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Abstract. Although prostate cancer is a major cause of 
cancer‑related mortality worldwide, most patients will have 
a relatively indolent clinical course. Contrary to most other 
types of cancer, even the diagnosis of locally advanced or 
metastatic disease is not always lethal. The present review 
aimed to summarize what is known regarding the underlying 
mechanisms related to the indolent course of subsets of prostate 
cancer, at various stages. The data suggested that no specific 
gene alteration by itself was responsible for carcinogenesis or 
disease aggressiveness. However, pathway analysis identified 
genetic aberrations in multiple critical pathways that tend to 
accumulate over the course of the disease. The progression from 
indolence into aggressive disease is associated with a complex 
interplay in which genetic and epigenetic factors are involved. 
The effect of the immune tumor microenvironment is also very 
important. Emerging evidence has suggested that the upregula‑
tion of pathways related to cellular aging and senescence can 
identify patients with indolent disease. In addition, a number of 
tumors enter a long‑lasting quiescent state. Further research will 

determine whether halting tumor evolution is a feasible option, 
and whether the life of patients can be markedly prolonged by 
inducing tumor senescence or long‑term dormancy.
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1. Introduction

The diagnosis of prostate cancer (PCa) is usually not a death 
sentence. Overall, the relative survival rate in five years is almost 
100 percent (1). Even when the disease progresses, it usually has 
a relatively slow clinical course. Prostate cancer is usually diag‑
nosed in elderly men who often have several comorbidities and 
reduced expected lifespan. This suggests that if PCa patients 
were able to survive 15 or 20 years with the disease, prostate 
cancer‑specific mortality would greatly decrease.

Androgen deprivation therapy (ADT) is the mainstay of 
therapy in early disseminated prostate cancer. Despite the 
initial response to treatment, the disease eventually relapses 
into an androgen independent state. Several attempts have been 
made to therapeutically target the mechanisms of resistance to 
ADT (2‑4). However, the responses to these novel treatments 
are generally short lived (5). New candidate treatment regimens 
or combinations that counter the effects of resistance mecha‑
nisms are not always successful (6,7). Similar to all biological 
systems, cancer cells have molecular redundancies and it is rare 
that a viable combination of therapeutic compounds can kill 
every single cancer cell while sparing normal cells. In addition, 
tumors within individual patients are highly heterogeneous, 
hence there is a marked probability that at least a few tumor 
clones will survive a certain treatment (8). Most research in 
prostate cancer is following ‘down the rabbithole’ of discovering 
and subsequently targeting the emerging resistance mechanisms 
in order to eliminate every single cancer cell (3‑7). Not much 
research has been directed towards discovering novel ways to 
slow the progression rate of the disease.

2. Indolence in localized disease

Early stage localized PCa can be successfully treated with 
radical prostatectomy (RP) and/or radiation therapy (9). The 
5‑year biochemical disease‑free survival in patients with Grade 
Group 1 through 5 disease after RP is 96, 88, 63, 48 and 26% 
respectively (10). Among patients with T0‑2 clinical stage 
disease, only 11% eventually die from prostate cancer (11). 
However, the effects of RP and radiotherapy are not so dramatic. 
These high survival rates mostly result from the indolent 
clinical course of the tumors. In early localized disease, excel‑
lent survival rates can be achieved even without intervention. 
In a 2015 meta‑analysis of active surveillance studies, only 8 
out of 7,627 patients eventually died from prostate cancer, with 
a median follow up of 3.5 years (range of 1.5‑7.5 years) (12). In 
a prospective randomized trial, radical prostatectomy did not 
increase survival compared to watchful waiting in patients 
above 65 years old with early‑stage prostate cancer (13). Longer 
follow up confirms the relatively indolent course of most local‑
ized prostate cancers. The 15‑year metastasis‑free survival in 
patients with Gleason 6 or less and PSA between 10‑20 ng/ml 
is 94%. In Gleason 3+4 and PSA <20 ng/ml is 84%, while in 
Gleason 4+3 and PSA <20 ng/ml is 63% (13).

