
Bioscience Reports (2019) 39 BSR20171358
https://doi.org/10.1042/BSR20171358

*These authors contributed
equally to this work.

Received: 11 October 2017
Revised: 15 January 2018
Accepted: 16 January 2018

Accepted Manuscript Online:
16 January 2018
Version of Record published:
29 July 2019

Research Article

The role of angiopoietin-like protein 4 in
phenylephrine-induced cardiomyocyte hypertrophy
Yu Sun1,2,*, Yi Li1,2,*, Chen Liu1,2, Ruicong Xue1,2, Bin Dong1,2, Huiling Huang1,2, Longyun Peng1,2, Jun Liu1,2 and
Yugang Dong1,2

1Department of Cardiology, the First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, Guangdong, China, 510080; 2Key Laboratory on Assisted Circulation, Ministry of
Health, Guangzhou, Guangdong, China, 510080

Correspondence: Yugang Dong (dongxg@mail.sysu.edu.cn) or Jun Liu (liujun650214@163.com)

Angiopoietin-like protein 4 (ANGPTL4) is a multifunctional secreted protein that can be in-
duced by fasting, hypoxia and glucocorticoids. ANGPTL4 has been associated with a variety
of diseases; however, the role of ANGPTL4 in cardiac hypertrophy remains poorly under-
stood. In our study, we aimed to explore the effect of ANGPTL4 on phenylephrine-induced
cardiomyocyte hypertrophy. Our results showed that knockdown of ANGPTL4 expression
significantly exacerbated cardiomyocyte hypertrophy, as demonstrated by increased hy-
pertrophic marker expression, including ANP and cell surface area. Moreover, significantly
reduced fatty acid oxidation, as featured by decreased CPT-1 levels, was observed in hyper-
trophic cardiomyocytes following ANGPTL4 down-regulation. Furthermore, knockdown of
ANGPLT4 led to down-regulated expression of peroxisome proliferator-activated receptor
α (PPARα), which is the key regulator of cardiac fatty acid oxidation. In addition, ANGPTL4
silencing promoted the activation of JNK1/2, and JNK1/2 signaling blockade could re-
store the level of PPARα and significantly ameliorate the ANGPTL4 knockdown-induced
cardiomyocyte hypertrophy. Therefore, our study demonstrated that ANGPTL4 regulates
PPARα through JNK1/2 signaling and is required for the inhibition of cardiomyocyte hyper-
trophy.

Introduction
Cardiac hypertrophy is a compensatory mechanism in response to cardiac overload or injury. Neverthe-
less, sustained cardiac hypertrophy is regarded as a leading cause of heart failure [1]. Under normal cir-
cumstances, the heart is capable of utilizing energy substrates to satisfy its high energy demand. It is well
established that fatty acids are the predominant energy substrates used in the adult myocardium and pro-
duce more energy than other metabolic substrates [2]. However, in response to pathological hypertrophy,
the myocardium relies more on glucose metabolism than on fatty acid oxidation (FAO), leading to a de-
creased supply of energy [3]. Over the last decade, many studies have suggested that decreased myocardial
FAO is likely a key pathological mechanism that contributes to the transition to heart failure [4–6]. There-
fore, therapeutic strategies that prevent the down-regulation of FAO in the hypertrophied heart are highly
desirable, but the mechanism is poorly understood.

ANGPTL4 (angiopoietin-like 4, also known as HFARP, FIAF and PGAR) is a multifunctional secreted
protein that belongs to a family consisting of seven members (ANGPTL1–7). ANGPTL4, which com-
prises an N-terminal coiled-coil domain and a C-terminal fibrinogen-like domain, has been implicated
in numerous diseases, including cardiovascular disease, obesity, diabetes, nephrotic syndrome, cancer
metastasis, wound repair, inflammation and arthritis [7]. Many studies have shown that ANGPTL4 is a
key regulator of metabolism and could modulate lipid metabolism by inhibiting the activity of lipoprotein
lipase (LPL) [8], an enzyme responsible for the hydrolysis of triglycerides (TG) contained in lipoproteins.
However, whether ANGPTL4 can regulate cardiac hypertrophy remains poorly understood.
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Thus, in our present study, we aimed to discover the effects of ANGPTL4 on cardiac hypertrophy and explore the
underlying mechanism. Our data suggest that ANGPTL4 is required for the inhibition of cardiomyocyte hypertrophy,
possibly through the regulation of the expressions of FAO-related genes.

