic therapy function to treat cholera infections but do not 
prevent patients from acquiring cholera. Therefore, the next  
intervention that we will discuss that has the potential to limit  
cholera infections in susceptible populations is vaccines.

Vaccines
The WHO advocates the use of oral cholera vaccines (OCVs), 
including both live-attenuated and inactivated oral whole cell  
(WC) vaccines, in endemic areas or during outbreaks as a  
transient protection since they have been shown to be effec-
tive in combination with other correlative treatments, including  
antibiotics, ORT, and health management17,28. OCVs princi-
pally stimulate mucosal immunity mediated by antibodies, 
particularly IgA, against the pathogen. These antibodies are  
directed against antigens such as O1-specific polysaccha-
ride and CT28. Although IgA has limited systemic circulation  
(~6 months), the memory B cells that are responsible for  
preventing cholera infection persist and can quickly expand and 
differentiate into plasmablasts and eventually the plasma cells, 
which can reseed protective antibodies upon antigen-contact 
activation28. Moreover, OCVs could provide herd immunity to  
unvaccinated adults, but the effect in unvaccinated children  
requires further study29.

One widely used WC strain vaccine is Dukoral (CTB-WC), 
which contains inactivated/dead V. cholerae O1 (El Tor and  
classical biotypes) with the addition of recombinant B subunits 
of CT (CTB)12,16,30,31. The effectiveness of Dukoral is between  
55% and 88%17, and it is intended for travelers but—owing 
to its short period of usability, high cost, and its requirements 
for cold-chain circulation—not for populations in endemic  
regions9,25. Dukoral can provide protection from infection for 
2 years in vaccinated individuals above the age of 5, but it is  
effective for only 6 months between the ages of 2 and 5 and  
requires at least two doses to be effective16. Unlike Dukoral,  
Shanchol and Euvichol are WC vaccines composed of inac-
tivated O1 Inaba, O1 Ogawa, and O139 strains, but these  
vaccines do not contain CTB16,32. The efficacy of Shanchol is 
about 65% protection based on a 5-year study17. In clinical  
studies in the Philippines, Euvichol was effective in adults and  
children18,32. Shanchol and Euvichol are intended for all patients 
who are at least 1 year old but not for pregnant women16,18.  
Furthermore, there are two variations of Euvichol (with or  
without the preservative thimerosal), both of which show no 
significant difference in protection32. These WHO prequalified 
inactivated vaccines can provide protection against cholera  
for at least 3 years and are not available in the US4.

Aside from the inactivated V. cholerae vaccines, the oral  
live-attenuated vaccine Vaxchora (CVD 103-HgR) is a US Food 

and Drug Administration–approved, single-dose vaccine that  
protects against either the Inaba or Ogawa serotype and con-
tains CTB from both classical and El Tor biotype2,30,33. Owing 
to the robust, rapid cell-mediated protection of Vaxchora, its  
efficacy against cholera is estimated to be around 90% post-
vaccination and 80% 3 months post-vaccination in travel-
ers to high-risk cholera areas2,30,33. The next steps for Vaxchora  
development are to evaluate its safety and effectiveness in  
cholera-endemic populations and to optimize the preparation 
of the vaccine since it relies on cold-chain shipping and water  
mixing, which are problematic for distribution in some endemic or 
disrupted regions33.

Several alternative forms of vaccines are being developed and 
these include a combined outer membrane vesicle (OMV)  
vaccine against V. cholerae and Escherichia coli that has been 
shown to induce a strong immunogenic response12, a genetically  
manipulated form of live V. cholerae without the diarrhea-
genic factors to mediate probiotic-like protection from cholera34, 
and antimicrobial glycoconjugates, particularly the lipopoly-
saccharide epitopes across different serotypes (Ogawa and 
Inaba)35. These alternative forms of vaccines are not yet in  
clinical trials.

Effectively using vaccines to prevent or curtail cholera outbreaks 
relies heavily on epidemiological research as different endemic 
regions need distinguishing vaccines to target the divergent  
circulating strains. Moreover, ideal cholera vaccines will not be  
dependent on cold-chain shipping. In addition to these three  
treatments, which are currently used, new approaches to prevent  
or treat cholera infections are emerging.

Probiotics
An emerging concept in microbiology is the ability of the host 
microbiome to prevent or limit infections. A relatively new  
concept for V. cholerae, this idea is beginning to be explored 
as a treatment or prevention for cholera infections. Owing to 
the excessive fluid accumulation, V. cholerae elicits severe  
disruption to the gut microbiome during infection such that 
the majority of bacteria found in the characteristic rice-water  
stools are V. cholerae36. Furthermore, the type VI secretion  
system of V. cholerae can deliver effector toxins to the gut  
microbiome or modulate host cells themselves, both of which 
alter the gut microbiota to facilitate colonization37,38. For these  
reasons, restoration of the gut microbiome or prevention of  
colonization through probiotic treatment is a promising new 
approach to treat cholera infections.