3. Indolence in high‑risk disease and biochemical 
recurrence

Contrary to most other cancers, in prostate cancer, even the 
diagnosis of locally advanced or metastatic disease is not 

always a death sentence. A study conducted in 1997 found that 
patients with locally advanced disease had a corrected 15‑year 
survival rate of 57% (11). Even 6% of patients discovered with 
initial metastatic disease did not die from prostate cancer after 
15 years (11). Several attempts have been made to develop a 
genetic signature to inform us regarding which patients will 
have a reduced survival. This has led to the development of 
several experimental molecular assays, such as Decipher, and 
others (14‑16). After RP, patients with low, intermediate or high 
risk Decipher scores have 10‑year cumulative metastasis rates 
of 5.5, 15 and 26.7% respectively (17). This means that patients 
with the most aggressive genetic signatures will potentially be 
73.3% metastasis‑free at 10 years based on this method (17). 
Patients with biochemical‑only recurrence also have a mostly 
indolent disease course. Post‑RP biochemical relapse has a 37% 
likelihood of metastatic disease in 5 years (18). Median time 
to clinical metastases after PSA elevation is approximately 
8 years (18). Even for patients who develop biochemical relapse 
<1.2 years after RP, the ten‑year cancer‑specific mortality rate 
is about 10 percent (19). Similarly, biochemical relapse after 
prostate radiotherapy yields high survival rates (20). Post‑RP 
salvage radiotherapy results in 10‑year prostate cancer specific 
survival rates of 86 percent (21).

4. Indolence in advanced disease

Even in the recurrent or metastatic setting, a subset of patients 
can achieve remarkable and durable responses to ADT 
and novel antiandrogen therapies (22). Among men with 
biochemical recurrence who are placed on immediate ADT, 
the 5‑year overall survival rate is 91.2% (22). Among patients 
who develop distant metastatic disease, the 5‑year prostate 
cancer‑specific mortality is 57% (23). In the phase 3 AFFIRM 
study, there was a group of long‑term responders to enzalu‑
tamide after treatment with docetaxel, who had a median 
survival of 7.9 years (24). In the STAMPEDE trial, almost half 
of the patients with metastatic disease who received ADT plus 
abiraterone acetate in the hormone‑naive setting, were free 
from disease progression after 4.5 years (25). While subsets 
of prostate cancers can have a remarkably indolent course and 
show good response to therapy, other subsets can be particu‑
larly aggressive and refractory to treatments (26,27). Hence, 
the fundamental question that arises is what is the underlying 
cause of these differences? Is it an inherent property of the 
tumors, dictated by their genetic and epigenetic signature? 
Is it a matter of the tumor microenvironment, including the 
immune microenvironment? In this review, we will attempt to 
summarize what is already known regarding the underlying 
molecular mechanisms related to the indolent course of subsets 
of prostate cancers. Our hope is to provide evidence that the 
mechanisms that drive the aggressive variants are reversible.

5. Genetic determinants of indolence and aggressiveness in 
prostate cancer

Several distinct genomic subsets of PCa exist. Unsupervised 
clustering of molecular profiling (which include gene muta‑
tions, fusions, copy number alterations, gene expression levels 
and DNA methylation) indicate that 74% of all tumors can be 
assigned in one out of seven classes based on oncogenic drivers: 
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fusions that involve 1) ERG, 2) ETV1, 3) ETV4, 4) FLI1, or 
mutations in 5) SPOP, 6) FOXA1, 7) IDH1 (28). The relative 
distribution of these subgroups is similar in tumors derived 
from both primary and metastatic sites. This molecular 
taxonomy cannot accurately predict whether the tumors 
will be aggressive or indolent. The tumor mutational burden 
in prostate cancer is relatively low (28). Overall, increased 
number of copy number alterations (CNA) is associated with 
worse prognosis (29,30). One of the most frequent events in the 
prostate cancer genome with prognostic significance is a loss 
in the short arm of chromosome 8 (31,32). Loci frequently lost 
(>40%) include 8p21.2 and 8p23.2 (31). The latter is associ‑
ated with advanced disease and is most commonly found in 
progressors vs. non progressors (50 vs. 31%) (31). The most 
frequent gains (>50%) include 11p15.4, 2p25.1, 13q34, and 
11q13.1. The latter is associated with biochemical recurrence 
independent of tumor stage and grade. Genes that overlap 
with this region include MEN1, MAP4K2, SF1, PPP2R5B 
and others (31). Fusions of androgen‑regulated promoters with 
members of the ETS family of transcription factors are also 
very common. About 53% of prostate cancers have ETS‑family 
fusions (33‑36). TMPRSS2‑ERG fusion analysis for CNAs 
reveals three important regions of copy‑number loss: Two 
regions spanning PTEN and TP53 and the third spanning the 
region at 3p14, which likely contains FOXP1, RYBP and SHQ1 
genes (30).