Materials and methods
Reagents
Monoclonal antibodies against ERK1/2, phospho-ERK1/2, JNK1/2, phospho-JNK1/2, p38 and phospho-p38 were
purchased from Cell Signaling Technology (Massachusetts, U.S.A.). Anti-ANGPTL4 antibody was obtained from
Sigma (St. Louis, MO, U.S.A.). DMEM/F12 and fetal bovine serum (FBS) were purchased from HyClone. Collagenase
and trypsin were purchased from Gibco (Grand Island, NY, U.S.A.). Cell lysis buffer was obtained from Cell Signaling
Technology (Massachusetts, U.S.A.). Recombinant human ANGPTL4 was from Abnova. Phenylephrine (PE) was
purchased from Tokyo Chemical Industry. TRIzol and JNK inhibitor (SP600125) was obtained from Sigma (St. Louis,
MO, U.S.A.).

Animals
All of the experimental protocols complied with the guide for the care and use of laboratory animals published by the
Ethics Committee on Clinical Research and Animal Research of the First Affiliated Hospital of Sun Yat-Sen University.
Eight- to ten-week-old male C57BL/6J mice weighing 24–26 g were used in the current research study. Cardiac hyper-
trophy was induced by pressure overload, which was achieved by descending aortic banding (AB) as previously de-
scribed [9]. Following anesthesia by intraperitoneal injection of 1.5% pentobarbital, the left thorax of C57BL/6J mice
was opened at the second intercostal space, and a 7–0 silk suture ligature was tied around the descending aorta against
a 26-gauge needle. Then, the needle was quickly removed. A similar surgery was performed on the sham-operated
mice with the exception of AB.

Neonatal rat ventricular cardiomyocyte cultures and siRNA and
recombinant ANGPTL4 transfection
Primary cultures of cardiomyocytes were obtained from the Experimental Animal Facility of Sun Yat-Sen Uni-
versity and were prepared from 1- to 2-day-old Sprague-Dawley rats as previously described [10]. siRNA
transfection was performed using Lipofectamine™ RNAiMAX (Invitrogen, Carlsbad, CA) according to the
manufacturer’s instructions. The sequence of the siRNA targeting ANGPTL4 (si-ANGPTL4) was as follows:
5′GCAGCCAUUCCAAUCUAAAdTdT3′. Thirty-six hours after being seeded, cardiomyocytes were transfected with
scrambled siRNA (si-scramble) (50 nmol/l) or ANGPTL4-specific siRNA (50 nmol/l) in serum-free medium for 12
h. After another 12 h of serum-free medium starvation, the cardiomyocytes were treated with PE (50 μM) to induce
cardiomyocyte hypertrophy. Thirty-six hours after being seeded, recombinant ANGPTL4 (0.5 μg/ml) was added into
cardiomyocytes in serum-free medium for 24 h. Then, the cardiomyocytes were treated with PE (50 μM) to induce
cardiomyocyte hypertrophy.

Administration of JNK inhibitor
JNK inhibitor (SP600125) was dissolved in dimethylsulfoxide (DMSO) to a final concentration of 10 μM. The car-
diomyocytes were plated at a density of 1 × 106 cells/well in six-well plates. Following 36 h of incubation, JNK inhibitor
(10 nM) or DMSO was added to each well 1 h prior to treatment with siRNA.