Several bacterial species have been shown to dispel or suppress 
cholera infections. Ruminococcus obeum increases in its  
relative abundance after V. cholerae infection of mice and  
restricts V. cholerae colonization by disrupting its quorum- 
sensing system39. Interestingly, R. obeum is one of the species 
in the human gut microbiome whose abundance positively  
correlates with recovery from cholera39. Co-culture of V. cholerae 
with Lactobacillus rhamnosus GG or Bifidobacterium longum 
46 decreases CT production in vitro40. One study engineered a  
probiotic strain of Lactococcus lactis that increases the produc-
tion of lactic acid upon detecting the quorum-sensing signals  
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of V. cholerae, thus decreasing the pH of the surrounding  
medium to reduce V. cholerae during co-culture41. Another 
experiment engineered an E. coli strain to mimic the CT binding  
ganglioside on its surface and this strain reduced the symp-
toms of a V. cholerae infection by decreasing the free CT42. The  
culture supernatant of a fecal Lactobacilli strain was exploited 
to disturb a V. cholerae biofilm by increasing the pH to  
potentially reduce stress in the gut43. Lastly, E. coli was  
demonstrated to decrease the colonization of V. cholerae when  
co-cultured with glucose in a zebrafish infection model by  
lowering the pH44. This finding is intriguing as it suggests a  
possible synergistic effect between probiotics and glucose-based  
ORT44.

Probiotics often are taken with antibiotics and various other  
drugs, including anti-inflammatory adjuvants, but the adverse 
side effect of the drugs on the probiotics warrants further  
testing43. Nevertheless, probiotics that reduce cholera may limit 
antibiotic-resistant V. cholerae strains by reducing the quantity 
of antibiotics used41,42. Moreover, probiotics could serve as a  
better treatment in regions where cold-chain vaccine preparation  
is not feasible and clean water supply is not available40.

Phage therapy
Another novel treatment for cholera involves the therapeu-
tic use of lytic bacteriophages. Phage therapy has been used for  
decades in Eastern Europe and Russia and, with the emergence 
of antibiotic-resistant bacteria, has been developed and used 
to treat infections caused by Pseudomonas, Salmonella, and  
Staphylococcus45. Phage therapy has many advantages over  
antibiotics. For example, phages are able to kill antibiotic- 
resistant bacteria, the amount of phages increases proportion-
ally to the number of infecting bacteria, and the phages exert a 
minimal impact on the resident microbiome45. This treatment  
strategy is inspired by the natural life cycle of V. cholerae in  
which blooms of the bacteria during outbreaks are followed by 
the expansion of lytic bacteriophages, primarily ICP1, ICP2, 
and ICP3, which ultimately reduce the population of viable  
bacteria46,47.

A study in an infant mouse model has shown that a cocktail of 
the three ICP virulent bacteriophages could effectively reduce 
the V. cholerae load after challenge in a dose-dependent manner  
because of the phage’s fast replication and ability to kill  
the bacteria48. Although it shows promising results in animal  
models, phage therapy for cholera requires more optimization 
for its effectiveness and timing to be advanced to clinical  
trials48. Phage therapy could also be used to limit person-to- 
person spread as even small numbers of these lytic phages could 
rapidly expand during V. cholerae infections.

Although phage therapy has many promising characteris-
tics, it also has potential drawbacks. During phage therapy, the 
host’s adaptive immune system can generate phage-neutralizing  
antibodies that could inhibit their ability to lyse the targeted 
bacteria in vivo or prevent subsequent treatments45. As with  
antibiotics, V. cholerae will evolve resistance to phage infection 

and thus the most likely application of phages would require a  
lytic phage cocktail that would necessitate multiple independent 
mutations for resistance. Because of the intricate connection 
between V. cholerae and lytic phages, this bacterium encodes 
molecular defense mechanisms to limit phage infection49.  
Owing to host specificity, which has a significant impact 
on treatment development and testing, mass production and  
distribution of phage therapy, are not yet practical50. Before 
phage therapy is validated as a cholera therapeutic, there must 
be an assessment of the immunological response to phages and  
efficacy during cholera outbreaks.

Conclusions
The biggest challenges to treat V. cholerae are the inherent  
complications in endemic or disrupted regions, including  
economics, natural disasters, wars, national security, and poor  
infrastructure. Because of these challenges, a multi-pronged 
approach that is flexible to the specific demands of a current 
outbreak is needed to treat cholera. ORT has been and will  
continue to be a front-line defense to save patients already  
infected with V. cholerae because it is cost-effective and easy 
to use and combining antibiotics with ORT clearly reduces the  
severity of disease. Additionally, the WHO has prequalified  
Dukoral, Shanchol, and Euvichol as current cholera vaccines, 
although there is a worldwide deficiency of these vaccines2.  
Increasing the availability of these vaccines could have a  
significant impact in reducing infections during an outbreak. 
Whether probiotics or phage therapy can work synergistically 
with ORT, antibiotics, or vaccines to treat or—preferably—to  
prevent cholera infections remains to be tested in the field.  
Another approach to control cholera is the development 
of anti-virulence compounds that inhibit the expression of  
virulence factors, thereby protecting the host from colonization 
by V. cholerae. Such compounds include virstatin51, a conjugated 
form of linoleic acid52, and synthetic compounds that resemble  
folded fatty acids53. Further development of these anti-virulence 
therapeutics requires testing these compounds during human 
infections and assessing their practicality to treat cholera  
outbreaks. Ultimately, health surveillance plays a critical role 
in preventing outbreaks by directing proactive countermeasures  
during emergencies. A global commitment to reduce pandemic 
cholera requires devising better methods to quickly identify 
outbreak strains, recognizing the best treatment option for the  
given strain, and developing new therapies that are not depend-
ent on cold-chain systems or clean water. The combination of  
current treatments with new therapies has significant potential  
to further combat the centuries-old human scourge of cholera.
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