Whole exome sequencing reveals that there is only a 
small number of recurrent genes with alterations among 
various subtypes (28). In primary tumors, the most frequently 
altered gene is PTEN (17%), followed by TP53 (8%) (28). This 
suggests that no specific gene alteration by itself is solely 
responsible for carcinogenesis or disease aggressiveness. 
However, when distinct pathways as a whole are analyzed, the 
hypothesis changes. Taylor et al reported androgen receptor 
(AR) pathway gene aberrations in 56 percent of primaries 
and 100% of metastases (30). While AR gene amplifications 
and mutations were almost exclusively found in metastatic 
disease, it appeared that aberrations in NCOA2 and NCOR2 
genes were important in primary tumors (30). PI3K signaling 
pathway was affected in 42% of primary tumors and 100% of 
metastases. The RB signaling pathway was affected in 34% of 
primary sites and 74% of metastases. The RAS/RAF signaling 
pathway was affected in 43% of primary sites and 90% of 
metastases (30). These findings support the notion that genetic 
factors are associated with the development and progression of 
prostate cancer. It is unlikely that clinically significant prostate 
cancer is a result of a single altered gene. The frequencies of 
altered critical pathways in primary tumors (many of which 
are indolent) suggest that clinically significant prostate cancers 
are unlikely to also result from a single altered molecular 
pathway. On the contrary, the evidence points towards 
combinations of genetic aberrations, which result in several 
altered molecular pathways. Accumulation of critical genomic 
aberrations over time and divergent clonal evolution are also 
hallmarks of the disease progression towards a more aggres‑
sive state (37) (Table I). Identifying and targeting key aberrant 
genes or pathways simultaneously may theoretically ‘force’ 
the disease to regress into a more indolent state. However, it 
is unknown whether the aggressive state is actually reversible 
once it occurs.

6. Epigenetic determinants of prognosis in prostate cancer

The low mutation rate in PCa suggests that other factors might 
also determine the clinical course of the disease. It is now well 
established that epigenetic modifications play an important 
role in prostate cancer (38‑41) (Table I). Epigenetics is the 
study of heritable changes in gene expression, without the pres‑
ence of changes in the DNA sequence itself (42). While cells 
can alter their epigenome as a response to various conditions, 
it is known that epigenetic abnormalities frequently accu‑
mulate in cancer (43,44). Epigenetic changes can predispose 
genes to mutations, while genes that modify the epigenome 
are frequently mutated (45‑47). DNA methylation has been 
implicated in the lineage plasticity of PCa (48). Several hyper‑
methylated cell cycle genes and growth suppressor genes have 
been linked to worse prognosis (43). Aberrant DNA hypometh‑
ylation has also been observed more frequently in late stages 
of PCa (49). Epigenetic reprogramming is associated with loss 
of luminal epithelial identity and the transition from a typical 
prostate adenocarcinoma towards an aggressive neuroendo‑
crine PCa (NEPC) (37,50,51). Neuroendocrine PCa cell lines 
possess a unique chromatin accessibility profile, distinct from 
prostate adenocarcinoma (52). Inactivation of TP53 and/or 
RB1 leads to upregulation of DNA methyltransferase family 
member 1 (DNTM1) (53,54). DNA methylation is linked to the 
activity of EZH2, which serves as a recruitment platform for 
DNMTs (55). EZH2 is a central regulator of neuroendocrine 
differentiation and the transition from an androgen receptor 
(AR)‑dependent disease towards an aggressive state that is 
independent of AR signaling and indifferent to the effects 
of antiandrogens (51,56‑58). The activity of AR can also be 
directly regulated by epigenetic modifiers, such as histone 
deacetylases (HDAC) (59). Post‑transcriptional mechanisms, 
such as mRNA splicing or regulation by miRNA also play a 
role in the progression of prostate cancer (60‑62). EZH2 can 
act both as a transcriptional activator or repressor, depending 
on post‑translational modifications of EZH2 (63‑65).