RNA isolation and quantitative real-time PCR (q-PCR)
RNA isolation and q-PCR were performed as previously described [11]. The primers used are listed in Table 1. Q-PCR
was performed under the following conditions: 95◦C for 5 min followed by 39 cycles of 95◦C for 10 s, 60◦C for 20
s, and 72◦C for 20 s, using a LightCycler 480 thermal cycler (Roche Diagnostics GmbH, Manheim, Germany). Data
were normalized using GAPDH as an internal control.

Western blotting analysis
Western blotting was performed according to our previous study [12]. Quantitative analysis was performed using
the Quantity One software. The membrane was blocked with blocking buffer (1× TBS, 0.1% Tween-20, 5% BSA) for
1 h at room temperature and then incubated overnight at 4◦C with anti-phosphorylated-ERK1/2 (1:3000 dilution),
anti-total-ERK1/2 (1:3000 dilution), anti-phosphorylated-JNK1/2 (1:1000 dilution), anti-total-JNK1/2 (1:1000 dilu-
tion), anti-phosphorylated-p38 (1:1000 dilution), anti-total-p38 (1:1000 dilution), anti-ANGPTL4 (1:1000 dilution)
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Table 1 Sequences of oligonucleotide primers (forward and reverse) used for PCR

Target Forward (5′-3′orientation) Reverse (5′-3′orientation)

ANGPTL4 AGCTCAAGGCTCAAAACAGCA CTTTCCCCTCGAAGTCTTGTCT

CPT-1 TGCAGTCGACTCACCTTTCC TCAAAGAGCTCCACCTGCTG

CD36/FAT TACTCTCTCCTCGGATGGCT AGCACTTGCTTCTTGCCAAC

PPARα-rat GTCCTCTGGTTGTCCCCTTG GTCAGTTCACAGGGAAGGCA

ANP-rat TGAGCCGAGACAGCAAACATC AGGCCAGGAAGAGGAAGAAGC

GAPDH-rat ACAGCAACAGGGTGGTGGAC TTTGAGGGTGCAGCGAACTT

PPARα-mouse TGCCTTCCCTGTGAACTGAC TGGGGAGAGAGGACAGATGG

ANP-mouse GCTTCCTGCCTTCATCTATCAC TGAAAAGGGTGAGGATCTACCT

GAPDH- mouse GTTGTCTCCTGCGACTTCAAC GCTGTAGCCGTATTCATTGTCA

or anti-GAPDH (1:10000 dilution) primary antibodies. Then, the membrane was washed with TBS-T and incubated
with secondary antibodies (1:10000 dilution, Protein-tech Group, Wuhan, China) at 37◦C for 1 h. The immune com-
plex was detected with an enhanced chemiluminescence system (Millipore, Massachusetts, U.S.A.) and exposed to
X-ray film.

Measurement of the surface area of the cardiomyocytes
The cardiomyocytes were exposed to PE for 24 h and then fixed using 4% paraformaldehyde. Subsequently, 50–100
cardiomyocytes in each group were randomly selected, and the cell surface area was analyzed using the Image-Pro
Plus software.

Immunofluorescence staining
Immunofluorescence staining was performed as previously described [12]. Mouse polyclonal anti-troponin I (1:50,
Santa Cruz) was used as the primary antibody, and the immune complexes were detected using Cy3-conjugated sec-
ondary antibodies (1:100, Protein-tech Group). The nuclei were stained with DAPI (0.5 mg/ml, Sigma). The images
were obtained at 600× using a Nikon A1+ confocal microscope.

Statistical analysis
All of the data were expressed as the mean +− standard error of the mean (SEM) from at least three independent exper-
iments. The differences between the means were evaluated using one-way or two-way ANOVA. Statistical significance
was established at P<0.05. All of the statistical analyses were performed using SPSS13.0 software.

Results
ANGPTL4 expression is increased in PE-induced hypertrophic
cardiomyocytes
To explore whether ANGPTL4 plays a role in pressure overload- or PE-induced cardiomyocyte hypertrophy, we de-
tected ANGPTL4 protein expression in cardiomyocytes 3 days, 1 week and 4 weeks after AB or sham surgery in vivo
and after 6, 12 and 24 h of PE incubation in vitro. As shown in Figure 1A–I, gross heart size, ANP mRNA expression
and the heart/body weight increased with time after AB surgery, whereas no significant change in heart size, ANP
mRNA expression and heart/body weight was observed in the mice that underwent sham surgery. Compared with the
sham group, the level of ANGPTL4 was increased 3 days after AB surgery and gradually declined thereafter (Figure
1G). Similarly, in vitro experiments showed that the level of ANGPTL4 was increased at 6 and 12 h after PE treatment
and then gradually declined over the next 12 h (Figure 1H). Therefore, our data suggest that changes in ANGPTL4
expression might play a role in the process of AB- or PE-induced cardiac hypertrophy.

ANGPTL4 protects against the PE-induced hypertrophic response in
cardiomyocytes
To determine whether ANGPTL4 regulates the development of cardiomyocyte hypertrophy, we first knocked down
ANGPTL4 expression in cardiomyocytes using siRNA transfection. The silencing effect was examined by q-PCR,
and the expression level of ANGPTL4 was decreased to approximately 50% after siRNA transfection (Figure 2A).
Furthermore, hallmark parameters of cardiac hypertrophy, including ANP mRNA expression and cardiomyocyte
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Figure 1. Effect of AB or PE on ANGPTL4 expression in cardiomyocytes

(A–C) Representative images of the mouse heart at 3 days, 1 week and 4 weeks after AB or sham surgery. (D–F) The effect of AB

on ANP mRNA expression was determined by q-PCR, and GAPDH was used as an internal control. (G–I) Quantitative analysis of

the heart/body weight of mice at 3 days, 1 week and 4 weeks after aortic banding or sham surgery. (J) Western blots showing

ANGPTL4 and GAPDH expression in mouse hearts at the indicated time after sham or AB surgery, and quantitative analysis of the

above blots. (K) Western blots showing ANGPTL4 and GAPDH expression in cultured cardiomyocytes after vehicle or PE incubation

for the indicated time, and quantitative analysis of the above blots. GAPDH was used as an internal control. *P<0.05 versus the

corresponding control group. **P<0.01 versus the corresponding control group. The results represent three to five independent

experiments; n = 3–5.

surface area, were detected. As shown in Figure 2B,D, knockdown of ANGPTL4 did not affect the basal levels of ANP
or the cell surface area. Under PE stress, cardiomyocytes transfected with ANGPTL4 siRNA (si-ANGPTL4) exhibited
a more significant hypertrophic phenotype than those transfected with control siRNA (si-scramble). Moreover, the
mRNA expression level of ANP and the cell surface area were increased by approximately 50% in the si-ANGPTL4
group compared with the control group. These data suggested that knockdown of ANGPTL4 expression exacerbated
PE-induced cardiomyocyte hypertrophy.

To further evaluate the inhibitory effect of ANGPTL4 on cardiac hypertrophy, we examined the effect of exogenous
ANGPTL4 on cardiac hypertrophy. We next investigated the levels of ANP and the cell surface area of cardiomyocytes
treated with recombinant human ANGPTL4 compared with those of cardiomyocytes treated with vehicle under hy-
pertrophic stress. Treatment with recombinant human ANGPTL4 abolished the increase in ANP levels (41%) (Figure
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Figure 2. Effects of ANGPTL4 knockdown and recombinant ANGPTL4 treatment on PE-induced cardiomyocyte hypertrophy

and the genes (PPARα, CPT-1 and CD36) involved in the regulation of FAO

Cardiomyocytes were transfected with siRNA and incubated with or without PE for 24 h in serum-free medium. (A) The siRNA-medi-

ated knockdown of ANGPTL4 was confirmed by q-PCR. (B) The effect of siRNA-mediated knockdown of ANGPTL4 on ANP mRNA

expression was determined by q-PCR, and GAPDH was used as an internal control. (C) The effect of silencing ANGPTL4 on the cell