7. The role of tumor microenvironment

Prostate tumors with ‘bad’ morphologic or genetic features 
can still run an indolent clinical course. This suggests 
that the cellular and secreted factors in the tumor immune 
microenvironment (TIME) might play a role in the balance 
between tumor clearance and tumor progression, as well as 
the response to treatment. However, PCa in general has an 
immunologically ‘cold’ TIME (65). Overall mutation rates, as 
well as DDR gene defects in PCa are low, especially in the 
early disease setting (66). Hence, neoantigen expression is 
diminished compared to many other cancers. This results in a 
non‑inflamed TIME, where tumor cells proliferate freely and 
evade immune‑mediated elimination. Although the presence 
of cytotoxic and helper T‑lymphocytes within tumor margins 
have been associated with favorable prognosis across several 
cancer types, PCa exhibits unique features (66‑69). Studies 
suggest that high density of stromal CD8+ tumor infiltrating 
lymphocytes (TILs), and high PD‑L1 expression are not asso‑
ciated with better outcomes in PCa (66,70‑72). Some studies 
indicate that they might even be detrimental (73). Prostate 
cancer‑infiltrating TILs are frequently dysfunctional (71,74) 
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(Table I). However, high proportions of Foxp3+ regulatory 
TILs are associated with worse progression‑free and overall 
survival in prostate cancer (75). In addition, high levels 
of M2 macrophages are pro‑tumorigenic, suggesting that 
TGFβ might play a role in immune exclusion in prostate 
cancer (76,77). Epigenetic silencing of MHC Class I expres‑
sion is common in advanced prostate tumors (78,79). Several 
signaling pathways, including the INF axis can also affect 
the expression of MHC Class I and the subsequent activation 
and expansion of CD8+ TILs within the invasive margins of 

a tumor (80). PTEN loss and other DDR defects also impact 
the TIME by modulating the activation of cellular INF path‑
ways (66,81‑83). It is known that the PTEN axis can confer 
sensitivity to T‑cell‑based immunotherapies (84). The devel‑
opment of bone metastases promotes the interaction between 
the tumor cells and the bone microenvironment. This further 
decreases the immunogenicity of the lesions (85). However, 
a few prostate cancers are immunologically ‘hot’ tumors and 
show durable responses when treated with immunotherapeutic 
agents (85‑87). This suggests that the TIME has the potential 

Table I. Factors that maintain tumor indolence and mechanisms mediating a switch into aggressive disease.

Indolence factor First author, year Escape mechanism/aggressiveness induction (Refs.)