surface area. After siRNA transfection, cardiomyocytes were treated with or without PE for 24 h. (D and G) Cardiomyocytes were

stained with troponin I, and the nuclei were stained with DAPI. (E) The effect of recombinant ANGPTL4 on ANP mRNA expression

was detected by q-PCR. (F) The effect of recombinant ANGPTL4 on the cell surface area. After siRNA transfection, the expression

levels of PPARα (H), CPT-1 (I) and CD36 (J) were detected by q-PCR, and GAPDH was used as an internal control. *P<0.05 versus

the corresponding control group; NS indicates no significance versus the corresponding control group. Each of the experiments

was repeated four to seven times; n = 4–7.

2E) compared with treatment with vehicle. Similarly, the cell surface area of the cardiomyocytes treated with recom-
binant ANGPTL4 was markedly decreased compared with that of controls (32.3%) (Figure 2F,G). Therefore, these
results verified that ANGPTL4 is a potent inhibitor of PE-induced cardiac hypertrophy.

Down-regulation of ANGPTL4 impairs the expressions of fatty acid
metabolism related genes in hypertrophic cardiomyocytes
As FAO is one of the pivotal mechanisms involved in the development of cardiac hypertrophy, we explored whether
ANGPTL4 affected fatty acid metabolism in hypertrophic cardiomyocytes. Peroxisome proliferator-activated recep-
tor α (PPARα, the major regulator of FAO) and its downstream effectors, CPT-1 and FAT/CD36 [13,14], were de-
tected. CPT1 is the rate-limiting step of FAO and imports long-chain fatty acids (FAs) across the mitochondrial
membrane; FAT/CD36 is regarded as an FA transporter. As shown in Figure 2H–J, we confirmed that PE-induced
cardiomyocyte hypertrophy led to a notable decrease in PPARα, CPT-1 and FAT/CD36 expression, suggesting that
impaired FAO is involved in the process of cardiomyocyte hypertrophy. Compared with the cardiomyocytes trans-
fected with control siRNA, the cardiomyocytes transfected with si-ANGPTL4 demonstrated a significant decrease
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Figure 3. Effect of ANGPTL4 knockdown on MAPK signaling

(A) The MAPK bands were detected using Western blot analysis after PE incubation for 30 min. Quantitative analysis of phosphory-

lated and total ERK1/2 (B), JNK1/2 (C) and p38 (D). *P<0.05 versus the corresponding control group. NS indicates no significance

versus the corresponding control group. Each of the experiments was repeated six times; n=6.

in the expression of PPARα and CPT-1 both at baseline and under PE stress. This finding suggested that ANGPTL4
may be involved in the regulation of the expressions of FAO-related genes in cardiomyocytes with or without PE treat-
ment. However, no differential expression of FAT/CD36 was observed following knockdown of ANGPTL4. Overall,
these data demonstrated that down-regulation of ANGPTL4 decreased the expression of PPARα and CPT-1 in hyper-
trophic cardiomyocytes, indicating that reduced expressions of FAO-related genes might contribute to the exacerbated
hypertrophy caused by ANGPTL4 knockdown.

The roles of the MAPK signaling pathway in the ANGPTL4-mediated
amelioration of cardiomyocyte hypertrophy
In previous studies, inhibition of MAPK signaling was demonstrated to reduce PPARα activity [15]. Simultaneously,
our previous study showed that PPARα could ameliorate cardiac hypertrophy and that PPARα expression could be
induced by the activation of ERK1/2 signaling pathways [16]. Additionally, induction of ANGPTL4 expression was
shown by Stapleton to significantly activate the ERK1/2 and JNK1/2 signaling pathways [17]. Therefore, to explore
the roles of the MAPK signaling pathway in the ANGPTL4-mediated amelioration of cardiomyocyte hypertrophy,
we further examined whether knockdown of ANGPTL4 promoted hypertrophy by decreasing PPARα through the
MAPK signaling pathways. As shown in Figure 3A–D, PE treatment significantly induced the phosphorylation of
ERK1/2 and JNK1/2. Transfection with si-ANGPTL4 did not affect the activation of MAPKs without PE treatment
but further increased the phosphorylation of JNK1/2 under PE stress. However, ERK1/2 and p38 activation was not
affected by ANGPTL4 knockdown. Therefore, JNK1/2 might be involved in the ANGPTL4-mediated regulation of
cardiomyocyte hypertrophy.

Previous studies have demonstrated that JNK1/2 signaling could inhibit PPARα signaling in the high-fat
diet-induced fatty liver [18]. Thus, we investigated whether JNK1/2 played a role in the ANGPTL4-mediated regula-
tion of cardiomyocyte hypertrophy. The JNK1/2 inhibitor SP600125 (10 nM) was used to block JNK1/2 before siRNA
transfection. As shown in Figure 4A–C, treatment with JNK1/2 inhibitor significantly blocked the pro-hypertrophic
effect of ANGPTL4 knockdown on PE-induced hypertrophic cardiomyocytes, decreasing ANP expression levels and
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Figure 4. Effect of JNK inhibitor on ANGPTL4-mediated cardiomyocyte hypertrophy

JNK inhibitor (SP600125) was added to cardiomyocytes 1 h prior to treatment with siRNA followed by treatment with or without

PE for 24 h. (A) The effect of JNK inhibitor and siRNA on ANP mRNA expression was determined by q-PCR, and GAPDH was

used as an internal control. (B) The effect of JNK inhibitor and ANGPTL4 knockdown on the cell surface area. (C) Cardiomyocytes

were stained with troponin I, and the nuclei were stained with DAPI. (D) The expression levels of PPARα were detected by q-PCR;

GAPDH was used as an internal control. (E) The effect of JNK inhibitor and ANGPTL4 knockdown on ANGPTL4 mRNA expression

was detected by q-PCR. *P<0.05 versus the corresponding control group. **P<0.01 versus the corresponding control group. NS

indicates no significance versus the corresponding control group. Each of the experiments was repeated three to six times; n=3–6.

cell surface area compared with the corresponding control group. Furthermore, as shown in Figure 4D, the expres-
sion level of PPARα was increased after JNK1/2 inhibitor treatment with or without si-ANGPTL4 transfection and
PE stress, indicating that blockage of JNK1/2 markedly restored the level of PPARα. Additionally, the change in
ANGPTL4 expression exhibited a similar trend as the change in PPARα mRNA expression (Figure 4E). Meanwhile,
the effect of JNK inhibitor on the activation of MAPKs (ERK1/2, p38 and JNK1/2) was examined by Western blot.
As shown in Figure 5A–D, activation of the JNK1/2 signaling pathway was significantly blocked by SP600125 treat-
ment in the presence of PE stress, whereas JNK1/2 inhibitor had almost no influence on the ERK1/2 and p38 signal-
ing pathways. Additionally, in vivo study showed the expression of PPARα decreased with time after AB surgery
(Figure 5E–G). Pressure overload significantly induced the phosphorylation of JNK1/2 1 week after surgery and
weakly induced 4 weeks after surgery. However, JNK1/2 was not activated 3 days after surgery (Figure 5H–M). The
opposite changes of PPARα and JNK1/2 also suggest PPARα was regulated by JNK1/2 signaling in the process of
AB-induced cardiac hypertrophy. Consequently, these data demonstrate that JNK1/2 signaling might mediate the
pro-hypertrophic effects of ANGPTL4-knockdown on cardiomyocytes by regulating PPARα.
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Figure 5. Effect of JNK inhibitor on MAPK signaling following ANGPTL4 knockdown

JNK inhibitor (SP600125) was added to cardiomyocytes 1 h prior to treatment with siRNA followed by treatment with or without PE

for 24 h. (A) The MAPK bands were detected using Western blot analysis after PE incubation for 30 min. Quantitative analysis of

phosphorylated and total JNK1/2 (B), ERK1/2 (C) and p38 (D). (E–G) The effect of AB on PPARα mRNA expression was determined

by q-PCR, and GAPDH was used as an internal control. (H–J) The JNK1/2 bands were detected using Western blot analysis after

AB surgery. (K–M) Quantitative analysis of phosphorylated and total JNK1/2. *P<0.05 versus the corresponding control group. NS

indicates no significance versus the corresponding control group. Each of the experiments was repeated three to seven times;

n=3–7.