Low mutation rate Taylor et al, 2010 Additional genetic aberrations (30)
 Bonollo et al, 2020 CAF effects (88)
 Aggarwal et al, 2018 Epigenetic modifications (50)
Slow proliferation Taylor et al, 2010 Additional genetic aberrations (30)
 Bonollo et al, 2020 CAF effects (88)
 Sugiura et al, 2021 Cell cycle gene hypermethylation (43)
 Sejda et al, 2020 Neurotrophic signaling (98)
Androgen dependence Taylor et al, 2010;  Additional genetic aberrations (30,37)
 Beltran et al, 2016
 Blom et al, 2019 TME factors (89)
 Ngollo et al, 2014;  Epigenetic adaptation (40,59)
 Fu et al, 2006
Nutrient scarcity/hypoxia West et al, 2001 VEGF upregulation (129)
 Ngollo et al, 2014;  Epigenetic adaptation (40,48)
 Ge et al, 2020
 Taylor et al, 2010;  Additional genetic aberrations (30,37)
 Beltran et al, 2016
 Bonollo et al, 2020 Crosstalk with CAFs (88)
Immunosurveillance Ness et al, 2014 Dysfunctional TILs (71)
 Nardone et al, 2016 High regulatory Foxp3+ (75)
 Mariathasan et al, 2018 High M2 macrophages (77)
 Heninger et al, 2016 MHC Class 1 silencing (78)
Fibroblast/stromal‑induced  Blom et al, 2019 CAFs activity/epigenetic changes in CAFs (89)
inhibition of tumor growth  
 Bonollo et al, 2020 Increased stromal stiffness (88)
 Sejda et al, 2020 Perineural invasion (98)
 March et al, 2021 Neurotrophic growth factors (99)
Senescence phenotype Ewald et al, 2010 Treatment resistance/therapy escape (110)
 Wang et al, 2020 Secretome sends tumorigenic signals to (108)
  neighboring cells
Low visceral tropism  Beltran et al, 2016 Additional mutations/CNA in critical genes (37)
 Davies et al, 2020 Neuroendocrine differentiation (51)
 Yegnasubramanian et al, 2008 Epigenetic adaptation (49)
Dormancy induction Recasens et al, 2019 Additional genetic aberrations (148)
 Decker et al, 2017 Beta‑adrenergic signaling (149)
 Cackowski et al, 2017 TYRO3, MERTK activity (145)

There are several factors that contribute to an indolent phenotype in subsets of prostate cancers. They include inherent properties of a tumor (such 
as slow proliferation rate, low visceral tropism), effects of treatment, immunosurveillance, TME‑related effects, induction of dormancy/quies‑
cence/senescence phenotype. However, as genetic and epigenetic alterations continue to accumulate, combined with the TME‑endothelial 
compartment crosstalk, many tumors eventually escape dormancy and switch to aggressive disease.
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to affect the clinical course of a patient who develops PCa, 
given the right circumstances.

Cancer associated fibroblasts (CAFs) constitute the most 
abundant cell population in the TME. They have been shown 
to play a major role in prostate cancer progression (88). 
During tumorigenesis, stromal fibroblasts crosstalk and likely 
coevolve with the epithelial compartment and become CAFs. 
Experiments revealed that CAFs from aggressive disease are 
sufficient to drive the progression of prostate cancer cells with 
low tumorigenic potential (88). They can also contribute to 
castration‑resistance (89). On the other hand, normal fibro‑
blasts can slow the proliferation rate of aggressive prostate 
cancer models (90). The amount of tumor‑associated stroma 
diminishes as prostate cancer becomes more aggressive (89). 
Although it is hard to prove causality, TME features that 
characterize aggressive disease include a high proportion 
of CAFs, low proportion of smooth muscles, high vimentin 
expression, asporin expression, increased manifestation of 
matrix metalloproteinases, increased expression of COL5A2, 
and decreased expression of COL4A6 (89,91‑93). The 
increased deposition of various collagen types, such as I or 
III, contributes to matrix stiffness, which leads to increased 
tumor invasiveness and metastatic potential (88). It was also 
suggested that CAF‑derived neuregulin 1 (NRG1) induces 
antiandrogen resistance, via a NRG1‑HER3 axis (94). CAFs 
don't have the genetic alterations of the epithelial compart‑
ment. On the contrary, CAFs from aggressive prostate cancers 
have discrete methylation differences compared to CAFs from 
moderate risk disease (95). For example, epigenetic regulation 
of Ras activity in prostatic CAFs, was found to regulate the 
metabolic and neuroendocrine activity in prostate cancer that 
fails ADT (96). Stromal AR expression also diminishes early 
in prostate tumorigenesis and continues to gradually decrease 
as the disease evolves into a more aggressive phenotype. It has 
been suggested that stromal AR inhibits the growth of malig‑
nant epithelial cells (97). Neural tissue is also an active TME 
element in prostate cancer. Perineural invasion is a known 
adverse prognostic factor (98). Several neural transmission 
receptors are present in cancer cells (98). Moreover, it has been 
recently shown that the abundance of neurotrophic growth 
factors in the patient's urine may perform better than PSA to 
separate aggressive prostate tumors from indolent ones (99).