Discussion
In our present study, we investigated the role of ANGPTL4 in PE-induced cardiomyocyte hypertrophy. We discovered
that knockdown of ANGPTL4 aggravated the development of cardiomyocyte hypertrophy induced by PE. Meanwhile,
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decreased levels of PPARα and CPT-1 were observed in cardiomyocytes following ANGPTL4 knockdown in the ab-
sence or presence of PE, which suggested that down-regulation of ANGPTL4 might exacerbate cardiomyocyte hyper-
trophy through change the expressions of FAO-related genes. Furthermore, blocking JNK1/2 signaling ameliorated
the exacerbated cardiomyocyte hypertrophy and the reduced PPARα expression level induced by down-regulation
of ANGPTL4, indicating that JNK1/2 is a pivotal signaling molecule involved in the inhibition of cardiomyocyte
hypertrophy by ANGPTL4.

It is well known that cardiac metabolism undergoes reprogramming in response to pathological hypertrophy, as
characterized by decreased FAO and increased glucose utilization. Decreased dependence on FAs for energy pro-
duction is a key pathological mechanism that contributes to the transition to heart failure [19]. Therefore, new tar-
gets that prevent the inhibition of FAO in the hypertrophied heart are highly desirable. ANGPTL4, a secretory pro-
tein, is predominantly expressed in the liver, adipose tissue and heart. The major function of ANGPTL4 is in lipid
metabolism; ANGPTL4 is capable of inhibiting LPL activity by converting lipoprotein lipase to inactive monomers
[20], which leads to a decrease in plasma TG level and reduced lipoprotein catabolism [21]. Further study showed
that the N-terminal domain of ANGPTL4 was responsible for its inhibitory effect on LPL [22]. Therefore, based on
the effect of ANGPTL4 on energy metabolism, we speculated that ANGPTL4 might participate in the regulation of
cardiac hypertrophy.

To confirm our hypothesis, we first determined how ANGPTL4 expression is changed in cardiac hypertrophy. We
discovered that the protein expression level of ANGPTL4 is increased at the onset of pressure overload- or PE-induced
cardiac hypertrophy and declines over time. This finding suggested that changes in ANGPTL4 expression might be in-
volved in the process of cardiac hypertrophy. To verify this speculation, specific siRNA was used to silence ANGPTL4.
In hypertrophic cardiomyocytes, down-regulation of ANGPTL4 resulted in a further increase of hypertrophic mark-
ers (ANP expression and cell surface area). In contrast, the addition of exogenous recombinant ANGPTL4 abolished
PE-induced hypertrophy. Taken together, we concluded that ANGPTL4 has a protective effect on the process of car-
diomyocyte hypertrophy and that it may protect against hypertrophic stress.

It is well established that metabolism is altered in the hypertrophic myocyte. In general, FAO is normally the major
energy source that sustains contractile function, whereas in response to pathological hypertrophy, the myocardium
relies more on glucose metabolism, leading to a lower supply of energy [3]. Furthermore, PPARα, a member of the
ligand-activated nuclear receptor superfamily, is a principal transcriptional regulator of FAO [23]. PPARα is widely
expressed in tissues, such as the heart, that depend on FAO as a primary energy source [24]. PPARα is a critical regu-
lator of myocardial metabolism, and increasing studies have suggested that abnormal regulation of PPARα is related
to metabolic disturbances in the heart [25–27]. Moreover, decreased expression of PPARα has been reported to be
associated with the development of pathological cardiac hypertrophy, and abnormalities in metabolism have been
shown to be involved in that process [28,29]. Liang et al. [25] found that PPARα agonists could inhibit neonatal rat
cardiomyocyte hypertrophy. Furthermore, Smeets et al. [28] discovered that knockout of PPARα could exacerbate
chronic pressure overload-induced cardiac hypertrophy. Additionally, ANGPTL4 was shown by many independent
groups to regulate PPARα [30–32]. These evidence indicate that ANGPTL4 may be effective in inhibiting cardiac
hypertrophy via the regulation of PPARα. CPT-1, the downstream target of PPARα, is an essential enzyme in fatty
acid metabolism [33] that converts long-chain acyl CoA to long-chain acylcarnitine. Long-chain acylcarnitine is sub-
sequently shuttled into the mitochondria. Once in the mitochondrial matrix, long-chain acylcarnitine is converted
back to long-chain acyl CoA, which subsequently participates in FAO. Thus, the regulation of CPT-1 expression by
PPARα may influence the quantity of fatty acid that is shuttled into the mitochondria. As a rate-limiting enzyme of
FAO, CPT-1 is positively correlated with energy production by FAO [33]. In our previous studies, we showed that
PPARα could attenuate PE-induced cardiomyocyte hypertrophy by activating the ERK1/2 signaling pathways [16].
Consistent with our previous studies, we discovered that PPARα expression is decreased in cardiomyocytes trans-
fected with si-ANGPTL4 under PE stress, which suggested that PPARα could be one of the targets of ANGPTL4
in the regulation of cardiac hypertrophy. Moreover, ANGPTL4 silencing reduced the basal CPT-1 level and further
blocked its expression during cardiomyocyte hypertrophy, suggesting that ANGPTL4 could be an important regulator
of FAO by negatively regulating PPARα/CPT-1 in cardiomyocytes.

Based on previous studies, MAPK signaling pathways are implicated in the regulation of PPARα. In our previous
studies, we have demonstrated that activation of ERK1/2 induced PPARα [16]. In addition, activation of JNK1/2 leads
to decreased expression of PPARα, which results in decreased the expressions of FAO-related genes [17]. To eluci-
date how ANGPTL4 regulates PPARα, we explored the effects of MAPKs in that process. In the present study, we
discovered that treatment with PE stimulated the phosphorylation of ERK1/2 and JNK1/2. Additionally, activation
of JNK1/2 was further increased in cardiomyocytes following down-regulation of ANGPTL4 under PE stress. How-
ever, activation of ERK1/2 and p38 was not affected by ANGPTL4 silencing, implying that ANGPTL4 mainly affects
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hypertrophy via JNK1/2 signaling. Therefore, a JNK inhibitor was used to further verify the role of JNK1/2 in the in-
hibition of cardiomyocyte hypertrophy by ANGTPL4. Our data showed that blocking JNK1/2 signaling significantly
ameliorated cardiomyocyte hypertrophy and recovered the expression level of PPARα, which was impaired by the
knockdown of ANGPTL4. These findings imply that JNK inhibitors may ameliorate cardiomyocyte hypertrophy by
improving the expressions of FAO-related genes in PE-induced hypertrophic cardiomyocytes. Moreover, our in vivo
study proved the opposite trend between JNK1/2 and PPARα after AB, which were consistent with those of a previous
study by Vernia et al. [34] that showed that JNK1/2 signaling exhibited an inverse relationship with PPARα. Conse-
quently, our results suggested that the JNK1/2 signaling pathway might play a pivotal role in the ANGPTL4-mediated
regulation of cardiomyocyte hypertrophy.

Conclusions
In conclusions, we discovered that down-regulation of ANGPTL4 is capable of exacerbating PE-induced cardiomy-
ocyte hypertrophy. A potential core mechanism is that ANGPTL4 promotes the expressions of FAO-related genes via
the regulation of PPARα through JNK1/2 signaling. Therefore, ANGPTL4 may be a new target for the treatment of
cardiomyocyte hypertrophy; however, further research is required to uncover additional mechanisms.
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