8. A senescence phenotype is associated with indolence

There are currently no reliable molecular signatures to identify 
prostate tumors destined to run an indolent clinical course. 
Emerging evidence suggests that the upregulation of path‑
ways related to cellular aging and senescence can distinguish 
between indolent and aggressive disease (100) (Table I). The 
‘indolence signature’ includes inactivation of Nkx3.1, and 
increased expression of CDKN1A (p21), FGFR1 and PMP22 
genes (100) (Fig. 1). CDKN1A is a cell regulatory gene 
associated with senescence (101). FGFR1 is known to play 
a critical role in prostate development and prostate tumori‑
genesis (102). This suggests a potentially complex activity of 
FGFR1 in prostate cancer. FGF signaling plays an important 
role in stem cell renewal, cellular aging and senescence (103). 
Although PMP22 is a gene highly expressed in neurons, it 
has also been associated with cellular proliferation regulation 

in other tissues and growth arrest in fibroblasts (104,105). 
Increased senescence has also been associated with reduced 
PSA recurrence rates (106). Senescent cells not only undergo 
cell cycle arrest, but they also trigger an immune response that 
can help the clearance of neoplastic cells (107). However, they 
are metabolically active and their secretome can impact the 
surrounding non‑senescent cancer cells in ways that promote 
cancer progression and metastasis (108,109). Senescence can 
also be caused by long term oncogenic signaling or DNA 
damage and increased oxidative stress as a result of anticancer 
agents or radiation (109,110). In addition, complete PTEN 
loss triggers a p53‑dependent cellular senescence response 
(The overwhelming majority of patients have PTEN loss 
heterozygosity, which results in tumor initiation and progres‑
sion) (111‑113). Moreover, androgen deprivation frequently 
induces senescence in prostate tumor cells (114,115). In conclu‑
sion, the induction of senescent molecular signatures might 
contribute to the indolent clinical course in some patients 
with PCa, before and after treatment, especially antiandrogen 
therapy.

9. What makes high risk disease?

Data from histology and gene expression analysis can provide 
useful prognostic information. Luminal B tumors carry the 
worst outcome (69% overall survival at 10‑years), followed 
by basal and luminal A tumors (10‑year overall survival at 
80% and 82% respectively) (116). It is well known that the 
amount of Gleason 4 disease in the primary tumor is strongly 
associated with clinical outcomes and disease aggressive‑
ness (117,118). High grade localized tumors are marked by 
epigenetic loss of heterogeneity and common trans‑regulatory 
signatures. They exhibit enrichment for FOXA1, CDX2 and 
HOXB13 transcription factor binding sites (119). A few studies 

Figure 1. Factors associated with a ‘senescence phenotype’ in prostate cancer. 
Studies suggest that the upregulation of aging‑ and senescence‑related 
pathways is able to distinguish between indolent and aggressive prostate 
tumors. The senescent signature includes Nkx3.1 inactivation and increased 
expression of CDKN1A, FGFR1 and PMP22 genes. Moreover, factors such 
as oxidative stress, oncogenic signaling, radiation, androgen deprivation or 
chemotherapy might induce senescence. While senescent cells can trigger 
immune clearance, their secretome can provide pro‑tumorigenic signals to 
neighboring non‑senescent cells.
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compared the differential gene expression between Gleason 
grade 3 and Gleason grade 4 lesions (120,121). The genes 
exclusively expressed in Gleason 4 tumors are those that are 
upregulated in neuronal, embryonic and hematopoietic stem 
cells. Overexpression of EGFR and HER2/neu are almost 
exclusively confined to Gleason 4 and above cancers (120,121). 
These genes are associated with independent tumor cell 
proliferation and enhanced cell motility (117). Gleason 4 and 5 
lesions have lesser frequencies of cyclin D2 methylation, which 
results in cyclin D2 activation and CDKN1B sequestration. 
This subsequently results in cell cycle entry. CDKN1B immu‑
nostaining progressively diminishes with increasing Gleason 
score (122‑124). Gleason score is also strongly associated 
with expression levels of the anti‑apoptotic genes DAD1 and 
BCL2 (125,126). Moreover, indolent cancers are more capable 
of subverting a brake in replication. High Gleason grade 
lesions also show decreased androgen signaling, suggesting 
dedifferentiation. The downregulation of androgen responsive 
genes in high grade tumors results in increased cell prolifera‑
tion (127,128). In addition, poor prognosis tumors are related 
to increased VEGF production and microvessel density, as 
well as irregularity in vessel diameter (129‑131). Microvessel 
pericyte density score is also associated with disease aggres‑
siveness (132). Higher grade lesions overexpress elements that 
are permissive for tumor migration. For example, the chemo‑
kine receptor CXCR4, which is overexpressed in Gleason 4 
lesions, poses a key role in the development of lymph nodes and 
bone metastases (133‑135). Interestingly, its ligand CXCL12 
is secreted in high concentrations by lymph nodes and bone 
marrow stroma (117).

10. The role of tumor dormancy

In PCa, metastatic disease may occur years after RP. This 
suggests that in some cases cancer cells undergo a long‑lasting 
quiescent state (136). Quiescent cells are reversibly suspended 
in the G0 phase, but they retain the ability to re‑enter the 
cell cycle and initiate symptomatic metastatic disease (137) 
(Table I; Fig. 2). Tumor dormancy might be due to intrinsic 
factors or due to conditions provided to the tumor cells by the 
surrounding microenvironment (138,139). The bone is a major 
site of PCa recurrence, suggesting that the bone microenvi‑
ronment promotes a state of dormancy (136). In vitro studies 
have shown that two members of the TGFβ/BMP family, 
GDF10 and TGFβ2 (which are secreted from differentiated 
osteoblasts), induce quiescence in PCa cells (136,138). Several 
other osteoblast secreted factors such as Wnt5a (maintains 
hematopoietic stem cells in dormant state), GAS6, LIF, 
thrombospondin, DKK3, BMP1, vasorin, neogenin, MIA and 
NGAL, have also been suggested to promote dormancy in 
PCa (136,140‑142). For example, vasorin, neogenin and DKK3 
induce dormancy via activation of the p38MAPK signaling 
pathway (136). Besides osteoblasts, other bone marrow stromal 
cells secrete dormancy‑inducing factors (136). The transcrip‑
tion factors SOX2, NANOG and the orphan receptor NR2F1 
are important for the maintenance of a quiescent phenotype 
through epigenetic regulation (143‑147). Studies suggest 
that dormant cells at the metastatic sites continue to acquire 
genomic changes (148). The receptor tyrosine kinases TYRO3 
and MERTK (TAM family) were shown to promote dormancy 

escape (145). Norepinephrine was also hypothesized to stimu‑
late dormancy escape in PCa through the beta‑2 adrenergic 
signaling (149).

11. Conclusions

The majority of prostate cancers follow an indolent clinical 
course. It is unclear whether there is one or several types of 
indolence in PCa. Several factors have been linked to disease 
aggressiveness. However, it is still largely unknown which 
of these factors actually have a causative role. High quality 
tumor analyses suggest that complex genetic aberrations in 
multiple critical pathways are associated with a worse pheno‑
type. The escape from indolence into an aggressive disease 
is associated with a complex interplay in which genetic 
and epigenetic factors are likely involved. The effect of the 
immediate immune tumor microenvironment is also very 
important. Future studies will show whether halting the step‑
wise tumor evolution is a feasible option. Further research 
will also determine whether we can meaningfully prolong 
the life of PCa patients by inducing senescence or long‑term 
tumor dormancy.
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